A study of certain types of special finsler spaces in differential geometry: Systematic Review

Anjali Goswami

1Associate Professor
College of sciences and theoretical studies
Saudi electronic university Riyadh, SA.

Abstract

The aim of this paper is to provide a review about the theory of special Finsler spaces. I introduce the most important and most commonly used special Finsler manifolds. The definitions of these special Finsler spaces are explained. The relationships between the different types of the special Finsler spaces are found. Many results, known in the literature, are proved and several new results are obtained from the researches. Although our investigation is entirely comprehensive, I provide; for comparison reasons, and local equivalent of my approach and the definitions of the special Finsler spaces.

Keywords: Finsler, differential, Torsion, Riemannian geometry.

INTRODUCTION

Almost 140 years have elapsed by since the main thought of an extraordinary Finsler geometry was defined by B. Riemann in 1854, and precisely 75 years have gone since the principal general meaning of this geometry was given by P. Finsler in 1918. In that drawn out stretch of time, a colossal measure of work has been done on numerical elaboration of this idea. The outcomes got are exhibited in a few monographs distributed since the late 1950's (H. Rund., 1959).
Different types of recurrence in Riemannian geometry have been studied by different authors (U.C et al., 1995). In contrast, some types of relapse in Finsler geometry have been also studied (J. P. Singh., 2009). It is surprising that the principal efficient investigation of manifolds supplied with such a metric was postponed by over 60 years (M. Matsumoto., 1969). It was an examination of this kind which framed the topic of the proposition of FINSLER in 1918, after whom such spaces were in the end named. The inception of the hypothesis of Finsler spaces is to be found in the analytics of varieties. In the present part, accordingly, we should detail the most straightforward issues in the math of varieties, keeping in mind no past information of this theme is presupposed, no endeavor is made to make the progress as a rule managed in standard treatises dedicated to this subject (E. M. Patterson., 1952).

Just those advancements which assume a focal part in the hypothesis of Finsler spaces, for example, the state of LEGENDRE, are talked about in detail, and beyond what many would consider possible from a geometrical perspective. It is demonstrated how an issue in the math of varieties forces a metric on the basic manifolds; also, the nearby properties of such a metric are best depicted by the presentation of the supposed digression spaces (A. G. Walker., 1950) Strictly, the idea of a digression space is free of the inconvenience of a metric and ought to along these lines have been acquainted earlier with the metric, however its importance is most likely more effectively comprehended in the light of the last mentioned.

A metric speculation of Riemannian geometry, where the general meaning of the length of a vector is not really given as the square foundation of a quadratic shape as in the Riemannian case. Such a speculation was initially created in the paper by P. Finsler.

The object studied in Finsler geometry is a real N-dimensional differentiable manifold \(M\) (of class at least \(C^3\)) with a system of local coordinates \(x^i\), on which a real non-negative scalar function \(F(x,y)\) in \(2N\) independent variables \(x^i\) and \(y^i\) is given, where \(y^i\) are the components of the contravariant vectors tangent to \(M\) at the point \(x^i\). Suppose that \(F(x,y)\) belongs to the class \(C^5\) in \(y^i\), and that in each tangent space \(M_x\) to \(M\) there is a domain \(M_x^*\) such that, first, it is conical (in the sense that if any vector \(y^i\) tangent at some point \(x^i\) belongs to \(M_x^*\), then every other tangent vector that is collinear with \(y^i\) and tangent at the same point \(x^i\) also belongs to \(M_x^*\)), and secondly, \(F(x,y)\) belongs to the class \(C^3\) in \(y^i\), \(Mx^*\). Non-zero vectors \(y^i\), \(Mx^*\) are called admissible. Suppose further that for every admissible \(y^i\) and every point \(x^i\):

\[
F(x, y) > 0, \quad \det \frac{\partial^2 F^2(x, y)}{\partial y^i \partial y^j} \neq 0,
\]

and also that \(F(x,y)\) is positively homogeneous of degree one in \(y^i\), that is, \(F(x,ky)=kF(x,y)\) for every \(k>0\) and all \(x^i\) and admissible \(y^i\).

If a Finsler space admits a coordinate system \(x^i\) such that \(F\) does not depend on these \(x\), then it is called a Minkowski space. The latter is related to a Finsler space in the same way as a Euclidean space is related to a Riemannian space. A Finsler space is called
positive definite if one imposes a condition on F that ensures that the quadratic form $z^i z^j \{F^2(x,y)/y^i y^j\}$ is positive definite for all x^i and non-zero y^j.

From the standpoint of Finsler geometry itself Randers' metric is very interesting, because its form is simple and properties of the Finsler space equipped with this metric must be described by the ones of the Riemannian space equipped with the metric $L(x, dx) = (g^u (x) dx^i dx^j)^{1/2}$ together with the 1-form $\lambda(x, dx) = b^i (x) dx^i$. For example the curvature tensors R_{ijkl}, P_{ijkl}, and S_{ijkl} of the Finsler space must be written in terms of Riemannian tensors, that is, the curvature tensor, b^i and its covariant derivatives with respect to the Riemannian connection. But we have few papers concerned with the Finsler space in viewpoint of Finsler geometry (Hashiguchi et al., 1973).

In recent paper, we have presented and examined naturally three classes of repeat in Finsler geometry: straightforward repeat, Ricci repeat and concircular repeat. Each of these classes comprises of four sorts of repeat. We likewise examined the interrelationships between the diverse sorts of repeat. The present paper is a continuation of where we present and research some new sorts of extraordinary Finsler spaces, to be specific, Ricci, summed up Ricci, projectively intermittent and m-projectively repetitive Finsler spaces. Some Finsler tensors are characterized and their properties are contemplated. These tensors are utilized to characterize the projectively intermittent and m-projectively repetitive Finsler spaces. The relations between the previously mentioned spaces are explored (H. Singh et al., 2000).

OBJECTIVE OF THE STUDY

The main objective of the study is to explain the types of finsler spaces and their relationship in differential geometry. This study also investigate the properties of these special Finsler spaces and emphasize on Ricci finsler space.

Differential Geometry

Differential geometry is a mathematical discipline that uses the methods of differential and integral calculus to study problems in geometry. The hypothesis of plane and space bends and of surfaces in the three-dimensional Euclidean space shaped the reason for its underlying improvement in the eighteenth and nineteenth century. It is firmly related with differential topology and with the geometric parts of the hypothesis of differential conditions. The evidence of the Poincare guess utilizing the procedures of Ricci stream showed the force of the differential-geometric way to deal with inquiries in topology and highlighted the inexorably imperative pretended by the diagnostic strategies (Maralabhavi et al., 1999)
Branches of differential geometry

Riemannian geometry

Riemannian geometry concentrates Riemannian manifolds, smooth manifolds with a Riemannian metric, a thought of a separation communicated by method for a positive unmistakable symmetric bilinear frame characterized on the digression space at every point. Riemannian geometry sums up Euclidean geometry to spaces that are not really level, in spite of the fact that despite everything they take after the Euclidean space at every point "imperceptibly", i.e. in the principal request of estimate. Different ideas in light of length, such as the bend length of bends, zone of plane locales, and volume of solids all concede regular analogs in Riemannian geometry. The thought of a directional subordinate of a capacity from the multivariable math is reached out in Riemannian geometry to the idea of a covariant subsidiary of a tensor. Numerous ideas and strategies of investigation and differential conditions have been summed up to the setting of Riemannian manifolds (Singh et al., 2000)

A separation saving diffeomorphism between Riemannian manifolds is called an isometry. This thought can likewise be characterized locally, i.e. for little neighborhoods of focuses. Any two standard bends are locally isometric. Notwithstanding, Theorema Egregium of Gauss demonstrated that as of now for surfaces, the presence of a neighborhood isometry forces solid similarity conditions on their measurements: the Gaussian bends at the comparing focuses must be the same. In higher measurements, the Riemann shape tensor is a critical pointwise invariant related to a Riemannian complex that measures that it is so near being level. An imperative class of Riemannian manifolds is framed by the Riemannian symmetric spaces, whose ebb and flow is steady. They are the nearest to the "conventional" plane and space considered in Euclidean and non-Euclidean geometry (M. Matsumoto., 1969).

Pseudo-Riemannian geometry

Pseudo-Riemannian geometry simplifies Riemannian geometry to the case in which the metric tensor need not be positive definite. A special case of this is a Lorentzian spaces which is based on the mathematical basis of Einstein's general relativity theory of gravity.

Finsler geometry

Finsler geometry has the Finsler complex as the principle question of study this is a differential complex with a Finsler metric, i.e. a Banach standard characterized on every digression space. A Finsler metric is a significantly more broad structure than a Riemannian metric (M. Matsumoto., 1986)

A Finsler structure on a manifold M is a function $F : TM \rightarrow [0,\infty)$ such that:

1. $F(x, my) = mF(x, y)$ for all x, y in TM,

Anjali Goswami
2. F is infinitely differentiable in $TM - \{0\}$,
3. The vertical Hessian of $FF/2$ is positive definite.

Symplectic geometry

Symplectic geometry is the study of symplectic manifolds. A symplectic complex is a differentiable complex furnished with a non-worsen skew-symmetric bilinear shut 2-frame, the symplectic shape ω. A diffeomorphism between two symplectic manifolds which safeguards the symplectic shape is known as a symplecto morphism. Non-worsen skew-symmetric bilinear structures can just exist on even dimensional vector spaces, so symplectic manifolds fundamentally have even measurement. In measurement 2, a symplectic complex is only a surface blessed with a region shape and a symplecto morphism is a zone protecting diffeomorphism. The stage space of a mechanical framework is a symplectic complex and they showed up as of now in the work of Lagrange on systematic mechanics and later in Jacobi's and Hamilton's plan of traditional mechanics.

By appear differently in relation to Riemannian geometry, where the bend gives a nearby invariant of Riemannian manifolds, Darboux's hypothesis expresses that all symplectic manifolds are locally isomorphic. The main invariants of a symplectic complex are worldwide in nature and topological perspectives assume a noticeable part in symplectic geometry. The main outcome in symplectic topology is presumably the Poincaré-Birkhoff hypothesis, guessed by Henri Poincaré and demonstrated by George Birkhoff in 1912. It guarantees that if a range saving guide of an annulus bends every limit segment in inverse bearings, then the guide has no less than two settled focuses.

Contact geometry

Contact geometry manages certain manifolds of odd measurement. It is near symplectic geometry and like the last mentioned, it started in inquiries of established mechanics. A contact structure on a $(2n+1)$-dimensional complex M is given by a smooth hyper plane field H in the digression package that is beyond what many would consider possible from being connected with the level arrangements of a differentiable capacity on M (the specialized term is "totally non integrable digression hyper plane conveyance"). Close to every point p, a buildup rplane appropriation is controlled by a no place vanishing 1-frame α, which is one of a kind up to augmentation by a no place vanishing capacity

$$H_p = \ker \alpha_p \subset T_p M.$$

If the distribution H can be defined by a global 1-form α then this form is contact if and only if the top-dimensional form $\alpha^*(da)^n$ is a volume form on M. A contact analogue of the Darboux theorem holds: all contact structures on an odd dimensional spaces are locally isomorphic and can be conveyed to a certain local normal form by a suitable choice of the coordinate system (Nabil et al., 2013).
DISCUSSION ABOUT FINSLER SPACES

In this segment, we present and study some new unique Finsler spaces, called Ricci and summed up Ricci Finsler spaces. A few classes of summed up Ricci Finsler spaces are recognized. These new spaces have been characterized in Riemannian geometry. We stretch out them to the Finslerian case. In the event that \(f : M \to N \) is a differentiable guide and \((N, g_N) \) a Riemannian complex, then the pullback of \(g_N \) along \(f \) is a quadratic frame on the digression space of \(M \).

It is conceivable that Finsler geometry will be most helpful in the intricate space, on the grounds that each mind boggling complex, with or without limit, has a Caratheodory pseudo-metric and a Kobayashi pseudo-metric. Under ideal (however fairly stringent) conditions these are \(C^2 \) measurements and, in particular, they are normally Finslerian. The investigation on the complex is along these lines personally attached to the geometry.

The scalar item on the pulled-back offers ascend to a Hermitian structure on the complexification of the last mentioned. Here the geometrical properties blend well with the intricate structure; association structures are of sort \((1,0) \) and bend structures are of sort \((1,1) \). A genuine esteemed holomorphic bend, as a capacity on PTM, can be presented. From this perspective an imperative class of complex manifolds comprises of those whose Kobayashi metric has steady holomorphic shape. When it is a negative consistent or zero, they have been considered by Abate and Patrizio, cf.. The instance of positive steady holomorphic shape merits examination.

Let us consider a quasi-metric space \((M, \varrho) \) with distance function. Properties \((R_i, \text{iii--vi}) \), \((\varrho \text{F replaced by } \varrho \text{)} \) will always be supposed in the sequel. We want to define a correspondence equation represented below:

\[
\varrho (p_0, q) \mapsto \tilde{F}(p_0, y); \quad (M, \varrho) \mapsto (M, \tilde{F}) \quad \forall p_0 \in M
\]

With the natural requirement that in the case of \(\varrho = \varrho \text{F} \) the Finsler metric \(\tilde{F} \) corresponding to \(\varrho = \varrho \text{F} \) by is just that \(F \) from which \(\varrho \text{F} \) originates by:

\[
\mathcal{F} \mapsto \varrho \mapsto \tilde{F} = \mathcal{F}.
\]

We know that between \(\varrho \text{F} \) and \(F \) the relation subsists. Hence \(F(p_0, y) \) in must have the for:

Equation:

\[
\tilde{F}(p, y) := \lim_{t \to 0} \left[\frac{d}{dt} \varrho (p, q(t)) \right], \quad y = \lim_{t \to 0} \frac{dq}{dt}.
\]

Where \(q(t), 0 \leq t \leq b, q(0) = p \) is a curve emanating from \(p \) is meaningful, since the limit exists by our assumption. The instinctual content of this is the following: Let \(U \) be a coordinate neighborhood of \(M \) around \(p \) with local coordinate’s \(q^1 \to q^n \). We know that \((z = q(p_0, q)) \subset U \) \(p_0 \times Z \subset \mathbb{R}^{n+1} (q^1 \to q^n, z) \) is not differentiable at \(q=p_0, \) but it has tangent rays. These tangent rays form a cone with its cape at \(p_0 \). Means that \(z = \tilde{F}(p_0, y) \) is defined as this cone in \(\mathbb{R}^{n+1}(q, z) \).
CONCLUSION

It is striking that one needs just some theoretical change, no fundamental new thoughts being vital. This infers more broad outcomes as well as gives a superior geometrical comprehension.

Now it may enthusiasm to quote Riemann:

- In space, on the off chance that one communicates the area of a point by rectilinear directions, then \(ds = q_0 (dx_i)^2 \). Space is in this way incorporated into this easiest case.

- The following least complex case would maybe incorporate the manifolds in which the line component can be communicated as the fourth base of a differential articulation of the fourth degree. Examination of this more broad class would really require no basic diverse standards, yet it would be fairly tedious in the first German and toss moderately minimal new light on the investigation of Space, particularly since the outcomes can't be communicated geometrically.

As is outstanding, Riemannian geometry can be taken care of, richly and effectively, by tensor investigation on \(M \). Its disable with Finsler geometry emerges from the way that the last needs more than one space, for example \(\mathrm{PTM} \) notwithstanding \(M \), on which tensor examination does not fit well. In any case, this issue can be helped by taking a shot at \(\mathrm{TM} \) and ensuring that all developments are invariant under rescaling in \(y \).

Riemann's accentuation on Riemannian geometry could be founded on the Pythagorian way of the metric. His suggestion to general Finsler geometry was a momentous knowledge. After over an era of scientific improvement, his vision was supported. Notwithstanding what is yet to be done regarding the matter altogether for some conspicuous inquiries to be replied, I am slanted to feel that future advancements lie in further speculations. The geometry of a metric space is dependably an appealing subject. Finsler geometry has been contemplated from this vantage point by A. D.

This brief report has tended to the raison d'être of Finsler measurements. For instance, in the capacity hypothesis of a few complex factors, the Kobayashi and Caratheodory measurements are actually Finslerian and easy to understand; they likewise render holomorphic mappings remove diminishing. Finslerian builds likewise state themselves in applications, most strikingly in control hypothesis, scientific science/environment, and optics. All things considered, regardless of the above contentions about the significance and opportuneness of the Finslerian perspective, Riemannian geometry will remain a most imperative part of Finsler geometry.
REFERENCES

