
Journal of Computational Intelligence in Bioinformatics
ISSN: 0973-385X Volume 3 Number 2 (2010) pp. 199–209
© Research India Publications
http://www.ripublication.com/jcib.htm

Extension of Horspool Algorithm for Pattern
Matching

A. Lekha1 and C.V. Srikrishna2

1Research Scholar, Dr MGR Educational and Research Institute Chennai,

India-600095
E-mail: raoalekha@gmail.com

2Professor & HOD, Department of Master of Computer Applications, PESIT,
Bangalore, India-560085

E-mail: cvsrikrishna@yahoo.co.in

Abstract

A new algorithm is proposed that modifies the Horspool algorithm by
implementing it in multiple stages. The time complexity required for the
search is analyzed. It is shown that when the algorithm is divided into stages it
has a better time complexity than when it is executed in one stage. The
analysis shows that there exists a threshold value for a reduced sub-sequence
length. From the analysis it is found that a sub-sequence of four characters is
ideal for execution.

Keywords: Horspool Algorithm; Bioinformatics; Pattern Matching.

Introduction
Biologists are often interested in performing a simple database search to identify
proteins or genes that contain a well-defined sequence pattern [1]. Many databases
like BodyMap, UniPROBE [2], Genome Database, TRANSFAC [3] do not provide
straightforward or readily available query tools to perform simple searches, such as
identifying transcription binding sites, protein motifs, or repetitive DNA sequences. In
many cases simple pattern-matching searches can reveal a wealth of information such
as gene expressions, pathways. Significant progress has been made in search and
homology detection algorithms for DNA and protein sequences. Many of these
algorithms are geared toward heuristic searches [4]. Horspool algorithm is one among
them that finds substrings in strings. It was published by Nigel Horspool in 1980 [5].

200 A. Lekha and C.V. Srikrishna

The Horspool algorithm is a simplified version of the Boyer-Moore algorithm [6]. It
compares the substring with the string from the last character. If there is a mismatch it
shifts the pattern according to a precomputed value. Horspool’s efficiency classes are
- Θ(nm) for the worst-case case and Θ(n) for the average case where n is the length of
the input string and m is the length of the search string [7]. The Worst case scenario is
when the bad case shift is very small and insignificant. Horspools algorithm’s
efficiency is better when it makes bigger shifts.
 While implementing the Horspool algorithm on bioinformatics data it becomes a
very lengthy process [8]. The input is a very long homologous sequence and to
directly implement the algorithm is very time consuming. The input can be anywhere
from 400 to 1000 characters of ‘A’,’C’, ‘T’, ‘G’. It has been observed that the time
complexity of this algorithm is directly proportional to the input size, this can be very
expensive. We propose to implement the Horspool algorithm in multiple stages. In
the first stage it initially finds short matches between two sequences. In the later
stages the algorithm is again implemented to find the actual matching. This method
does not take the entire sub sequence space into account in the later stages for better
efficiency in the first stage it initially finds short matches between two sequences. In
the later stages the algorithm is again implemented to find the actual mapping. This
method does not take the entire sub-sequence space into account in the later stages.

Procedure of matching
In the first stage an optimal length of the subsequence is searched with the original
text. In the later stages the remaining characters of the subsequence are matched with
only the sub sequences found in the previous stages. The following paragraphs will
illustrate the procedure of selecting sub sequences and related time complexities. The
method is applied on a homologous sequence where the subsequence to be found is
ATGCAGG.
 We implement the Horspool algorithm on the sequence with the substring of word
size 4 instead of searching the entire string search for ATGCAGG. Search for the
occurrence of ATGC. The word size 4 is found to be optimal in this case study. (Refer
Appendix B for Time complexity). Implement the Horspool algorithm again on the
sequences found in stage 1.
 ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGC
CACGGCCACCGCTGCCCTGCCCCTGGAGGGTGGCCCCACCGGCCGAGACA
GCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGCCTCCTGAC
TTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCT
CATAGGAGAGGAAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCC
CCCCAGCAATCCGCGCGCCGGGACAGAATGCCCTGCAGGAACTTCTTCTG
GAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCA
AGTTTAATTACAGACCTGAA

Extension of Horspool Algorithm for Pattern Matching 201

Sequence 1: Homologous Protein Sequence
We find four occurrences of the sub sequence ATGCAGG in Sequence 1 at positions
6, 108, 274 and 336 in the original sequence.
 ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGG
CCACGGCCACCGCTGCCCTGCCCCTGGAGGGTGGCCCCACCGGCCGAGAC
AGCGAGCATATGCAGGAAGCGGCAGGAATAAG
GAAAAGCAGCCTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCA
GGCCAGTGCCGGGCCCCTCATAGGAGAGGAAGCTCGGGAGGTGGCCAGG
CGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAATGC
CCTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCA
CCCATGAATGCTCACGCAAGTTTAATTACAGACCTGAA

Table 1: Successful matching during first stage.

First Position Position Element
6 9 CAT
108 111 AGG
274 277 CCT
336 339 TCA

 The initial stage of execution of the Horspool algorithm gives us four occurrences
and a local search alignment must be started from these initial matches. We need to
keep track of these four occurrences with their neighbouring characters. The original
substring to be matched is of 7 characters in length. The remaining three characters
with their positions have to be stored with the position of the first matched character
(i.e) A for every occurrence.
 With these four characters already matched, implement the algorithm again with
the remaining three characters to find the complete occurrence.

Table 2: Successful matching during second stage.

First Position Position Element
6 9 CAT
108 111 AGG
274 277 CCT
336 339 TCA

 The string from position 111 matches the substring. We need to get the
corresponding first element position (i.e) 108. The matched sub-sequence is
highlighted in Table 2.

202 A. Lekha and C.V. Srikrishna

Time Complexity

Table 3: Time complexities for different lengths of sub sequences during first and
second stage.

Sl.
No

Length of
subsequence
(m)

Number of
Subsequence
found

Time
taken in
units
during
first stage
*

Remaining
number of
letters to be
matched

Time
taken
during
second
stage

Total
time
taken

1 1 78 368 6 2808 3176
2 2 12 736 5 300 1036
3 3 5 1104 4 80 1184
4 4 4 1472 3 36 1508
5 5 1 1840 2 4 1844
6 6 1 2208 1 1 2209
7 7 1 2576 - - 2576
* - explained in Appendix B

Analysis
To make an analysis of time versus subsequence length the following graphs are
drawn.

Graph 1: Time versus sub sequence length in first stage.

 From graph 1 we observe that in case 1 the time taken to search is very less as
only one element will be matched. For the remaining cases the time complexity
increases as the number of elements to be matched increases. This is due to the fact
that the shift table will be referred in these cases since more than one character has to
be matched. It has been observed from the graph that the growth in time for the
various lengths of sub sequences in the first stage is linear in nature.

Extension of Horspool Algorithm for Pattern Matching 203

Graph 2: Time versus sub sequence length in second stage.

 The growth in time for the various lengths of sub sequences in the second stage is
non-linear in nature. The growth in time for the various lengths of sub sequences in
the second stage is inversely proportional to the lengths. It has been observed from
graph 2 that the time taken to search a sub-sequence decreases as the length increases.
Here in case 1 the time taken is maximum as it has to check the matching of the
remaining six characters. The shift table will be used extensively during this
execution. Only for case 7 there is no second execution as all the seven characters
have been matched during the first execution.
 According to the analysis done that is shown in Appendix B when the length of
the subsequence is four we obtain a threshold value. In case 1 the time taken to
search during the first stage is the least but is the highest in the second stage. The
amount of space required to store the data in the second level also increases. In case 2
and case 3 the time taken to search the sequence is considerably better but the amount
of space required to store the data in the second level still remains huge. In case 5 and
case 6 the time complexity is closer to the time complexity of case 7. It is found that
when the lengths of the sub sequences are five, six and seven the time taken to
execute the program in the second stage is nearly the same.

Implementation
The data structure that can be used to implement this algorithm is a hash table. The
keys used here are the starting position of the original subsequence. The mapping is
done to the starting position of the remaining sub sequence characters.

Figure 1: Hash Table Implementation.

204 A. Lekha and C.V. Srikrishna

 The execution of the algorithm can be viewed in a tree structure. The original
length of the subsequence is taken as seven in this analysis. The algorithm can be
executed in multiple stages with the lengths as one, two, three, four, five, six or seven.
If the length is taken as seven then there is only one stage execution of the algorithm
which is nothing but a normal Horspool algorithm execution. If the length of the
subsequence is taken as one, two, three, four, five or six then the algorithm has to be
executed in another stage with the remaining characters of the subsequence of length
six, five, four, three, two and one respectively. According to the tree structure the
algorithm can be executed in a minimum of one iteration or stage and a maximum of
seven iterations or stages. In the figure 2 only the case 4,5,6,7 are fully depicted. The
same can be drawn for all the other cases.

Figure 2: Tree structure implementation of the modified Horspool algorithm.

Conclusion
The paper proposes a modified algorithm for pattern matching that implement the
Horspool algorithm in multiple stages. Pattern matching is a highly used concept in
bioinformatics to study genome function, protein analysis, DNA analysis and so on.
In the first stage it initially finds short matches between two sequences. In the later
stages the algorithm is again implemented to find the actual matching. This method
does not take the entire sub sequence space into account in the later stages. After
implementing the algorithm it was found that it is efficient to implement the algorithm
in multiple stages rather than one stage. The proposed algorithm reduces the need to
store the large input during the entire execution of the program. The data needed in
the remaining stages is reduced considerably. The time taken to search - Θ(nm)
reduces since the size of the substring has reduced.

Extension of Horspool Algorithm for Pattern Matching 205

References

[1] Doron Betel, Christopher WV Hogue. “Kangaroo – A pattern-matching

program for biological sequences” BMC Bioinformatics 2002,
3:20doi:10.1186/1471-2105-3-20.

[2] Daniel E. Newburger, Martha L. Bulyk. “UniPROBE: an online database of
protein binding microarray data on protein–DNA interactions” Nucleic Acids
Res. 2009 January; 37(Database issue): D77–D82.

[3] Wingender E, Dietze P, Karas H, Knüppel R: “TRANSFAC: a database on
transcription factors and their DNA binding sites.” Nucleic Acids Res 1996 ,
24(1):238-41.

[4] Vimla L. Patel, Edward H. Shortliffe, Mario Stefanelli, Peter Szolovits,
Michael R. Berthold, Riccardo Bellazzi, Ameen Abu-Hanna. “The Coming of
Age of Artificial Intelligence in Medicine” Artif Intell Med. 2008 September
13. doi: 10.1016/j.artmed.2008.07.017.

[5] R. N. Horspool (1980). "Practical fast searching in strings". Software -
Practice & Experience 10 (6): 501–506. doi:10.1002/spe.4380100608.

[6] Ricardo A. Baeza-Yates, Mireille Régnier. “Average running time of the
Boyer-Moore-Horspool algorithm”. Theoretical Computer Science archive,
Volume 92 , Issue 1 (January 1992) 19 – 31, 1992.

[7] Tsung-Hsi Tsai. “Average Case Analysis of the Boyer-Moore Algorithm”.
[8] Tobias Marschall and Sven Rahmann. ”Exact Analysis of Horspool’s and

Sunday’s Pattern Matching Algorithms with Probabilistic Arithmetic
Automata”. 0302-9743 (Print) 1611-3349 (Online) Volume 6031/2010.

Acknowledgement
The authors thank the principal and management of PES Institute of technology for
encouraging us to come out with this paper.

Appendix A
The Horspool algorithm

1. Precompute shift sizes and store them in a table.
2. For every character c, the shift’s value is determined by

a. t(c) = the pattern’s length, m if c is not among the first m - 1 characters
of the pattern

b. else t(c) = the distance from the rightmost c among the first m – 1
characters of the pattern to its last character

 Given a pattern p, the following function horspoolInitocc computes the
occurrence function for the shift table.

206 A. Lekha and C.V. Srikrishna

void horspoolInitocc()
{
 int j; char a;
 for (a=0; a<alphabetsize; a++) occ[a]=-1;
 for (j=0; j<m-1; j++)
 { a=p[j]; occ[a]=j; }
}
 The pattern is compared from right to left with the text. After a complete match or
in case of a mismatch, the pattern is shifted according to the precomputed occ.
void horspoolSearch()
{
 int i=0, j;
 while (i<=n-m)
 {
 j=m-1;
 while (j>=0 && p[j]==t[i+j]) j--;
 if (j<0) report(i);
 i+=m-1; i-=occ[t[i]];
 }
}

Appendix B

Case 1: The size of m is taken as 1 character.

First
position

Remaining
characters

First
position

Remaining
characters

First
position

Remaining
characters

First
position

Remaining
characters

1 CAAGAT 126 TAAGGA 220 GGTGGC 318 AATAAA
3 AGATGC 128 AGGAAA 228 GGCGGC 319 ATAAAA
4 GATGCC 129 GGAAAA 235 GGAAGG 320 AAAACC
6 TGCCAT 132 AAAGCA 238 AGGCGC 322 AAACCT
11 TTGTCC 133 AAGCAG 239 GGCGCA 323 AACCTC
51 CGGCCA 134 AGCAGC 245 CCCCCC 324 ACCTCA
57 CCGCTG 135 GCAGCC 253 GCAATC 325 CCCTCA
76 GGGTGG 138 GCCTCC 256 ATCCGC 330 CCCATG
87 CCGGCC 147 CTTTCC 257 TCCGCG 334 TGAATG
95 GACAGC 169 GTGGAC 271 CAGAAT 337 ATGCTC
97 CAGCGA 174 CCTCCC 273 GAATGC 338 TGCTCA
103 GCATAT 181 GGCCAG 275 ATGCCC 344 CGCAAG
106 TATGCA 186 GTGCCG 276 TGCCCT 348 AGTTTA
108 TGCAGG 201 TAGGAG 285 GGAACT 349 GTTTAA
112 GGAAGC 203 GGAGAG 288 ACTTCT 354 ATTACA
115 AGCGGC 206 GAGGAA 289 CTTCTT 355 TTACAG
116 GCGGCA 208 GGAAGC 300 AGACCT 358 CAGACC
122 GGAATA 211 AGCTCG 301 GACCTT 360 GACCTG
125 ATAAGG 212 GCTCGG 303 CCTTCT 362 CCTGAA
 367 A
 368 -

Extension of Horspool Algorithm for Pattern Matching 207

 The number of matches found in first stage is 78. When the analysis is done it is
found that

1. A number of matches are repetitive in nature.
2. Some of the sequences have just one position difference.

 Time complexity is calculated as n*m – 368 * 1 = 368 units of time.
 For the second stage the algorithm is implemented on these 78 substrings again to
find the match. Time taken in the second stage is (78*6) * 6 = 2808 units of time.

Case 2: The size of m is taken as 2 characters.

First
position

Remaining
characters

First
position

Remaining
characters

First
position

Remaining
characters

First
position

Remaining
characters

6 GCCA 108 GCAG 257 CCGC 334 GAAT
11 TGTC 126 AAGG 276 GCCC 338 GCTC
106 ATGC 201 AGGA 320 AAAA 355 TACA

 The number of matches found is 12. The analysis shows that

1. The number of matches has reduced from 78 in case 1 to just 12.
2. The time complexity is 1191 units theoretically.

 Time complexity is calculated as n*m – 368 * 2 = 736 units of time.
 For the second stage the algorithm is implemented on these 12 substrings again to
find the match. Time taken in the second stage is (12*5) * 5 = 300 units of time.

Case 3: The size of m is taken as 3 characters.

First position Remaining characters First position Remaining characters
6 CCAT 334 AATG
108 CAGG 338 CTCA
276 CCCT

 The number of matches found is 5. The analysis shows that

1. The number of matches has reduced from 12 in case 2 to just 5.
2. The time complexity is 1438 units theoretically.

 Time complexity is calculated as n*m – 368 * 3 = 1104 units of time.
 For the second stage the algorithm is implemented on these 5 substrings again to
find the match. Time taken in the second stage is (5*4) *4 = 80 units of time.

208 A. Lekha and C.V. Srikrishna

Case 4: The size of m is taken as 4 characters.

First position Remaining characters First position Remaining characters
6 CAT 338 TCA
108 AGG
276 CCC

 The number of matches found is 4. The analysis shows that

1. The number of matches has reduced from 5 in case 3 to 4.
2. The time complexity is 1868 units theoretically.

 Time complexity is calculated as n*m – 368 * 4 = 1472 units of time.
 For the second stage the algorithm is implemented on these 4 substrings again to
find the match. Time taken in the second stage is (4*3) * 3 = 36 units of time.

Case 5: The size of m is taken as 5 characters.

First position Remaining characters
108 G

 The number of matches found is 1. The analysis shows that

1. The number of matches has reduced from 4 in case 4 to 1.
2. The time complexity is 2292 units theoretically.

 Time complexity is calculated as n*m – 368 * 5 = 1840 units of time.
 For the second stage the algorithm is implemented on this 1 substring again to find
the match. Time taken in the second stage is (1*2) * 2 = 4 units of time.

Case 6: The size of m is taken as 6 characters.

First position Remaining characters
108 G

 The number of matches found is 1. The analysis shows that

1. The number of matches has remained the same.
2. The time complexity is 2749 units theoretically.

 Time complexity is calculated as n*m – 368 * 6 = 2208 units of time.

Extension of Horspool Algorithm for Pattern Matching 209

 For the second stage the algorithm is implemented on these 1substrings again to
find the match. Time taken in the second stage is (1*1) * 1 = 1 units of time.

Case 7: The size of m is taken as 7 characters.

First position Remaining characters
108 -

 The number of matches found is 1. The analysis shows that

1. The number of matches has remained the same.
2. The time complexity is 3206 units theoretically.

 Time complexity is calculated as n*m – 368 * 7 = 2576 units of time.

210 A. Lekha and C.V. Srikrishna

