Hydrothermal synthesis of manganese oxide thin films using different oxidizing agents for supercapacitor application

Pragati A. Shinde
Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.), India

Vaibhav C. Lokhande
Department of Electronics and Computer Engineering, Chonnam National University, 300 Yongbong-Dong, Pak-Gu, Gwangju 500-757, South Korea

Amar M. Patil
Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.), India

Anuja A. Yadav
Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.), India

Prof. Chandrakant D. Lokhande
Professor, Centre for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416 006 (M.S.), India

Abstract
In present work, α-MnO₂, β-MnO₂ and Mn₃O₄ nanostructures are prepared using simple and convenient hydrothermal method. The impact of three different oxidizing agents, on the structural, morphological and electrochemical performance of prepared nanostructured thin films is investigated. The MnO₂ nanosheets prepared using potassium nitrate as oxidizing agent exhibits excellent electrochemical features such as, high specific capacitance of 1063 F g⁻¹ and high energy density of 94.56 Wh kg⁻¹ at current density of 1 mA cm⁻² along with better cycling stability (95% over 1000 of CV cycles). Such an excellent electrochemical properties suggest that MnO₂ nanosheets prepared using hydrothermal method work as significant electrode material for energy storage devices.

Keywords: Hydrothermal method, manganese oxide, nanosheets, oxidizing agents, supercapacitors.

Introduction
The depletion of fossil fuels as well as increase in industrialization along with population are the major issues raised for future generation. To defeat the increasing energy demands of society, significant research attention has been paid in developing effective and clean energy storage devices [1-2]. The supercapacitors also known as electrochemical capacitors (ECs) are energy-storage devices having a specific energy and specific power lying in between batteries and conventional dielectric capacitors [3-5]. Because of their fast energy storage and release features, they are widely used in electric vehicles, renewable energy storage and electronic appliances. The ECs are classified into two types according to their charge storage principle. The first is an electrical double-layer capacitor (EDLC) which utilizes carbon based materials with high surface area and the other is pseudocapacitor which utilizes metal oxides and conducting polymers. The pseudocapacitance is arises due to the capacitive relationship between the level of charge acceptance and the change in the potential from a faradic redox reaction between the electrode material and electrolyte [6-8]. Among the different transition metal oxides used in pseudocapacitors, amorphous and hydrated ruthenium oxide has been reported to show remarkably high specific capacitance compared with other metal oxides [9-10]. However, its commercial use is restricted because of its expensiveness. Therefore, considerable efforts have been devoted to identify cost effective and alternative metal oxide electrode materials with acceptable electrochemical properties.

Manganese oxide is one of the best candidates on account of its electrochemical behavior, low cost, high theoretical specific capacitance and environmental compatibility [11-13]. Manganese oxides have been prepared by different chemical methods including chemical bath deposition [14], electrodeposition [15], SILAR [16], hydrothermal [17], etc. Ma et al. [18] prepared MnO₂ urchin-like hollow spheres which exhibited a specific capacitance of 266.6 F g⁻¹ at a current density of 0.1 A g⁻¹. Dubal et al. [20] synthesized a-MnO₂ by CBD method which exhibited specific capacitance of 328 F g⁻¹.

In present work, a simple hydrothermal method is employed for the synthesis of manganese oxide nanostructures using different oxidizing agents. The effect of oxidizing agents on structural, morphological and electrochemical properties is investigated. The prepared films are characterized using different characterization techniques. The electrochemical performance is tested in three-electrode cell using battery cycler.

2. Experimental details
2.1 Chemicals
All chemical reagents are analytically pure and used as
received without further purification. KMnO₄, MnSO₄, (NH₄)₂S₀₄, KNO₃, Polyvinylidene fluoride and N-Methyl-2-pyrrloidone (NMP) were purchased from SD fine chemicals. Double distilled water (DDW) was used for the preparation of precursor solutions.

2.2 Preparation of α-MnO₂, β-MnO₂, Mn₃O₄ samples
In a typical synthesis procedure of α-MnO₂, 0.1 M MnSO₄ and 0.1 M KMnO₄ (PPM) were mixed in 150 ml of DDW under constant magnetically stirring for 30 min to form a homogeneous mixture. Then, the above mixture was transferred into a Teflon-lined stainless steel autoclave with capacity of 200 ml and heated in oven at 453 K for 12 h. When the autoclave was cooled down to room temperature naturally, the product was collected, washed several times with DDW. Finally, the products were dried in air at 65 °C for 5 h. Similarly, β-MnO₂ samples were obtained from 0.1 M MnSO₄ and 0.1 M (NH₄)₂S₀₄ (APS) and Mn₃O₄ samples were obtained from the 0.1 M MnSO₄ and 0.1 KNO₃ (PN) in the similar manner as above.

The working electrodes were prepared by the mixing α-MnO₂/β-MnO₂/Mn₃O₄ Polyvinylidene fluoride and N-Methyl-2-pyrrloidone (NMP) with a weight ratio of 85:5:10 uniformly in an agate mortar. The prepared slurry is brush painted on stainless steel (SS) substrate of about 1 cm² area. Finally, the electrodes were dried at 338 K for 12 h and used for further characterizations.

2.3 Materials Characterization
The crystallographic study of prepared thin films was carried out by XRD technique using Bruker AXS D8 advance model with copper radiation (Kα = 1.54 Å). The scanning electron microscopy (SEM) was used to visualize the morphology of thin films. The electrochemical measurements were carried out using automatic battery cycler WBCS 3000 in a conventional three electrode system with 1 M Na₂SO₄ as an electrolyte, WO₃ film as a working electrode, platinum as a counter electrode and saturated calomel electrode (SCE) as a reference electrode.

3. Results and Discussion
The hydrothermal method is based on the controlled precipitation through closed system heating and formation of solid phase on transformation of supersaturated state to saturated state of solution [21]. This transformation process contributes different steps such as initial nucleation, aggregation, coalescence and finally growth of particles. In nucleation, the heterogeneous reactions takes place in the solution and cluster of molecules are formed. Further, the aggregation of particles takes place on the nucleation centres. The coalescence of aggregated particles occurs through Ostwald ripening mechanism [22]. The newly formed nuclei grow on the crystal growth sites and further manganese oxide material is formed. In the present study different manganese oxide samples are synthesized by the direct oxidation of Mn⁴⁺ species by different oxidizing agents (PPM, APS and PN). The possible chemical reaction for the formation of manganese oxide crystal is given by the following equations:

\[
3\text{MnSO}_4 + 2\text{KMnO}_4 + 2\text{H}_2\text{O} \rightarrow 5\text{MnO}_2 + \text{K}_2\text{SO}_4 + 2\text{H}_2\text{SO}_4
\]

The schematic illustration for the growth mechanism of three different manganese oxide nanostructures is shown in fig. 1. When the MnSO₄ salt is dissolved in water, Mn²⁺ ions are formed. As the reaction time proceeds, bath solution achieved certain desired temperature. The Mn²⁺ ions are subsequently oxidized by the different oxidizing agents (PPM, APS and PN) and grow as small MnO₂ nanostructures as shown in fig. 1. The crystallinity of the product gradually increases with increase in reaction time. According to the Ostwald ripening mechanism, small crystallites are initially formed in the solution which subsequently grows to form a large particles.

![Figure 1: Schematic representation of the formation of α-MnO₂, β-MnO₂ and Mn₃O₄ nanostructures using different oxidizing agents](image)

![Figure 2: The XRD patterns of a) α-MnO₂, b) β-MnO₂ and c) Mn₃O₄ thin films](image)

The phase structure of MnO₂ thin films is examined by XRD analysis. Fig. 2 exhibits the XRD patterns of (a) α-MnO₂, (b) β-MnO₂ and (c) Mn₃O₄ thin films prepared using different oxidizing agents. The sample prepared using PPM as an oxidizing agent is identified to be tetragonal α-MnO₂ phase (JCPDS 44-0141) as shown in fig. 2(a). The XRD pattern in fig. 2(b) prepared using APS as oxidizing agent shows the formation of tetragonal β-MnO₂ phase (JCPDS 24-0735). The observed diffraction patterns for α-MnO₂ and β-MnO₂ can be
well matches to the earlier reported by Su et al. [17]. Further, fig. 2(c) reveals the formation of tetragonal Mn$_3$O$_4$ phase (JCPDS 24-0734). The absence of other diffraction peaks in the XRD patterns reveals pure phase formation of prepared samples. Also the sharp and intense peaks indicate good crystallinity of prepared samples.

As known that, the performance of active electrode material is strongly depends on the morphology of electrode material. The SEM analysis is used to visualize the change in microstructure of α-MnO$_2$, β-MnO$_2$ and Mn$_3$O$_4$ thin films as a consequence of different oxidizing agents. The surface morphologies of prepared films on SS substrate at two different magnifications of 10,000 X and 40,000 X are shown in fig. 3. The α-MnO$_2$ thin film demonstrates the nanowires-like surface morphology as shown in fig. 2(A-B). The nanowires have length ~1 μm and diameter below 10 nm. The surface morphology of β-MnO$_2$ thin film exhibits the formation of randomly distributed nanorods as shown in fig. 3(C-D). The nanorods have length ~1-2 μm and diameter up to 100 nm. The materials with nanostructured morphology enhances the specific surface area as well as ordered pore size distribution permit easy adsorption/desorption of electrolyte ions, which subsequently improves the electrochemical performance of electrode. The surface morphology of Mn$_3$O$_4$ shows the formation of randomly oriented porous nanosheets (fig. 3(E-F)). The porous morphology is more favorable for supercapacitors, as it provides the large surface area for easy contact with electrolyte ions, store more charges and produces high specific capacitance.

Figure 3: The SEM images of A-B) α-MnO$_2$, C-D) β-MnO$_2$ and E-F) Mn$_3$O$_4$ thin films at two different magnifications of 10,000 X and 40,000 X

3.1 Electrochemical studies

The cyclic voltammetry (CV) studies of α-MnO$_2$, β-MnO$_2$ and Mn$_3$O$_4$ electrodes prepared using PPM, APS and PN as oxidising agents are carried out in 1 M Na$_2$SO$_4$ electrolyte at different scan rates (5-100 mV s$^{-1}$) in the potential window of 0 to +0.8 V/SCE. The CV curve of any material assures its capacitive features. Large magnitudes of current, rectangular type of voltammogram and symmetricity in anodic and cathodic directions are implications of the ideal capacitive nature of material. The anodic peak is due to the oxidation of MnO$_2$/Mn$_3$O$_4$ and the cathodic peak is for the reverse process. The MnO$_2$/Mn$_3$O$_4$ electrodes store charges through faradaic reactions occurring at the surface or in the bulk of material. Fig. 4 (A-C) shows the typical CV curves of α-MnO$_2$, β-MnO$_2$ and Mn$_3$O$_4$ electrodes at different scan rates. It is seen that, area under the CV curves increases gradually with increase in scan rate. The absence of redox peaks indicates the charge-discharge process at a constant rate over entire potential window [23].

![Figure 4: The CV curves of A) α-MnO$_2$, B) β-MnO$_2$ and C) Mn$_3$O$_4$ electrodes and (D) plot of variation of specific capacitance with scan rate](image-url)

The specific capacitance is calculated by using the following formula.

$$C_s = \frac{1}{m(V_{\text{max}} - V_{\text{min}})} \int_{V_{\text{min}}}^{V_{\text{max}}} i(V)dv$$

where, C_s is the specific capacitance, m is the mass of deposited material, $V_{\text{max}} - V_{\text{min}}$ is the potential window, I is the average current for unit area dipped in the electrolyte. The obtained values of specific capacitance as a function of scan rate are shown in fig. 4(D). The specific capacitance decreases gradually with increase in scan rate. This is because at lower scan rate electrolyte ions take more time for electrochemical reactions and utilizes maximum surface of active material which resulting in higher specific capacitance. The α-MnO$_2$, β-MnO$_2$ and Mn$_3$O$_4$ electrodes showed the maximum specific capacitance of 318, 415, and 1014 F g$^{-1}$, respectively at 5 mV s$^{-1}$ scan rate. The maximum values of specific capacitance for Mn$_3$O$_4$ electrode prepared using PN, owing to its porous and fine nanosheets structure composed of very fine nanoparticles, which in turns offer the large number of electrochemically active sites for electrochemical reactions.
Further, in order to evaluate specific capacitance and the rate capability of α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes, the galvanostatic charge discharge (GCD) measurements were performed. Fig. 5 (A-C) shows the GCD curves of α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes in 1 M Na₂SO₄ at different current densities (1-4 mA cm⁻²) using PPM, APS and PN as oxidizing agents, respectively. The non-linear behaviour of charging and discharging curves reveals the pseudocapacitive behaviour of prepared electrodes.

![Figure 5: The GCD curves of A) α-MnO₂, B) β-MnO₂ and C) Mn₃O₄ electrodes and (D) plot of variation of specific capacitance with current density.](image)

The Cₓ from GCD curves is calculated using following formula:

\[
C_x = \frac{I_d \times T_d}{\Delta V \times m}
\]

(5)

where, \(I_d\) is the discharge current, \(T_d\) is the discharge time and \(\Delta V\) is the potential window. The estimated values of specific capacitance with respect to current densities are plotted in fig. 5(D). The specific capacitance values for α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes are found to be 345, 568 and 1064 F g⁻¹, respectively at 1 mA cm⁻².

The energy density (ED) and power density (PD) for are evaluated from discharging curves at different current densities using following formulae:

\[
ED = \frac{0.5 \times C_x \times (V_{max}^2 - V_{min}^2)}{3.6}
\]

(6)

and

\[
PD = \frac{ED \times 3600}{T_d}
\]

(7)

Ragone plots, demonstrating the relationship between power densities (PD) and energy densities (ED), are employed in order to estimate the operational performance/efficiency of α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes for electrochemical supercapacitor device. The Ragone plots of ED verses PD for α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes are shown in fig. 6. The plots illustrate that α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes exhibits superior energy density which offers excellent electrochemical supercapacitive performance.

![Figure 6: Ragone plots of energy density versus power density for (a) α-MnO₂, b) β-MnO₂ and c) Mn₃O₄ electrodes](image)

Furthermore, the supercapacitor application demands better cycling stability along with superior specific capacitance, energy and power densities, therefore the cycling stability of the α-MnO₂, β-MnO₂, and Mn₃O₄ electrodes is measured in 1 M Na₂SO₄ electrolyte using CV measurement for 1,000 cycles. The CV curves of α-MnO₂, β-MnO₂, and Mn₃O₄ electrodes for different cycles are shown in the fig. 7[A-C]. The variation of capacity retention with cycle number is demonstrated in fig. 7[D]. The remained capacitive retention after 1,000 CV cycles is 90, 92 and 95 % for α-MnO₂, β-MnO₂ and Mn₃O₄ electrodes. The slight loss in capacitance may be due to the dissolution of active material in the electrolyte during the earlier charging/discharging cycles.

![Figure 7: The CV curves of A) α-MnO₂, B) β-MnO₂ and C) Mn₃O₄ electrodes for 1⁰⁰ cycles and (D) plot of capacity retention with cycle number.](image)
4. Conclusions
In summary, nanostructured manganese oxide samples are prepared using single step hydrothermal method. The effect of different oxidizing agents (PPM, APS and PN), on structural, morphological and electrochemical performances of manganese oxide thin films is successfully studied. The electrochemical investigation exhibited that, MnO\textsubscript{2} thin film with nanosheets-like morphology possess excellent electrochemical features with high specific capacitance (1014 F g-1), high energy density (94.56 Wh kg-1) and better cycle life (95% over 1000 of CV cycles). The present research work gives the advantageous impact of different oxidizing agents on manganese oxide based electrodes for high performance supercapacitors. Also, it provides simple way for the production of next generation energy storage devices.

Acknowledgement
Authors are also grateful to Department of Science and Technology (DST) Govt. of India for providing financial support through major research project EMR/2016/001677 dated January 13, 2017.

References
