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Abstract

In this paper, a fourth order centered difference scheme is
developed for linear second order singularly perturbed
boundary value problems. The difference scheme is developed
for the considered problem with variable coefficients and over
unevenly spaced grid points. Uniqueness and stability
condition is discussed at constant coefficients. Moreover, the
convergence order is proved at evenly spaced grid.
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I. INTRODUCTION

Singularly Perturbed Boundary Value Problems (SPBVPS)
arise frequently in many fields of applied sciences particularly
in the studies of fluid dynamics, quantum mechanics,
chemical reactions, optimal control, etc. These problems have
received a significant amount of attention in past and recent
years [1-16].

It is well known that away from the boundary layers standard
upwind difference schemes over uniform mesh can be used
and accurate results are obtained. Otherwise, other integration
schemes are to be preferred such as difference schemes on a
non-uniform mesh, variable step-size schemes, etc [1-6, 8-15].
The main difficulty in global discretization of SPBVPs is the
restriction on the step- size that to have a unique stable and
accurate solution. Therefore stability and order of
convergence act as the major achieved requirements. Many
authors deal with some of these challenges in global
discretization for these problems especially the convection
diffusion problems [2-6]. Segal [2] analyzed and compared
various methods for solving the convection diffusion equation
with small perturbation parameter. While II’in’s [3] method is
a very accurate example of an upwind scheme for a
homogeneous, one-dimensional convection-diffusion equation
with constant coefficients. It loses accuracy when variable
coefficients are used. Dekema and Schultz [4] developed
high-order methods to solve elliptic problems and obtained
remarkably good numerical results. Later, Choo and Schultz
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[5] developed the so-called stable central difference methods.
They modified the central difference approximations for the
first- and second-order derivatives by rewriting its error terms
as a combination of the lower-order derivative terms and
approximating them. This process reinforced the diagonal
dominance of the coefficient matrix and had a stabilizing
effect. However, they could not achieve as high accuracy as
the method of Dekema and Schultz [4]. llicasu and Schultz [6]
developed high-order methods to solve singular perturbation
problems. They rewrote higher order derivatives in Taylor
expansion in terms of the lower-order derivative terms.
However, they also used constant coefficients only. Most the
above techniques go away from using non-uniform grid
points. The main reason is the complexity of driving general
formulas that will solve these problems. Moreover, this leads
to more complicated studying of uniqueness, stability, and
convergence. Now, using mathematical symbolic languages
such as Maple, Drive and Mathematica make the mission
easier than earlier. In this paper, following the idea in [5, 6, 8,
16] a fourth order centered difference scheme is developed for
linear second order singularly perturbed boundary value
problems. The difference scheme is developed for the
considered problem with variable coefficients and over
unevenly spaced grid points. Uniqueness and stability
condition is discussed at constant coefficients. Moreover, the
convergence order is proved at evenly spaced grid.

I1. FOURTH FINITE DIFFERENCE SCHEME
Consider the following linear SPBVP

L(y)=-ey"+p(X)y'+a(x)y =f (x), a<x<b, (1)

with boundary conditions
y@=a and y(b)=25,

where & is a small positive parameter (0< e<<1), a«and B
are given constants, p(x),q(x)and f (x)are assumed to be
sufficiently continuously differentiable functions on [a,b],
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Moreover assume q(x)>0,p(x)<P <0 for all x €[a,b],
where P is some negative constant. Under these assumptions,
SPBVP (1) has a unique solution which in general displays a
boundary layer of width O(¢) at x =a [2, 4-16]. First, [a,b]is
divided into N subintervals such that
Xg=a<X; <Xy <...<Xy =b with step size h, =x; -x;,
i =12,....N . For the sake of simplicity, we use p; =p(x;),
qi =q(x;), fi =F (%), Via=yXi4), VYia=yXiy), and
y{ =y'(x;), etc. The solution of SPBVP (1) is approximated
over subintervals with three grid points as shown in figure 1.
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Figure 1. Unevenly spaces grid points over subintervals

At each point x; we want to find E;, F,G;, H; such that

yi—opiyi —atiy; =Ejyi 1+ Ry +Gjyj+H; =—af;  (2)

where w=1/&.These terms are obtained using Taylor series
expansions of y;,, and y;_; around x; in (2) as follows

" ' ’ h'z "
yi —opiyi —aq;yi =Fy; +H; +G; |:Yi +hiy; +|7+1yi
hd h; 2 h;® ©
+|Tﬂy{”+'}+Ei {Yi —hiyi +|Tyi”_l?yim+“:|

From Eg. (1) we have

m

yi'=opyi +o(p] +0;)yi +aniy; —of;’,

v =[ @} +20p{ +ou; |yi - of "+ @p; (b} +01)+ o
+o(p] +20))Jyi +[ o”piaf +an] |y; - o’pify

®) —

v = @®pf +50°p] p; +30p{ +3ea] +20°pi; |y

2.7

+ @®plpi +0’pla; +307pf"

pi? +40°piq; +3aq] +

+20°pi0f +@°p; pf + &’a? +op{ly | +| @*pa]
?pia; +%0;a] + @’ piaf +eaf"ly; -

—|:603pi2f i, + Swzpllf i’ + a)zqi f i' + C()zpi f i"+ a)f i"i|.

+ (6)

+3w
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Substituting Egs. (4)-(6) in Eq.(3) and equating the
coefficients of y;,y{ andy; , taking the sixth derivative
terms are the largest contributors to the error, results in

Ei =24(h ,0(pi'@” +3pf0?(2p] +0; ) + w6, + p{'+3q])

@)
+ 5hi3+16002 + 20hi2+1(003 + 60h| +1pi a)+120) / hi IT

G =24(h'a(p;i'e® +3pfw® (2p] +0; ) + @6 + p{'+30])

8)
—5h3w0, + 20h? w6, — 60h; p+120) / h; 4 IT

h4 "nw +a” h3.ql h>

F =G;|-1- i o0ipjo q|)_ i1dio o |+104
24 6 120

N C)

4 ’ " 3 o7 5
+E, N o@ipio +67) higio oh 0, |- an;
24 6 120

3

i+1 GS:I (10)

by ofipw + 1) hiifle oh
24 6

Hi :_Gi
120

.

where

h* wf'piew + £ hf h?
, o(fipio |9+1 ,w+a)165
24 6 120

6, = (3p;? +4p]a; +4p;{p; +5q] p; +50; p; +7)

0, = (piw® + po(3p;] +2q; )+ pj +20])

0= (pfw+pi +0;)

0, = (ex] (p{ +3p; +0; ) + wp;af +7)

05 = (af { (@p? +3p] +0; )+ op; "+

T =hio(?(h, 1k, —4h; 1p; [k, ~3piks]-24p) + w(h,

(2p{kg —3pj> ~9p{af + pil; —3(20; ~aa; ) - 4h ks +

12h; 1k g — 24(5p] +29;)) +12(h; ks —6(p] +f )+ *w

(hao’ky + o(h’1(2p]ks —3p{* —9p{a] + pft; —3(2a;°

—47q; )) + 207k, — 60y 1 p;ks +120p; %) —60(h; L (p{ +

+20{) - 2(2p{ +0;))) + 4hfeo(h’,1p; 0%k, + gy 1k 3

+5Kk5) +60(h; 1k 5 —2p; ) +12h; +1(hi4+1pi 2503"5 + hi3+1502

(N 41K 4 ++5p;Ks) + (kg +5h; 3 (p]"+ 27 ) + 20k )

+120) + 24h; 3 (h2,1p; °0® + P ap; 0® (g 2 (5] +20;) +5p; ) +

+h; 103N (p] +a]) +5h; .1 (2p{ +0;) +20p; ) +60)

and

ky = (6p;°+11p;°q —3p'(2p{'p; +30{ p; —20;°) - 4p{p; 0
+pyp; 2= 50] pid;i +3a/p; > +0;°)

ko =(2p;®+3pjg; —p{p; —20{ p; +0; %)

kg =(3pi (pi +di)+3pia; — pi'P; +3did; —34i'P;)

Ky =(3p;i%+4pjd; +p{p; +20{ p; +q; )

ks=(pi +d;), Ke=(pi"+3ai).
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Then the difference equation and the local truncation error ;
are introduced as:

EiYia+RYi+Giyia=—H; -Wf; +7, (11)
r =|G: ﬁ (6)(5)_‘_5 h_i6 (6)(4) (12)
! 1720”7 7207 '

where &e[x; ,X; 1], & lxj1.xi]-

I11. UNIQUENESS AND STABILITY CONDITION

The existence and uniqueness of the solution for the present
difference scheme is shown by establishing that the
tridiagonal coefficient matrix of the result algebraic system is
diagonally dominant with negative main diagonal elements
and positive super-diagonal and sub-diagonal elements.

The nominators of E; andG; , in Egs. (7)- (8) at constant
coefficients p=p(x)and g =q(x), are positive when

24(h’ 1 (p*o" +3p°0’) + 0%q%)+5h%,(p%0° +

o (13)
+2w°pq) +20h2 ;(p2w+q) + 60h; ,;pw+120) >0
and
24(h*(p*e* +3p%0%q + w?q?)—5h3(p3e® + 14

+202pq) + 20h2e(p?w+q) —60h, pw+120) >0

which are equivalent to
24(h(p*e" +3p°w’ + wq*)-5h( p|3 B+
+20°|p|q) + 20hZo(p®w+q) — 60N, |p|w+120) >0

The denominator of E; and G; , in Egs.(7)-(8) at constant
coefficients p=p(x)and g =q(x), are positive when

[1440+ (@ait; hy ,2)® +20(aaih; 1y 1)? + 240(eah; hy ) |+

, (16)
+40p(hy  —; )| 120 +15(ath; by y) + (i hy.0)° | >0
and
120(h; +h?)(@p? +)[10+ wah; hy ,; ]+
4 4 2 2 ! (17)
+(hi'y—hi)| 240°p(p%0+29) | >0
After simplification and manipulation using Mathematica,
solving these inequalities results in
[ 2 2p
hi .M <mm[ml%j : (18)

Thus the present difference scheme is stable and has a unique
solution under the condition (18).
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I1l. ORDER OF CONVERGENCE

Assume that the present scheme is equivalent to those in
approximating the second and the first derivatives in (1) using
Taylor’s expansion at fixed step size h as follows:

y'()=y{+0(h "), y'x;)=y{+O(h*)  (19)
Then the order of convergence of the present scheme can be
determined from equations (11), (12) and (19) as follows.

y{+O(h *)-wp; (yi +O(h *))-wayy; =wf; +7  (20)

and

O(hk):li—iw, (21)

Using (12) and (21), the local truncation as ¢ — 0 is given by

4 4
P (“—Jy ® ), (22)

30

T =l ——
b q(h2q2+12p2)
Thus the present difference scheme has a fourth order of
convergence.

IV. CONCLUSION AND DISCUSSION

In this paper, we have developed a fourth order centered
difference scheme for solving linear second order singularly
perturbed boundary value problems. The difference scheme is
developed for the SPBVP with variable coefficients over
unevenly spaced grid points. The uniqueness and stability
condition is discussed at constant coefficients. The order of
convergence is proved at evenly spaced grid. The paper draws
the attention of researchers to drive general formulas and
perform deeply more complicated studying and analysis of
uniqueness, stability and convergence for SPBVPs with
variable coefficients over unevenly spaced grid points aided
mathematical symbolic languages.
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