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Abstract 

The aim of this paper is to construct nonlinear synchronous 

generator excitation controllers and compare their effects on 

the dynamic performance of a single machine-connected-to-an-

infinite- bus system. Two of these controllers are derived from 

the universal sliding mode control structure, while the third one 

is a modified form of the finite-time state homogeneity 

controller. The performance of the system under the action of 

these controllers is investigated through the application of a 

three-phase symmetrical fault at the infinite bus. Simulation 

results presented for various fault durations of 9, 14.5, 14.7, and 

15 cycles show that all the controllers (which can be practically 

realized using fast power semiconductor devices in a static-

exciter structure) perform well, with the homogeneity-based 

controller exhibiting the best robustness ability. 

Keywords: Control laws, fault clearance time, homogeneous 

control, output function, relative degree, sliding mode control 

 

I. INTRODUCTION 

Power system oscillations such as local plant and inter-area 

occur in power systems and pose major challenges to power 

system control engineers. These oscillations are usually caused 

by lack of sufficient generator rotor damping torque (and this 

phenomenon characterized the earliest exciter/AVR due to the 

increase in bandwidth associated with the AVR loop) [1, 2]. 

The challenges become more stringent as power systems 

undergo changes due to network alterations (caused by faults 

or switching events) and/or variations in loads. Conventionally, 

power system stabilizers (PSSs), which may be single-or 

double-input, have been employed to handle these oscillation 

problems. They are complementary excitation controllers 

which provide positive damping torque to improve the overall 

generator rotor damping [3-11]. To some degree, they have 

performed satisfactorily well, but it has been noted that in the 

same way that a power system stabilizer can improve stability 

if tuned properly, it also has the ability to destabilize a 

generator’s operation if incorrectly tuned” [2]. Thus, serious 

outstanding issues regarding the tuning of the conventional 

power system stabilizers and its performance for a wide range 

of operating conditions still remain [12]. However, many 

control techniques have been developed to enhance the 

performance of the conventional PSSs; they range from 

adaptive, robust, feedback linearization, to intelligent control 

strategies, with combinations of these strategies or their 

modifications having been implemented. Adaptive control 

strategies, such as model reference adaptive control (MRAC) 

and self-tuning control (STC), have been offered as solutions 

for providing adjustment of controller parameters as systems 

undergo changes due to parameter variations—they adjust their 

parameters on-line in response to changing operating 

conditions [13]. More commonly used is the self-tuning 

adaptive control, which comprises an approximator for on-line 

parameter identification, and a controller structure for 

guaranteeing good stability and dynamic response. Ghandakly 

& Farhoud [4] proposed a self-tuning regulator for power 

system stabilizers using a recursive least squares identification 

technique, and a parameter optimization approach which 

employed a quadratic performance criterion. This regulator was 

shown to outperform the previously designed regulators based 

on minimum variance, generalized minimum variance, PID, 

and deadbeat control strategies [14-17], but the machine 

considered was represented by the classical swing-equation 

model with a first-order exciter, and subjected to a three-phase 

fault of duration not more than 0.1s. The speed response, it was 

shown, settled within 2-3s. Also, by employing a pole-shifting 

factor to make all closed-loop poles remain within the unit 

circle, Ghandakly & Dai [18] demonstrated the effectiveness 

and robustness of a generalized multivariable self-tuning 

controller. The controller was shown to settle the system 

response in about 2s after subjecting the model power system 

used to a series of fault conditions. Moreover, a set of power 

system stabilizer schemes, using various control strategies, was 

considered by Falkner & Hech [19], and, although the authors 

raised some pertinent issues (i.e., limited controller 

sophistication; set point tracking) which suggested further 

investigations into the controllers discussed, it was inferred by 

them that linear robust and fuzzy controllers performed best in 

comparison to linear power system stabilizer, and nonlinear 

robust and sliding mode controllers. Criteria based on 

unmodelled dynamics, parameter variations, measurement 

noise, and input disturbance were used to draw the inferences. 

Meanwhile, Abdel-Magid et al. [20] proposed a new method of 

tuning the conventional power system stabilizers using the 
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genetic algorithm (GA) approach. In the study, the problem of 

stabilizing a set of plants, representing various operating 

conditions, was converted into a GA-based optimization 

problem in which the considered power system stabilizer’s 

parameters (only three of them) were optimally tuned to 

stabilize the set of plants. However, the objective function used 

was formulated based on the eigenvalues that needed to be 

shifted/placed, thereby making accurate tracking of 

eigenvalues a necessary condition for the success of the 

parameter tuning. Besides, the settling time of the speed 

variations was as much as 2.4s in some disturbance cases 

considered.  

Another significant area of applications of control techniques 

for power system stabilization is feedback linearization control 

(FBLC), which involves the complete or partial transformation 

of nonlinear systems into equivalent linear ones that are 

amenable to linear control design techniques [21, 22].  Several 

versions of FBLC have been applied to the design of power 

system excitation control [23-26]. But Gan et al. [27] set out to 

address some major design issues associated with FBLC, such 

as knowledge of the equilibrium point of the power system, 

dependence on the topology of the power system, and lack of 

guarantee that terminal voltages would remain within their 

operating limits. The authors proposed an improved FBLC 

using a linear optimal state-space feedback and saturation-type 

nonlinear robust control strategies, although a single-axis 

model was employed and the rotor angle oscillations were 

damped out in a long duration of about 15s (after perturbing 

system under the action of the proposed controller). Associated 

with FBLC is the method of zero dynamics which allows the 

output function of any nonlinear system to be kept very close 

to zero using a nonlinear state feedback control. Mahmud et al. 

[28] used this method of zero dynamics for feedback linearizing 

excitation control for power systems. A disturbance in the form 

of change in the rotor angle operating point was applied, and it 

was observed that the speed deviation steadied to zero in 2.6s. 

Other control principles and design techniques that have gained 

prominence in realizing control laws for power system 

stabilization are Lyapunov stability theory, passivity theory, 

optimal control theory, and variable structure control; they have 

been implicitly or explicitly used in designing control systems 

that led to good performance and reliable system behaviour 

[29-37]. Lyapunov-based control design involves searching 

for, or constructing, a candidate energy function that would 

guarantee asymptotic stability and the acceptable response of a 

closed-loop system [38]. Passivity theory is a method of 

constructing a Lyapunov function for a combination of some 

system's subsystems with known individual Lyapunov 

functions; it provides procedures for generating physically 

meaningful Lyapunov functions for dynamical systems as long 

as passivity properties are satisfied. This method of Lyapunov 

function was employed by Rui et al. [39] to design a novel 

excitation controller using the adaptive backstepping 

technique. The controller worked well by removing oscillations 

within 2.5s from the system after the system was subjected to 

an 8-cycle fault. One general drawback with this approach is 

how to determine the Lyapunov function whose existence is not 

certain. In the case of optimal control, the thrust of the design 

is to maximize the performance of a dynamic system at a 

minimum cost; it consists of designing a control law that will 

give an optimal state trajectory such that a cost function, known 

as a performance index, is minimized [40, 41]. 

Variable structure control strategies have been known to offer 

robustness in the face of system uncertainty [42, 12, 43], and 

sliding mode control is highly useful in this regard.  Using 

sliding mode control, Colbia-Vega et al. [44] designed a robust 

excitation controller for power systems. The controller caused 

system variables to converge to the equilibrium point in 2.5s 

after the removal of a 5-cycle fault to which the system was 

subjected. Also, Huerta et al. [45] proposed a sliding mode 

speed stabilizer (SMSS)-sliding mode voltage regulator 

(SMVR) scheme which is similar to the classical AVR-PSS 

scheme. Although the performance of the proposed scheme 

depended on the proper coordination of the SMSS and SMVR 

blocks, the scheme offered better damping of oscillations than 

the AVR-PSS scheme. In the work, oscillations caused by a 

three-phase symmetrical fault lasting for 8 cycles were damped 

out in 1.5s to 2.5s. Another application of sliding mode control 

to a single-machine infinite bus power system was carried out 

by Atabak and Saeed [46]. Their proposed controller was 

shown to outperform the conventional PSS, though, as pointed 

out by the authors, determining the controller gain involved a 

trial-and-error process. The theory of synergetic control, which 

is similar to sliding mode control, has also been applied to 

design excitation controllers—for example, Ping et al. [47] 

proposed an improved synergetic excitation controller for 

improving transient stability of power systems and voltage 

regulation performance. This work used a synergetic control 

signal to move the system variables to a manifold defined as ψ 

= 0 and then cause them to remain on this manifold at all times, 

thereby removing oscillations due to system faults. A 6-cycle 

three-phase fault to which the system was subjected led to 

oscillations that were damped out in 2s.  

Recently, there has been a resurgence of research interest in the 

application of fuzzy logic and neural networks, or their 

combinations, to damping oscillations in power systems. For 

instance, in [48], an adaptive power system stabilizer based on 

a generalized neuron artificial neural network (GNANN) was 

presented, and shown to outperform the structures put forward 

in [49-51] which have 20 input layers, 20 hidden layers, and 1 

output layer; 35 input layers and 1 output layer; and 30 input 

layers, 10 hidden layers, and 1 output layer, respectively. In the 

paper, the system, whose identifier and the controller was GN-

based, was able to dampen out oscillations due to a three-phase 

fault in about 2-3s. The authors used only a single neuron to 

realize the system. Meanwhile, Yee & Milanovic [52] offered 

a new intelligent approach, i.e., a fuzzy logic controller that 

uses a systematic analytical procedure in place of a priori expert 

knowledge/information, to stabilize both the power output and 

terminal voltage of a synchronous generator. But the 

effectiveness of the approach was demonstrated using only the 

swing-equation model of a synchronous generator and hinged 

on the premise that the loads must be static or that their dynamic 

responses are negligibly small compared to that of the 

generator. Likewise, a fuzzy logic-based power system 

stabilizer (FLPSS) was developed by Venkatesh & Rao [53] to 

replace the classical power system stabilizer for a single 

machine connected to an infinite bus. In the work, the FLPSS 
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was shown to damp out system oscillations faster than the 

classical PSS, though, for the application of a three-phase fault 

that lasted for 5 cycles, the FLPSS could only make system 

variables settle in about 20s. More recently, an alternative 

approach to damping rotor angle oscillations in power systems 

was proposed by Garima et al. [54]. Using high power 

semiconductor devices, the authors developed a hybrid power 

flow controller (HPFC) to be located at an appropriate point in 

the transmission system. The performance of the controller was 

tested with a three-phase fault of 0.02 (1.2cycles), 0.04 

(2.4cycles), 0.1 (6 cycles), and 0.2s (12 cycles) durations. It was 

observed by the authors that the HPFC damped out oscillations 

and ensured system stability in 3.53, 3.7, 3.6, and 2.6s, 

respectively, for the above-given fault durations. It has been 

pointed out that the critical clearing time, which is the 

maximum fault cycle that a system can withstand without 

losing stability, is an important aspect of transient stability [55].  

Therefore, it is still desirable to have controllers that can furnish 

the system with greater ability to withstand longer fault cycles 

and damp out system oscillations in a much shorter time.  

A more compact nonlinear controller, which is universal and 

can be easily tuned for excellent system dynamic performance, 

is highly desirable—this universal controller is analogous to the 

popular universal linear PID controller structure which has 

become the de facto controller for many industrial control 

applications [56]. In this paper, three nonlinear excitation 

controllers are presented. Two of these controllers are based on 

the universal sliding mode controller, while the third is derived 

from the general finite-time homogeneity controller. These 

controllers are suitably modified to yield acceptable system 

performance under an abnormal condition created by a three-

phase symmetrical fault of various durations. 

 

II. MATERIALS AND METHODS  

The methodological framework for the excitation control 

system is shown in Fig. 1.  

 

Fig. 1: Excitation control system framework 

II. I Power System Description 

The power system model used for this study is a third-order 

(flux-decay) model of a single machine connected to an 

infinite bus. It is represented by [57-59]  

 
dδ

dt
= ω − ωs                        (1)   

 
dω

dt
=

Tm

M
−

D

M
(ω − ωS) + (

1

Xd
′ +XE

−
1

Xq+XE
)

1

M

V2

2
sin2δ     

       −(
1

Xd
′ +XE

)
1

M
VEq

′ sinδ            (2) 

dEq
′

dt
= −

(Xd+XE)

Tdo
′ (Xd

′ +XE)
Eq

′ +
(Xd−Xd

′ )

Tdo
′ (Xd

′ +XE)
Vcosδ +

1

Tdo
′ Ef          (3) 

where δ is the rotor or torque angle in radians, ω is the rotor 

speed in radians/s, Eq
′  is the q-axis voltage which is 

proportional to the field winding flux linkage, Tm is the input 

torque, M = 2H/ωs, is the moment of inertia, with H being the 

generator inertia constant in seconds, D is the damping 

constant, ωs is the synchronous speed of the generator, V is the 

magnitude of the voltage of the infinite bus, and Ef represents 

the excitation coil voltage. Further, xE is the  transmission line 

reactance, xd and xq are synchronous reactances, x'd and x'q are 

transient reactances, and T'do and T'qo are open-circuit transient 

time constants. The values of the model parameters are given 

in Appendix I.  

The equilibrium point of the model given in equations (1), (2), 

and (3) is  

(𝛿0, 𝜔0, Eq0
′ ) = (0.6768, 314.29, 1.1300).                     (4) 

 

II.II Determination of the Power System Output 

 Function 

The system output function is chosen such that the system 

relative degree with respect to the function is equal to the order 

of the system. This condition of equality is often sought in 

order to arrive at an exactly linearizable model (through a 

nonlinear state feedback controller) of the system. In a broad 

term, the relative degree of any nonlinear system is the number 

of times its output function will be time-differentiated to yield 

most immediately an expression which is a function of the 

control signal. Instead of calculating the relative degree 

directly, an algorithm [60] for checking whether the order of 

a dynamic system is the same as its relative degree can be 

employed. This algorithm states that the relative degree, r, of 

a nonlinear single-input single-output system 

ẋ = f(x) + g(x)u,               (5) 

where x ∈ ℝ𝑛, f(x) ∈ ℝ𝑛, g(x) ∈ ℝ𝑛, and u is the control 

input, equals the order, n, of the system if and only if: 

i) the rank of the matrix  M =
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[g(x) adfg(x) adf
2g(𝑥) ⋯ adf

n−1g(x)] at the 

system operating point is n; and 

ii) the rank of each of the matrices N =

[g(x) adfg(x) adf
2g(x) ⋯ adf

n−2g(x)] and Nv =

[g(x) adfg(x) ⋯ adf
n−2g(x) [adf

j
g(x), adf

kg(x)]] 

is n-2. 

j = k = 0, 1, 2, …, n-2; j ≠ k; adf
ig(𝑥) =

adf (adf
i−1g(x)); and adfg(x) is the Lie bracket of g(x) 

along f(x).   

Application of this algorithm to the system model given in 

equations (1), (2), and (3) show that the system output 

function exists (see Appendix II for this application). The next 

step is to find the output function. Using the general algorithm 

given in Appendix III, the output function that leads to the 

system relative degree r = 3 is the rotor angle deviation  

δ∆ = δ − δ0,                         (6) 

where δ0 is the equilibrium value of the rotor angle. 

 

II.III Determination of System Control Signals 

II.III.I Control Law 1 

This is a discontinuous feedback control law which ensures 

that the output function and its derivatives converge in finite 

time. It is expressed as 

uL1 = −αsat(βn−1, cn−1) = −αsat(β2, c2),               (7) 

where 

  β2 =
δ̈Δk2γ2sat(β1,c1)

γ3
 

 β1 =
δ̇Δk1γ1sat(β0,c0)

γ3
 

 β0 =
δΔ

|δΔ|
 

 γi = (|δΔ|(n−1)! + |δ̇Δ|
n(n−2)!

+ ⋯+

                      |δΔ
(i−1)|

(n)!
(n+1−i))

n−i

n!

 

 

 i = 1, 2,⋯ , n − 1 

 γn = (|δΔ|(n−1)! + |δ̇Δ|
n(n−2)!

+ ⋯+

                      |δΔ
(n−1)|

n!
)

1

n!
. 

 

The expression in equation (7) is the modified form of the 

universal controller developed by Levant [61, 62]. The values 

of the controller parameters (i.e., α, k1, k2, c0, c1, and c2) are 

obtained through simulation. The symbol sat(.) is the 

saturation function shown in Fig. 2. 

 

sat(y, ε )

y

+1

-1

0

sat(y, ε ) = min(1, max(-1, y/ε))

ε-ε

 

Fig. 2: Graphical representation of a saturation function 

 

II.III.II Control Law II 

This control law is based on the concept of exact feedback 

linearization and state homogeneity. First, the nonlinear model 

in equations (1), (2), and (3) is transformed into the form 

  
dq1

dt
= q2              (8) 

 

   
dq2

dt
= q3              (9) 

 

   
dq3

dt
= v.            (10) 

The new variables are defined as 

  q1 = δ∆           (11) 

  q2 = Lfδ∆             (12) 

  q3 = Lf
2δ∆             (13) 

  v = Lf
3δ∆ + LgLf

2δ∆Ef .                 (14) 

The symbol Lfδ∆ is called the Lie derivative of δ∆ along f(x).  

From equation (14), the control input uL2 is  

uL2 =
𝑣−Lf

3δ∆

LgLf
2δ∆

.                (15) 

The next step is to find v. Based on the transformed model in 

equations (8), (9), and (10), the expression for v is given as 

v = −[α1sat(q1, c1) + α2sat(q2, c2) + α3sat(q3, c3)],   (16) 
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where α1, α2, and α3 are chosen [63] such that the characteristic 

equation  

s3 + α3s
2 + α2s + α1 = 0                (17) 

is stable; c1, c2, and c3 are positive constants. 

 II.III.III Control Law III 

This is a variant of the discontinuous feedback control law in 

equation (7), and it is adopted to reduce the complexity of uL1 

and provide better performance in terms of robustness. It is 

expressed as 

uL3 = −αsat(ψn−1, c) = −αsat(ψ2, c),         (18) 

where 

  ψ2 = δ̈Δk2γ2sat(ψ1, c) 

 ψ1 = δ̇Δk1γ1sign(ψ0) 

 ψ0 = δΔ 

and γi, i = 1, 2, n-1, are as defined previously. Similarly, the 

values of the controller parameters α, k1, k2, and c are obtained 

through simulation. The symbol sign(.) is the "signum" 

function shown in Fig. 3. 

 

sign(y)

+1

-1

0

sign(y) = +1(if y > 0) or -1(if y < 0)
 

Fig. 3: Graphical representation of a signum function 

 

III. RESULTS AND DISCUSSION  

To evaluate the performance of the three control laws, the 

model system (SMIB) is subjected to a three-phase fault at the 

infinite bus. Three fault clearance times are considered: 9, 14.5, 

and 14.7 cycles. 

 

III. I Fault at Infinite Bus with Fault Clearance Time of 

 9 Cycles  

Fig. 4(a), Fig. 4(b), and Fig. 4(c) present respectively the 

waveforms of synchronous generator rotor angle, rotor speed, 

and quadrature axis induced EMF when the model system is 

subjected to a three-phase fault at an infinite bus, with fault 

duration of 9 cycles.  It can be observed that the load angles and 

rotor speeds obtained due to these three control laws and the 

open-loop system have a similar first peak, with CL2 exhibiting 

better performance from a power oscillation point of view, 

followed by CL3. Fig. 4(c) shows that the improved 

performance of CL2 is achieved with minimum adjustment of 

Eq
′  (adjustment needed in the generator EMF through 

manipulation of the excitation system to counter the 

demagnetization effect of the armature reaction during a fault). 

 

III.II Fault at Infinite Bus with Fault Clearance Time of 

 14.5 Cycles  

This section repeats the case in Section III.I, but for fault 

clearance time of 14.5 cycles. It is clear that the open-loop case 

has lost synchronism, while the model system under the control 

action of CL1, CL2 and CL3 remains operational, with CL3 

exhibiting better damping in load angle, but higher first peak 

than CL2 (see Fig. 5(a)). Fig. 5(b) shows that the rotor speeds 

for the open-loop and those for CL1, CL2 and CL3 have similar 

peaks, despite that the open-loop case has fallen out of the slip. 

Fig. 5(c) indicates that the quadrature axis EMF for the open-

loop case has collapsed, while those for CL1, CL2 and CL3 

regain their previous steady-state equilibrium points. 

 

III.III Fault at Infinite Bus with Fault Clearance Time of 

 14.7 Cycles  

In order to determine the control law with the greatest 

robustness ability, the case in Section III. I is repeated, but this 

time for fault clearance time of 14.7 cycles. Note that the cases 

for the open-loop and CL1 have lost their synchronisms, while 

the system, under the action of CL2 and CL3, remains 

operational, with CL2 exhibiting lower first peak and faster 

deceleration compared to CL3 (see Fig. 6(a)). The plots for the 

rotor speeds in Fig. 6(b) support the observations drawn from 

the results in Fig. 6(a). Fig. 6(c) indicates that the quadrature 

axis EMF for the open-loop and CL1 cases have collapsed, 

while those for CL2 and CL3 regain their previous steady-state 

equilibrium points.  
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(a) Load angle  

 

 

(b) Rotor speed 

 

 

(c) Quadrature EMF (E’q) 

Fig. 4: System waveforms comparing the performances of control laws (CL1, CL2 and CL3) for an infinite bus fault 

cleared after 9 cycles 
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(a) Load angle  

 

 

(b) Rotor speed 

 

(c) Quadrature EMF (E’q) 

Fig. 5: System waveforms comparing the performances of control laws (CL1, CL2 and CL3) for an infinite bus fault 

cleared after 14.5 cycles 
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(a) Load angle 

 

 

(b) Rotor speed 

 

 

(c) Quadrature EMF (E’q) 

Fig. 6: System waveforms comparing the performances of control laws (CL1, CL2 and CL3) for an infinite bus fault 

cleared after 14.7 cycles 
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(a) Load angle  

 

(b) Rotor speed 

 

 

(c) Quadrature EMF (E’q) 

Fig. 7: System waveforms comparing the performances of control laws (CL1, CL2 and CL3) for an infinite bus fault 

cleared after 15 cycles 
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III.IV Fault at Infinite Bus with Fault Clearance Time 

 of 15 Cycles  

Following on from the case in Section III.III, with the fault 

clearance time increased to 15 cycles, it is clear from Fig. 7 

that the cases for the open-loop, CL1, and CL3 have lost their 

synchronisms, while the model system still remains 

operational under CL2. Therefore, it can be concluded that 

the control law CL2 performs better than CL1 and CL3 in 

extending the critical clearance time of a single machine 

connected to an infinite bus system being studied. After 

further simulation, it is discovered that the system (under 

CL2) can withstand fault for a maximum duration of 15.30 

cycles. 

 

IV. CONCLUSION 

Three nonlinear excitation controllers have been presented in 

this paper, with their performance characteristics investigated 

by simulation using a model power system represented by a 

single machine connected to an infinite bus. The second 

controller (CL2), which is an improved version of the general 

homogeneity-based controller, performs better in terms of the 

ability to withstand fault cycles than the other two (CL1 and 

CL3), which are modified versions of universal sliding mode 

controllers. These controllers can be realized using fast power 

semiconductor devices. 
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APPENDIX  I 

The parameter values of the system model defined in equation 

(1), (2), and (3) are [57, 64, 65]: Xd = 0.9 p.u.; Xq = 0.7 p.u.; 

X’d= 0.2 p.u.; X’q= 0.2 p.u.; T’do= 5.00 s; T’qo = 0.13 s; H = 

5.00 s; Tm = 0.8413; XE = 0.24 p.u.; XT = 0.13 p.u.; V = 1.0 

p.u. 

Let (x10, x20, x30) represent the equilibrium point of the model, 

which is rewritten as  

 ẋ = f(x) + g(x)u       (AI.1) 

where 

 f(x) = (

𝑥2 − ωs

A1 +
1

2
A2V

2sin2𝑥1 − A3V𝑥3sin𝑥1 −
D

M
(𝑥2 − ωs)

−B1𝑥3 + B2Vcos𝑥1

) 

 g(x) =  (

0
0
1

𝑇𝑑𝑜
′

) 

 A1 =
Tm

M
 

 A2 =
1

M
(

1

Xd
′ +XE

−
1

Xq+XE
) 

 A3 = (
1

Xd
′ +XE

)
1

M
 

 B1 =
(Xd+XE)

Tdo
′ (Xd

′ +XE)
 

 B2 =
(Xd−Xd

′ )

Tdo
′ (Xd

′ +XE)
 

At equilibrium, all derivative terms in equation (AI.1) are 

set to zero, i.e., 

 𝑥20 − ωs = 0 

 A1 +
1

2
A2V

2sin2𝑥10 − A3V𝑥30sin𝑥10 = 0 

 −B1𝑥30 + B2Vcos𝑥10 +
1

Tdo
′ u0 = 0 

Therefore, 

 𝑥20 = ωs        (AI.2) 

 

 𝑥30 =
A1+

1

2
A2V2sin2𝑥10

A3Vsin𝑥10
       (AI.3) 

 𝑥30 =
B2Vcos𝑥10+

1

Tdo
′ u0

B1
       (AI.4) 

Combining equations (AI.3) and (AI.4), and using the identity 

sin𝑥10cos𝑥10 ≡
1

2
sin2𝑥10, gives 

 (
1

2
B2V

2A3 −
1

2
B1V

2A2) sin2𝑥10 + 
1

Tdo
′ A3Vu0sin𝑥10 =

A1B1 (AI.5) 

To obtain x10, equation (AI.5) is solved numerically using 

MATLAB function "fsolve" as follows:  

% % This function file creates equation (AI.5).  

function aweresult = awefun(x) 

system_parameters; 

aweresult=((B2*v*v*A3/2)- .  .  . 

(B1*A2*v*v/2))*sin(2*x(1))+(A3*v/tdop)*sin(x(1))-A1*B1; 

% % End function   

 

%% This script file solves equation (AI.5) by calling  

%%        function file ‘awefun’ 

options=optimset('Algorithm', 'Levenberg-Marquardt'); 

x_steadystate=fsolve( @awefun, x0, options) 

% % End script   
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And from either equation (AI.3) or (AI.4), x30 can be found. 

Hence,  

(x10, x20, x30) = (δ0, ω0, Eq0
′ ) = (0.6768, 314.29, 1.1300). 

 

 

APPENDIX II 

To confirm whether an output function that makes r = n 

exists, the two conditions specified in Section 2.2 are tested 

as follows. 

i) Compute the matrix M = [g(x) adfg(x) adf
2g(𝑥)] 

and check its rank.  

 g(𝑥) = (

g1

g2

g3

) = (

0
0

1
𝑇𝑑𝑜

′⁄
) 

 f(𝑥) = (

f1
f2
f3

) 

 = (

𝑥2 − ωs

A1 +
1

2
A2V

2sin2𝑥1 − A3V𝑥3sin𝑥1 −
D

M
(𝑥2 − ωs)

−B1𝑥3 + B2Vcos𝑥1

) 

 adfg(x) =
∂g

∂x
f(x) −

∂f

∂x
g(x) 

     = 0 − [

0 1 0

A2V
2cos2𝑥1 − A3V𝑥3cos𝑥1 −

D

M
− A3Vsin𝑥1

−B2Vsin𝑥1 0 −B1

] (

g1

g2

g3

) 

     =

[
 
 
 

0
1

𝑇𝑑𝑜
′ A3Vsin𝑥1

1

𝑇𝑑𝑜
′ B1 ]

 
 
 

 

 

 adf
2g(𝑥) =

∂(adfg(x))

∂x
f(x) −

∂f

∂x
adfg(x) 

   =

[
 
 
 
 

1

𝑇𝑑𝑜
′ A3Vsin𝑥1

𝑥2−ωs

𝑇𝑑𝑜
′ A3Vcos𝑥1 +

D

M𝑇𝑑𝑜
′ A3Vsin𝑥1 + 

1

𝑇𝑑𝑜
′ B1A3Vsin𝑥1

𝑥2−ωs

𝑇𝑑𝑜
′ B1 +

1

𝑇𝑑𝑜
′ B1

2

]
 
 
 
 

 

 

Thus, 

 M =

[
 
 
 
 0 0

1

𝑇𝑑𝑜
′ A3Vsin𝑥1

0
1

𝑇𝑑𝑜
′ A3Vsin𝑥1

𝑥2−ωs

𝑇𝑑𝑜
′ A3Vcos𝑥1 +

D

M𝑇𝑑𝑜
′ A3Vsin𝑥1 + 

1

𝑇𝑑𝑜
′ B1A3Vsin𝑥1

1

𝑇𝑑𝑜
′

1

𝑇𝑑𝑜
′ B1

𝑥2−ωs

𝑇𝑑𝑜
′ B1 +

1

𝑇𝑑𝑜
′ B1

2

]
 
 
 
 

 

 

Since the determinant of M is nonzero at the system 

operating point, i.e., 

 M ≠ −
1

𝑇𝑑𝑜
′ 3 A3

2V2sin2𝑥10, 

then the rank of M is 3. This condition is satisfied. 

 

ii) Determine the rank of the matrix N = [g(x) adfg(x)] 
as well as matrix 

  Nv = [g(x) adfg(x) [g(x) adfg(x)]] 

It is obvious that the rank of  

 N = [g(x) adfg(x)] =

[
 
 
 
0 0

0
1

𝑇𝑑𝑜
′ A3Vsin𝑥1

1

𝑇𝑑𝑜
′

1

𝑇𝑑𝑜
′ B1 ]

 
 
 

 

is 2, while that of  

 Nv = [g(x) adfg(x) [g(x) adfg(x)]] 

       =  

[
 
 
 
0 0 0

0
1

𝑇𝑑𝑜
′ A3Vsin𝑥1 0

1

𝑇𝑑𝑜
′

1

𝑇𝑑𝑜
′ B1 0

]
 
 
 

 

     is 2 as well.  

     This condition is also satisfied. 
 

APPENDIX III 

The algorithm [60] for deriving the output function that 

guarantees r = n for a SISO nonlinear system is as follows. 

Consider a general nonlinear SISO system defined as 

 𝑥̇ = f(𝑥) + g(𝑥)u.    (AIII.1)  

The following are the steps for finding an output function that 

makes r equal to n. 

Step 1: Create the set 

 S = {g(𝑥), adfg(𝑥), adf
2g(𝑥),⋯ , adf

n−1g(𝑥)},          (AIII.2) 

and establish the subsets S1, S2, …, Sn, where Si is composed 

of the first i elements of S. That is,  

 S1 = {g(𝑥)}, 

 S2 = {g(𝑥), adfg(𝑥)}, 

 S3 = {g(𝑥), adfg(𝑥), adf
2g(𝑥)},  

 ⋮ 

 Sn = {g(𝑥), adfg(𝑥), adf
2g(𝑥),⋯ , adf

n−1g(𝑥)}.           (AIII.3) 

The elements of S in equation (AIII.2) are determined 

appropriately. 

Step 2: Find the vectors S̅1, S̅2, ⋯ , S̅n. S̅i and all the elements 

of Si are linearly dependent. In other words, S̅i represents a 

linear combination of the elements of Si. This can be 

mathematically expressed as 

 S̅1 + α11(𝑥)g(𝑥) = 0, 

 S̅2 + α21g(𝑥) + α22adfg(𝑥) = 0, 

S̅3 + α31g(𝑥) + α32adfg(𝑥) + α33adf
2g(𝑥) = 0,  

 ⋮  

 S̅n + αn1g(𝑥) + αn2adfg(𝑥) + ⋯+ αnnadf
n−1g(𝑥) = 0.     (AIII.4) 
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Step 3: Obtain the transformation function X = P(V) by 

finding the integral curve 

 P(v1, v2, ⋯ , vn) = Φv1

S̅1 ∘ Φv2

S̅2 ∘ ⋯ ∘ Φvn

S̅n(X0). 

This is done by computing sequentially 

Φvn

S̅n(X0) ⇒
d

dvn
(

𝑥1

𝑥2

⋮
𝑥n

) = S̅n :      (

𝑥1(0)
𝑥2(0)

⋮
𝑥n(0)

) = X0,  

 Φvn−1

S̅n−1 ∘ Φvn

S̅n(X0) ⇒
d

dvn−1
(

𝑥1

𝑥2

⋮
𝑥n

) = S̅n−1 :  (

𝑥1(0)
𝑥2(0)

⋮
𝑥n(0)

) = Φvn

S̅n(X0),  

⋮ 

 Φv1

S̅1 ∘ Φv2

S̅2 ∘ ⋯∘ Φvn

S̅n(X0) 

 ⇒
d

dv1
(

𝑥1

𝑥2

⋮
𝑥n

) = S̅1 : (

𝑥1(0)
𝑥2(0)

⋮
𝑥n(0)

) = Φv2

S̅2 ∘ ⋯ ∘ Φvn

S̅n(X0). 

The result of Step 3 gives 

 (

𝑥1

𝑥2

⋮
𝑥n

) = (

P1(v1, v2,⋯ , vn)

P2(v1, v2,⋯ , vn)
⋮

Pn(v1, v2,⋯ , vn)

) 

from which the inverse function (

v1

v2

⋮
vn

) = (

P1
−1(𝑥1, 𝑥2,⋯ , 𝑥n)

P2
−1(𝑥1, 𝑥2,⋯ , 𝑥n)

⋮
Pn

−1(𝑥1, 𝑥2,⋯ , 𝑥n)

) 

could be found. vn is actually the function being sought.  
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