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Abstract 

 

In this paper, three finite difference three-point techniques for 

singularly perturbed boundary value problems (SPBVPs) are 

discussed. These techniques are developed over unevenly 

spaced grid points aided mathematical symbolic language 

Maple. Local truncation error, uniqueness and stability 

conditions are discussed. 
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I. INTRODUCTION 

         

 Singularly perturbed boundary value problems (SPBVPs) 

arise frequently in applied sciences and engineering and have 

been extensively studied in recent years [1-16]. It is well 

known that away from the boundary layers, upwind difference 

methods can be used and accurate results are obtained. 

Otherwise, other schemes are to be preferred such as 

difference schemes on a non-uniform mesh [1-6, 8-10]. But in 

this case one must face the drawbacks related to the use of 

difference schemes on highly non-uniform meshes, since a 

fine mesh with maximum step-size h   is required over a 

domain containing the layer region at which the solution 

varies rapidly, while for reasons of efficiency a coarse grid 

with h   should be used in the outer region at which the 

solution behaves regularly and changes slowly. The main 

difficulty in global discretization of these problems is the 

restriction on the step- size that to have a unique stable and 

accurate solution. Therefore stability and order of 

convergence act as the major achieved requirements.  Many 

authors deal with some of these challenges in global 

discretization for these problems especially the convection 

diffusion problems [2-6]. Segal [2] analyzed and compared 

various methods for solving the convection diffusion equation 

with small . While Il’in’s [3] method is a very accurate 

example of an upwind scheme for a homogeneous, one-

dimensional convection-diffusion equation with constant 

coefficients. It loses accuracy when variable coefficients are 

used. Dekema and Schultz [4] developed high-order methods 

to solve elliptic singular perturbation problems and obtained 

remarkably good numerical results. Later, Choo and Schultz 

[5] developed the so-called stable central difference methods. 

They modified the central difference approximations for the 

first- and second-order derivatives by rewriting its error terms 

as a combination of the lower-order derivative terms and 

approximating them. This process reinforced the diagonal 

dominance of the coefficient matrix and had a stabilizing 

effect. However, they could not achieve as high accuracy as 

the method of Dekema and Schultz. Ilicasu and Schultz [6] 

developed high-order methods to solve singular perturbation 

problems. They rewrote higher order derivatives in Taylor 

expansion in terms of the lower-order derivative terms. 

However, they also used constant coefficients only. Most the 

above techniques go a way from using non-uniform grid 

points. The main reason is the complexity of driving general 

formulas that will solve these problems. Moreover, this leads 

to more complicated studying of uniqueness, stability, and 

convergence. Now, using mathematical symbolic language 

such as Maple, Drive and Matlab makes the mission easier 

than earlier. In this paper, following the idea in [6] three finite 

difference three-point techniques for singularly perturbed 

boundary value problems (SPBVPs) are suggested. These 

techniques are developed over unevenly spaced grid points 

aided mathematical symbolic language Maple. Local 

truncation error, uniqueness and stability conditions are 

discussed 

 

II. FINITE DIFFERENCE TECHNIQUES 

  

Consider the following linear SPBVP 

 

( ) ( ) ( ),y p x y q x y f x a x b         ,          (1) 

 

  with boundary conditions 

 

( )y a   and ( )y b  , 

 

where   is a small positive parameter (0 1),   and 

are given constants, ( )p x , ( )q x and ( )f x are assumed to be 

sufficiently continuously differentiable functions on [ , ]a b , 

Moreover assume ( ) 0q x  , ( ) 0p x P   for all [ , ]x a b , 

where P is some negative constant. Under these assumptions, 

SPBVP (1) has a unique solution which in general displays a 

boundary layer of width ( )O  at x a [2, 4, 6-16]. First, 

[ , ]a b is divided into N non-equal subintervals such that

0 1 2: ...... Nx a x x x b        with 1i i ih x x   ,
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1,2,.....i N . For the sake of simplicity, we will use 

( ),i ip p x ( ),i iq q x ( ),i if f x 1 1( ),i iy y x   

1 1( ),i iy y x   and ( ),i iy y x  etc. 

 

The solution of SPBVP (1) is approximated over subintervals 

with unevenly spaces three grid points as shown in figure 1. 

 

 
Figure 1. Unevenly spaces grid points over sub-domains 

 

Equation (1) is divided by   and we let  1/   . At each 

ix , we want to find ,iE  ,iF ,iG iH  such that  

 

1 1i i i i i i i i i i i i iy p y q y E y F y G y H f              

(2) 

 

These terms are obtained using Taylor series expansions of 

1iy  and 1iy   around ix  

2
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  (3) 

From Eq. (1) we have 
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  (4) 

                                                                            

II.I. Technique-I 

 

 Substituting Eq.(4) in Eq.(3) and equating the coefficients of 

,i iy y  and iy   , taking the third order derivative terms are the 

largest contributors to the error, we get 

 

1

1

1 1

2
, ,

( )

2
, 0

( )

i i
i i i i i

i i i

i i
i i

i i i

h p
E F G E q

h h h

h p
G H

h h h










 


    




 



,             (5) 

 

Then, the difference equation of technique I and local 

truncation error i are introduced as   

 

1 1i i i i i i i i iE y F y G y H wf        ,          (6)  

3 3
(3) (3)1 ( ) ( )

6 6

i i
i i i

h h
G y E y  
 

  
 
 

,                    (7) 

where 1 1[ , ], [ , ]i i i ix x x x    . 

 

II.II. Technique-II 

 

Substituting Eq. (4) in Eq. (3) and equating the coefficients of 

,i iy y  and iy   , taking the fourth order derivative terms are 

the largest contributors to the error, we get 

 

2 2 2 2 2
1 1 1 1

2 2 2 2 2

1
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1

3 3
1
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2( 3 6)
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
   

,    (8) 

 

where 1 1 1( ) ( ) 2 ( ) 6i i i i i i i i iT h h h h p q p h h          . 

 

Then, the difference equation of technique II and local 

truncation error i are introduced as   

 

1 1i i i i i i i i iE y F y G y H wf        ,               (9) 

  
4 4

(4) (4)1 ( ) ( )
24 24

i i
i i i

h h
G y E y  
 

  
 
 

,                (10) 

where  1 1[ , ], [ , ]i i i ix x x x    . 

 

II.III. Technique-III 

 

Substituting Eq.(4) in Eq.(3) and equating the coefficients of 

,i iy y  and iy   , taking the fifth order derivative terms are the 

largest contributors to the error, we get 
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3
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6
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E
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G
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   

  





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
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, 

(11) 
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where  
2

1 2 (3 2 )i i i i i ip q p p p q          

2 i i iq p  + q    

 3 i i if p  + f     
3 3

i+1

1 1

1

6 ( )( ) 3 ( )(8

(  )) ( )

( ( )+

12 ( ) 72)

2 2 2
i i i i i +1 i i

i i i i i i i i i i

2 2 2 2 2
i i +1 i i i i i i i i

i i i i

T h h 2p  p q h - h p

h h 2q p  p  p p  q  h h

h  h 2q  p - 2p - 3p  q p  p - q

h h p + q

  

 





 



     

       

   

 

 

 

Then, the difference equation of technique III and local 

truncation error i are introduced as   

 

1 1i i i i i i i i iE y F y G y H f        ,              (12) 

5 5
(5) (5)1 ( ) ( )

120 120

i i
i i i

h h
G y E y  
 

  
 
 

                   (13) 

where 1 1[ , ], [ , ]i i i ix x x x    . 

 

III. UNIQUENESS AND STABILITY ANALYSIS 

 

The existence and uniqueness of the solution for the 

difference techniques defined in section II is shown by 

establishing that the tridiagonal coefficient matrix of the result 

algebraic system is diagonally dominant with negative main 

diagonal elements and positive super-diagonal and sub-

diagonal elements.  

 

III. I. Technique I. 

 

It clear that iE and iG in (5) are positive under the condition   

1

2
,i i

i

h h
p

  .                                  (14) 

And since 0q  , we have  

  0i i i iF G E q                             (15) 

and 

i i i i i iF G E q G E     .                (16) 

 

Thus the numerical technique I is stable and has a unique 

solution under condition (14). 

 

III. II. Technique II. 

 

It can be easily shown from (8) with constant coefficient q ,  

that the nominators of iE and iG  are positive with no 

restrictions on the step size while the denominator T is 

positive when  

 

1 1( ) 2 ( ) 6 0i i i i i ih h p q p h h         ,  

thus 

1
1

3 ( )

2

i i i i
i i

i i

q p h h
h h

p p




 
   
 

,            (17) 

 

Thus the numerical technique II  is stable and has a unique 

solution under condition (17). 

 

III. III. Technique III. 

 

The nominators of iE and iG , in (11) with constant 

coefficients p and q , are positive when 112 24ih p   and 

3 2 2 2
1 1( ( 2 )) 4 ( ) 0i ih p p q h p q         . Now, let 1i

k
h

p
  , 

then the first condition yields 2k  , and the second condition 

 yields 

 

3 2 2 2
1 1

2 2

2 2

( ( 2 )) 4 ( ) 0

( ( 2 )) 4( )

( 2 )) 4( )

i i

i

h p p q h p q
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k p q p q
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 
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  
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,          (18) 

Thus  
2

2

4( )
,

( 2 ))

p q
k

p q









 or  2k  ,                                (19) 

 

The denominator will be 

  
3 3 2 2 2

1 1 1

2 2 2
1 1 1

6 ( )( ) 3 ( )(8  ))

( )(  12  72)

i i i i i i

i i i i i i

T h h p q h h p h h pq

h h h h q h h q

   

 

  
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If we substitute by i

L
h

p
 and 1i

M
h

p
  in the denominator: 

3 3 2 2 2
1 1 1

2 2 2
1 1 1

6 ( )( ) 3 ( )(8  ))

( )(  12  72)

i i i i i i

i i i i i i

T h h p q h h p h h pq

h h h h q h h q
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 

  

  

     

   

we get 2M  ,or 3M  , and 3L  , or 4L  , which means 

that there is no restrictions on the step size obtained from the 

denominator. Thus the numerical scheme is stable and has a 

unique solution under the condition (20). 

 

1

2
;i ih h

p
  .                                    (20) 

 

 

IV. CONCLUSION AND DISCUSSION 

 

In this paper, we have presented three finite difference three-

point techniques for singularly perturbed boundary value 

problems (SPBVPs). These techniques are developed over 

unevenly spaced grid points aided mathematical symbolic 

language Maple. Local truncation error, uniqueness and 

stability conditions are discussed. The paper draws the 

attention of researchers to drive general formulas over 

arbitrary grid points and perform deeply more complicated 

studying of uniqueness, stability, and convergence aided 

mathematical symbolic language. 
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