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Abstract

In this paper, three finite difference three-point techniques for
singularly perturbed boundary value problems (SPBVPs) are
discussed. These techniques are developed over unevenly
spaced grid points aided mathematical symbolic language
Maple. Local truncation error, uniqueness and stability
conditions are discussed.
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I. INTRODUCTION

Singularly perturbed boundary value problems (SPBVPs)
arise frequently in applied sciences and engineering and have
been extensively studied in recent years [1-16]. It is well
known that away from the boundary layers, upwind difference
methods can be used and accurate results are obtained.
Otherwise, other schemes are to be preferred such as
difference schemes on a non-uniform mesh [1-6, 8-10]. But in
this case one must face the drawbacks related to the use of
difference schemes on highly non-uniform meshes, since a
fine mesh with maximum step-size h <¢ is required over a
domain containing the layer region at which the solution
varies rapidly, while for reasons of efficiency a coarse grid
with h>¢& should be used in the outer region at which the
solution behaves regularly and changes slowly. The main
difficulty in global discretization of these problems is the
restriction on the step- size that to have a unique stable and
accurate solution. Therefore stability and order of
convergence act as the major achieved requirements. Many
authors deal with some of these challenges in global
discretization for these problems especially the convection
diffusion problems [2-6]. Segal [2] analyzed and compared
various methods for solving the convection diffusion equation
with small £ . While II’in’s [3] method is a very accurate
example of an upwind scheme for a homogeneous, one-
dimensional convection-diffusion equation with constant
coefficients. It loses accuracy when variable coefficients are
used. Dekema and Schultz [4] developed high-order methods
to solve elliptic singular perturbation problems and obtained
remarkably good numerical results. Later, Choo and Schultz
[5] developed the so-called stable central difference methods.
They modified the central difference approximations for the
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first- and second-order derivatives by rewriting its error terms
as a combination of the lower-order derivative terms and
approximating them. This process reinforced the diagonal
dominance of the coefficient matrix and had a stabilizing
effect. However, they could not achieve as high accuracy as
the method of Dekema and Schultz. llicasu and Schultz [6]
developed high-order methods to solve singular perturbation
problems. They rewrote higher order derivatives in Taylor
expansion in terms of the lower-order derivative terms.
However, they also used constant coefficients only. Most the
above techniques go a way from using non-uniform grid
points. The main reason is the complexity of driving general
formulas that will solve these problems. Moreover, this leads
to more complicated studying of uniqueness, stability, and
convergence. Now, using mathematical symbolic language
such as Maple, Drive and Matlab makes the mission easier
than earlier. In this paper, following the idea in [6] three finite
difference three-point techniques for singularly perturbed
boundary value problems (SPBVPs) are suggested. These
techniques are developed over unevenly spaced grid points
aided mathematical symbolic language Maple. Local
truncation error, uniqueness and stability conditions are
discussed

I1. FINITE DIFFERENCE TECHNIQUES
Consider the following linear SPBVP

—y"+p(X)y'+q(x)y =f (x), a<x <b, 1)

with boundary conditions
y@=aand yb)=25,

where & is a small positive parameter (0<s<1), aand g
are given constants, p(x),q(x)and f (x) are assumed to be
sufficiently continuously differentiable functions on [a,b],
Moreover assume q(x)>0,p(x)<P <0 for all x e[a,b],
where P is some negative constant. Under these assumptions,
SPBVP (1) has a unique solution which in general displays a
boundary layer of width O(g)at x =a[2, 4, 6-16]. First,
[a,b]is divided into N non-equal subintervals such that
TiXg=a<Xy <Xy <...<Xy =b with hi =X; =X,
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i=12,... N . For the sake of simplicity, we will use
P =p(i). g =a(x;), fi =f (Xi), yia =y (Xi )

Yia=Y X)), andy] =y'(x;), etc.

The solution of SPBVP (1) is approximated over subintervals
with unevenly spaces three grid points as shown in figure 1.

h,
Figure 1. Unevenly spaces grid points over sub-domains

Equation (1) is divided by —s and we let @w=1/¢ . At each
X;, we want to find E;, F;,G;, H; such that

yi—opyi—atiyi =Biyia+RYi +Giyig+H;i =—af;
(2

These terms are obtained using Taylor series expansions of
Yiq and y;_4 around x;

, , ’ h'2 "
y{—opiyi —eiy; =Fy; +H; +G; {yi thiyi+ =2y,
h? h2 , h? ¥
+'T+1yi”’+.. +Ei|Yi —hiYi'Jf'Tyi”_l?yi”“
From Eg. (1) we have
yi=opiy] +o(pi +a)y{ +eaiy; —of;
y® :[wzpi2+2a)pi' + j|yi"_Wfi"+|:a)2pi (pi +0;)+
+w(p{'+2q{)]yi'+[a’2piqi' +in"]Yi _wzpi i
yi(S) :[a’spis+5@2pi'Pi +3wpi’ +3aq; +2w2piqi }yi”
3.2 3,2 22 2 @
+| @®p?p{ +’pfa; +30°p{? +40°piq; + 30 +

+20°pi0] +@?p; p{ +&’al +op{y| +| @’plaf +

2piaj +°0;0] +o?piqf +aq’ly; -

—|:a)3pi2f i’ +3a)2p|'f i’ + (Uzqifi’ + a)zpi f i”+ of i"ill

+ 3w

11.1. Technique-I

Substituting Eq.(4) in Eq.(3) and equating the coefficients of
yi,y; andy/ , taking the third order derivative terms are the
largest contributors to the error, we get

_ 2+hi oD
' h; (hi +hi,q)

2-h; wp;
Gi=————"— H,
hi 1 (hi + i)

Fi =-Gi -Ej —aq;,
, (%)
=0
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Then, the difference equation of technique | and local
truncation error z; are introduced as

EiyiatFRYi +Giyia=-H; -wf; +7, (6)
hls. @ h? @
7 =| G; e (&) -E; e )] (7)

where &elx; X 1], & elxj 1]
IL.11. Technique-II

Substituting Eq. (4) in Eg. (3) and equating the coefficients of
yi,y; andy; , taking the fourth order derivative terms are
the largest contributors to the error, we get

_ 2(h?40p] +hP00; +3n; ,0p; +hi 0’ pE +6)
hT
_ 2(h7@p] +hiex; —3h; wp; +h’w’p +6)
hi +lT ,
Fi =-G; A+hf.0iw/6) ~E; (L-higj/ 6) - ax
Hi =G; (Wi @/6)—E; (hf{ w/6)

E.

G.

)

where T = (h; +h; )[h; .1 o(p] +0;)+2p; o(h; ;1 —h; ) +6].

Then, the difference equation of technique Il and local
truncation error z; are introduced as

Eiyia+FRYi +Giyin=-H; -wf; +7, 9)
ha @ h' @
7 =| G; BT (&) +E; EYRd ) | (10)

where & elx; X 4], & elX; 1.%].
I1.111. Technique-I11

Substituting Eq.(4) in Eq.(3) and equating the coefficients of
yi,yi andy; , taking the fifth order derivative terms are the
largest contributors to the error, we get

E. = 6(n 106, +4h70(p] + pf@+q; ) +12h; ,1p; @ +24)
' hT
G. = 6(~h’wé; +4hlw(p; + pPw+q;) —12h; p; o+ 24)
1
hi +1T
4 3 ! 4
F =-G, 1+hi+lw92+hi+1qiw _E, 1+hi b, ,
24 6 24
h3q/ @
‘%}a’qi
H =G huw8;  hiifie +E. h' w6, i hi*f /o
i i Y 5 i % 5
(11)
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where

6 = p{ + 20 + p; &(3p] + plw+20;)

0, =qi pjo+qf

6 = o(f; pjo+f)

T =6w(h®+h3,)(2p] + plw+0;) +3a(hi, - h?)@p; +
+hihy (207 +pi pi @+ P +P; G @) —(hj 1 +hy)

(a) h h|+1(2qi' Pi - 2pI2 3pi 4i +pi' P 'Qi2)+
+120h; Ny 1 (P +0;) +72)

Then, the difference equation of technique Il and local
truncation error z; are introduced as

Eiyia+FyYi +G'yi+1:_H'_a’f'+Ti: (12)
[ Mu y© y®
7 (G 120Y ©-Ei; 1 (J)J (13)

where &e[x;,x; 1], & elx; 1.x;].

111. UNIQUENESS AND STABILITY ANALYSIS

The existence and uniqueness of the solution for the
difference techniques defined in section Il is shown by
establishing that the tridiagonal coefficient matrix of the result
algebraic system is diagonally dominant with negative main
diagonal elements and positive super-diagonal and sub-
diagonal elements.

I11. 1. Technique I.

It clear that E; and G; in (5) are positive under the condition

hy hi g < Izpil' (14)
And since q >0, we have
F =—(Gi +E; +an; ) <0 (15)
and
IR |=|G;i +E; +an; |2| G; +E;|. (16)

Thus the numerical technique | is stable and has a unique
solution under condition (14).

1. 11. Technique 11.

It can be easily shown from (8) with constant coefficient q,
that the nominators of E;and G; are positive with no

restrictions on the step size while the denominator T is
positive when

h; 1hi o(pi +9 ) +2pjo(hj,1—h;)+6>0,

e )

thus
3

P

_ (@ +pi)hihiq
2p;

a7
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Thus the numerical technique 11 is stable and has a unique
solution under condition (17).

I 111. Technique I11.

The nominators of E;and G;, in (11) with constant
coefficients pandq, are positive when 12h; ;p@<24 and

k
|+1a)(pa)(p w+2q))- 4h|+la)(p2w+q)§0. Now, let hi+1:a)_

then the first condition yields k <2, and the second condition
yields

h2 o(po(p?e+29)) - 4h?, 0(p’w+9) <0

hi (po(p?e+29)) < 4(p°w+q) . (18)
k(p?w+2q)) < 4p’w+q)
Thus
PRUCKCAL) RS (19)
(p°w+29))

The denominator will be

T =6a(h? +h2,)(p’0+0) +3w(h?; —h?)Bp +hh 1pdw )
+(hi +h ) (@?hy h3.92 +12wh; hy 4  +72)

If we substitute by h; = L andh; 4 = M in the denominator:
®p ®p

T =60(h’ +h’)(p?w+0) +3w(h?, ~h?)Bp +hihi1pqe )
+(h|+1+h )(a) h h|+1q +12a)hi hi+1 q+72)
we get M <2,0or M >3 ,and L<3,orL >4, which means

that there is no restrictions on the step size obtained from the
denominator. Thus the numerical scheme is stable and has a
unique solution under the condition (20).

<2

h;:h; .
o|p|

(20)

|+l—

IV. CONCLUSION AND DISCUSSION

In this paper, we have presented three finite difference three-
point techniques for singularly perturbed boundary value
problems (SPBVPs). These techniques are developed over
unevenly spaced grid points aided mathematical symbolic
language Maple. Local truncation error, uniqueness and
stability conditions are discussed. The paper draws the
attention of researchers to drive general formulas over
arbitrary grid points and perform deeply more complicated
studying of uniqueness, stability, and convergence aided
mathematical symbolic language.
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