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Abstract 

The localization of sources of inhomogeneity is a basic 

requirement in nondestructive evaluation and subsequent 

analysis of damage mechanisms. Source localization using 

various highly effective signal processing schemes have been 

developed in previous research. In this paper, we localize a 

defect in an aluminum specimen based on the velocity effect of 

ultrasonic Lamb waves, measuring the time of flight (TOF) 

using peak values and then applying a least mean squares 

algorithm. The mean squared error (MSE) of the measured and 

simulated distances between the sensors and the defect is 

minimized using a gradient descent algorithm, which involves 

moving in a direction opposite to the gradient of the MSE, 

resulting in the optimal estimation of the x and y coordinates of 

the defect. The estimated defect location is compared with the 

actual position of the defect by converting the distance 

information into real environmental values based on the x and 

y coordinates. The source localization results depend strongly 

on the accuracy of the TOF values for the actuator, sensors, and 

defect. The more precise the TOF information, the better the 

results. 

Keywords: Ultrasound, Lamb waves, Modelling, Source 

localization, LMS, Gradient descent. 

 

I. INTRODUCTION  

The ability to detect, localize, and characterize defects or 

inhomogeneities in materials is of essential importance. Several 

nondestructive evaluation (NDE) methods have been 

developed to test components and structures. Most NDE 

techniques involve the application of some form of energy to 

the specimen. A snapshot of the interaction between the 

material and the energy is taken and analyzed to determine the 

state of the specimen. The choice of NDE method depends on 

many factors including the size, orientation, and location of the 

flaw, as well as the type of material. Guided waves such as 

ultrasonic Lamb waves are commonly employed to assess a test 

specimen. Guided waves possess characteristics that those are 

limited inside the walls of a thin material. These waves 

generally exist in thin plates with parallel free boundaries, can 

travel over long distances with little attenuation in different 

types of material, and can travel within curved walls. These 

properties mean guided waves are useful for the nondestructive 

structural health monitoring (SHM) of various objects such as 

pressure vessels, oil tanks, missiles, aircraft, and pipelines 

using multiple piezoelectric wafer active sensors (PWASs) and 

ultrasonic inspection. Horace Lamb first introduced the waves, 

which are composed of two groups, based on Lord Rayleigh's 

research in 1917. Generally, ultrasonic Lamb waves are signals 

of elastic perturbation which propagate in a solid plate without 

any boundaries [1]. As ultrasonic guided waves, Lamb and 

shear waves can travel in thin plates. Lamb waves are vertically 

polarized and symmetric, while shear waves are horizontally 

polarized and antisymmetric with respect to the mid-plane of 

the plate. These waves propagate independently of each other, 

satisfying the boundary conditions and wave equations. Several 

techniques that employ Lamb waves have been proposed for 

detecting defects in thin-walled objects. For example, SHM has 

been conducted based on embedded ultrasonic NDE using 

PWASs [2] and based on-line evaluation using embedded 

sensors such as polyvinylidene fluoride (PVDF) film [3]. The 

ability of embedded PWASs to perform in-situ NDE was 

explored in [4]. In that research, theoretical developments were 

used to prove that PWAS transducers can satisfactorily perform 

the Lamb wave transmission and reception, pulse-echo, pitch-

catch, and phased array functions of conventional ultrasonics. 

In addition, PWAS operating principles and their structural 

coupling through a thin adhesive layer were analyzed and a 

model of a Lamb wave tuning mechanism with PWAS 

transducers was described in [5]. In order to analyze Lamb 

waves effectively, the measurement of time of flight (TOF) has 

received particular attention. For source localization using TOF 

measurements, [6] a number of proposed methods utilize semi-

definite programming relaxation. In [7], the ability of 

embedded PWASs to perform in-situ NDE for the SHM of 

fiber-reinforced polymer (FRP) composite plates was explored, 

while [8] investigated the nondestructive sizing and 

localization of internal micro-cracks in fatigue samples. The 

latter study described the development and integration of 

several NDE methods for the monitoring and sizing of micro-

cracks in titanium fatigue samples. In that research, ultrasonic 

Lamb wave signals were continuously excited and acquired 

within the sample during fatigue tests at different levels of 

fatigue load using a high-speed data acquisition system.  

The maximum likelihood 3-D near-field source localization has 

been addressed using an expectation-maximization (EM) 

iterative algorithm to solve the complicated multi-parameter 

optimization problem associated with 3-D localization [9]. 

Source location using acoustic emission (AE) can be also be 

achieved using neural network signal processing based on 
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arrival time profiles. An artificial neural network-based AE 

source location method was introduced in [10] that uses signal 

arrival time profiles that are independent of the material and 

changes in scale. Defect localization could also be achieved 

using an orthogonally projected multiple signal classification 

approach for magnetic flux leakage fields. A multiple signal 

classification approach has been used to identify defect 

locations and moments [11]. Another type of source 

localization is direct joint source localization with propagation 

speed estimation [12]. This involves the use of the Cramer-Rao 

bound for joint estimation and the difference in arrival time 

measured with a sensor array for propagation speed. Source 

localization and sensing is also possible with nonparametric 

iterative adaptive approaches based on weighted least squares. 

A nonparametric and hyper-parameter, free-weighted, least 

squares-based iterative adaptive approach was presented in [13] 

for amplitude and phase estimation using array processing. In 

the present paper, the goal of the research is to identify the 

location of a defect in a specimen using NDE based on 

ultrasonic Lamb waves. The velocity of the waves and TOF 

information are employed to estimate the distance between the 

sensors and the defect. The mean squared error (MSE) of the 

measured and simulated distance between the sensors and the 

defect is then minimized using a least mean squares (LMS) 

algorithm, resulting in the optimal positioning of the x and y 

coordinates of the source. The proposed method is tested using 

ultrasonic Lamb wave signals from both modeling and 

experiments. 

 

II. ULTRASONIC LAMB WAVES FOR NDE 

In solid plates with stress free boundaries, longitudinal and 

shear waves combine in a specific manner determined by the 

boundary conditions and stiffness constants of the material, 

leading to the propagation of elastic Lamb waves, which are 

sensitive enough to detect multiple defects. Lamb waves can be 

used to evaluate the cross-section of a specimen. The Lamb 

waves are generated as being piled one on another of 

longitudinal and shear modes and exist simultaneously in both 

symmetric or antisymmetric modes. Figure 1 presents a typical 

example of Lamb wave generation in a solid plate. 

 

 
Figure 1. Two forms of Lamb wave: (a) symmetric and (b) 

antisymmetric 

 
𝑡𝑎𝑛(𝑁×𝑑)

𝑡𝑎𝑛(𝑀×𝑑)
=

4(𝑀𝑁)𝑖2

(𝑖2−𝑁2)2                                                                (1) 

 

𝑡𝑎𝑛(𝑁×𝑑)

𝑡𝑎𝑛(𝑀×𝑑)
=

(𝑖2−𝑁2)
2

4(𝑀𝑁)𝑖2                                                                 (2) 

 

Symmetric and the antisymmetric Lamb waves can be 

formulated mathematically as equations (1) and (2), 

respectively [14]: where 𝑀2 =
𝑓2

𝑉𝐿2
− 𝑖2 ,  𝑁2 =

𝑓2

𝑉𝑇2
− 𝑖2 , 𝑖 =

𝑓

𝑉𝑃
,  and i, d, f, 𝑉𝑃 , 𝑉𝐿,  and 𝑉𝑇  are the wave number, plate 

thickness, wave circular frequency, phase velocity, longitudinal 

wave velocity, and transversal wave velocity, respectively. 

Lamb waves are generated with an infinite number of modes 

for both symmetric and antisymmetric displacements within the 

layer. The symmetric modes are referred to as longitudinal 

modes because the average displacement over the thickness of 

the plate or layer is in the longitudinal direction, while the 

antisymmetric modes exhibit average displacement in the 

transverse direction. An infinite number of modes exists for a 

specific plate thickness and acoustic frequency, which are 

identified by their respective phase velocities. The conventional 

method for describing propagation characteristics is the use of 

dispersion curves based on plate mode phase velocity as a 

function of the product of frequency and thickness. The 

dispersion curves are typically labeled S0, A0, S1, A1 and so 

on depending on whether the mode is symmetric or 

antisymmetric. Ideally, a specific working frequency will be 

found so that the created signals do not distract in space during 

the NDE process. This optimal frequency can be identified 

using assays and an analysis of group and phase velocity 

dispersion curves for aluminum plates (Fig. 2 and Fig. 3, 

respectively).  

 

 
Figure 2. Group velocity dispersion curves for Lamb waves in 

an aluminum plate 

 

 
Figure 3. Phase velocity dispersion curves for Lamb waves in 

an aluminum plate 

 

Although the dispersion diagrams are complex, they can be 

simplified using the incidence angle of the excited wave to 

determine which mode is dominant. A particular Lamb wave 

can be excited if the phase velocity of the incident longitudinal 

wave is equal to the phase velocity of the particular mode. A 

Lamb wave created by a piezoelectric sensor at a specified 

frequency has a particular group velocity which can be 

determined by measuring the TOF in the specimen using 

appropriate devices to detect the signal properties. TOF 
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information can be utilized to locate defective sources or spots 

in a testing sample or a specimen by verifying the distortion of 

the waves between the actuator and a signal-receiving sensor. 

The group velocity of the Lamb waves mainly depends on a 

structure's resonant frequency and operation modes; therefore, 

as the waves propagate across an area of the specimen far away, 

the waves slow down [15]. The localization of Lamb wave 

dispersion curves while eliminating spurious components can 

be achieved by combining a differential reassignment 

procedure with non-linear anisotropic diffusion [16]. An 

experimental and analytical survey of candidate methods for in-

situ damage detection in composite materials was presented in 

[17]. Other information that can be used for source localization 

is the part of a wave which is reflected proportionally to the 

inhomogeneities from the sample's stiffness and density. 

Source localization can be achieved by correlating this 

information.  

 

III. METHOD 

III.I Modeling Approach 

Finite element modeling based on a configuration of 

piezoelectric sensors was conducted using the commercial 

software ABAQUS. The configuration is shown in Fig. 4.  

 

 
Figure 4. Configuration of the sensors and defect for the 

modeling simulation 

 

An isotropic aluminum plate with a thickness of 2 mm was 

modeled with three-dimensional elements. Ideally bonded 

circular sensors with a radius of 4 mm were positioned on the 

plate. Sensor 1 was fixed as the actuator and the through-

thickness displacement signal was collected at the center of 

Sensors 2 to 10 so that both the pitch-catch and pulse-echo 

configurations were measured. Measuring the through-

thickness displacement means that A_0 is the dominant mode, 

which would simplify the signal processing for TOF 

calculations. Modeling was first performed on a configuration 

without any defects, after which a 20×10 mm through-hole 

defect was introduced (Fig. 4). The generated signals collected 

by Sensors 2, 6, and 10 are displayed in Fig. 5. All of the signals 

contained damage information. The excitation signal used in 

this configuration was a five-cycle Hanning window with a 175 

kHz center frequency and a velocity of 2420 m/s.  

 
Figure 5. Signals generated from the modeling approach at (a) 

Sensor 2, (b) Sensor 6, and (c) Sensor 10 

 

This signal was applied as a concentrated force at each node at 

the edge of the sensors to reflect the behavior of an ideally 

bonded piezoelectric wafer. The signal collected at Sensor 7 for 

the configuration and responses collected before and after the 

introduction of the damage is presented in Fig. 6 (a). 

 

 
Figure 6. Modeled signal and its short time Fourier transform 

(STFT): (a) generated signal at Sensor 7 and (b) the STFT of 

the signal 

 

To calculate the TOF of the wave reflected from the defect, a 

single peak representing defect scattering needed to be obtained. 

To achieve this, the baseline signal was subtracted from the 

damage signals to acquire a signal for damage scattering only. 

A short time Fourier transform (STFT) was used to obtain this; 

Figure 6(b) presents the STFT for the signal. The line 

corresponding to the center excitation frequency was then used 

to acquire the energy time profile at this frequency. The time of 

the first peak in Fig. 7 corresponds to the TOF of the wave from 

the actuator to the defect and then to the sensor. The other peaks 

correspond to reflections from the edges and are not of interest. 

The x and y coordinates of the sensors, the measured TOF from 

the sensors to the defect, and the calculated physical distance 

based on velocity effects are listed in Table 1. 
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Figure 7. STFT line profile at 175 kHz. 

 

 

Table 1. Sensor and defect location and TOF (μs) and distance 

information for the model configuration 

Sensors x(cm) y(cm) TOF D(cm) 

1 15 3 81.32 19.67 

2 11 9.92 55.63 13.46 

3 15 11 54.73 13.24 

4 19 9.92 49.93 12.08 

5 7 16.85 64.93 15.71 

6 15 19 33.78 8.17 

7 23 16.85 21.28 5.14 

8 3 23.78 76.63 18.54 

9 15 27 59.73 14.45 

10 27 23.78 26.83 6.49 

Damage 21 21.4 0 0 

 

III.II EXPERIMENTAL SETUP AND MEASUREMENTS 

OF TOF WITH WAVE VELOCITY 

In order to test the proposed source localization approach, 

experiments were also carried out for signal acquisition from a 

test specimen. Figure 8 presents the experimental setup with 

corresponding images. 

 

 
Figure 8. Block diagram and images of the experimental setup 

 

Actuation and synchronization signals were generated using a 

function generator connected to an oscilloscope. The actuation 

sensor, which was connected to the function generator, 

generated Lamb waves and three additional sensors acquired 

signals from inhomogeneities around them. The signals were 

displayed in the oscilloscope using three channels at once and 

saved in flash memory for further processing. Square 10 × 10-

mm PZT patches were used for actuation and sensing. The 

actuation signal was a 5-cycle sine wave tone burst and the 

frequency was set to 430 kHz. Lamb waves have at least two 

modes at any given frequency. In this experiment, the signals 

operated in A_0, A_1, and S_0 modes at the same time. Mode 

response depended on the excitation frequency, and the wave 

velocity ranged between 2700 m/s and 3000 m/s. The specimen 

had dimensions of 60 cm × 60 cm and a thickness of 4 mm as 

shown in Fig. 9. 

 

 
Figure 9. Dimensions of the defect and the test specimen: (a) 

graphic configuration and (b) image of the setup 

 

A defect with the dimensions 20 × 2 × 3.2 mm3 was positioned 

15 cm away from the edge of the specimen. Fig. 9(a) shows the 

experimental geometry of the defect in the specimen, and (b) 

shows an image of the experimental setup with the four PZT 

sensors (one for actuation and three for sensing) and the defect 

of the left side. One set of ultrasonic Lamb wave signals 

obtained from the experiment is displayed in Fig. 10.  

 

 
Figure 10. Ultrasonic Lamb waves obtained from 

Experimental Setup 1 from Table 1: (a) Image of the sensor 

arrangement and (b) signals obtained from each of the three 

channels 

 

Fig. 10(a) presents an image of the setup with sensors and Fig. 

10(b) shows the experimentally acquired Lamb wave signals 

corresponding to each of the three sensors located on the left of 

the actuator, which is located alone on the right side of the 
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aluminum plate. The sensor located in the middle corresponds 

to Channel 2 and the lowermost and uppermost sensors 

correspond to Channels 3 and 4, respectively. The signal is 

from one of four different sensor arrangements. Each of them 

has three waves from three different channel outputs and these 

are used to obtain the TOF for the actuator, three sensors, and 

the defect. The signal from Channel 2 was the clearest from the 

defect source which is the second biggest signal amplitude's 

changing part because it was aligned in a direct line with the 

defect and the actuator, so the wave from the actuator traveled 

directly to the defect without any obstructions. The first peak 

from the sensor itself was produced when it met the waves from 

the actuator for the first time. The other peaks could be from 

the edges of the specimen, other obstacles, or previously 

undiscovered inhomogeneities. In order to gather information 

for source localization, estimating the TOF between the 

actuator and the sensor itself is required to compute the velocity 

of the waves. The TOF was estimated by determining the 

position of the peak value from the signal, and the wave 

velocity calculated as 

 

𝑉𝑤 =
𝑆𝐴𝑆

𝑇𝐴𝑆
                                                                                 (3) 

 

where Vw is the wave velocity and TAS and SAS are the time and 

physical distance between the actuator and the sensor, 

respectively. SAS was already known because the positions of 

the two sensors were known. In the next step, the TOF between 

the sensor and the defect (TSD) was calculated. This was also 

obtained from the estimation of the position of the peak value. 

The distance between the sensor and the defect SSD can be 

obtained using equation (4): 

 

𝑆𝑆𝐷 = 𝑉𝑊 × 𝑇𝑆𝐷                                                                     (4) 

 

Table 2 presents the estimated TSD and SSD between the sensor 

and the defect for the three channels of the four configurations. 

 

Table 2. The measured TOF TSD (μs) and estimated distance 

SSD (cm) from the experiment 
 1 2 3 4 

Channel 𝑇𝑆𝐷 𝑆𝑆𝐷 𝑇𝑆𝐷 𝑆𝑆𝐷 𝑇𝑆𝐷 𝑆𝑆𝐷 𝑇𝑆𝐷 𝑆𝑆𝐷 

1 18.1 3.67 16.6 3.65 14.9 3.56 12.5 2.97 

2 21.4 4.62 20.2 5.45 24.8 5.18 18.3 4.99 

3 17.5 4.22 12.7 3.46 11.7 3.21 20.5 5.39 

 

The physical distance information SAS and SSD needs to be 

formatted because the source localization process operates in 

an x and y axis coordinate environment on a centimeter scale. 

SSD is used in the optimization process of an LMS algorithm to 

determine the best estimation of the location of the defect. 

 

IV. SOURCE LOCALIZATION USING LMS 

IV.I Distance and MSE Computations 

The measured distance between the sensor and the defect from 

the modeling and experiments was used in the LMS process. 

The MSE between the measured and the actual values of the 

distance between the sensor and the defect was computed and 

used in LMS signal processing. Figure 11 displays the 

geometry of the defect 𝐷(𝑥𝐷, 𝑦𝐷)  and the three sensors 

𝑆1(𝑥𝑠1
, 𝑦𝑠1

), 𝑆2(𝑥𝑠2
, 𝑦𝑠2

), and 𝑆3(𝑥𝑠3
, 𝑦𝑠3

) around it. 

 

 
Figure 11. Geometry of defect D and the three sensors S1, S2, 

and S3 

 

The actual distance between each sensor and the defect can be 

easily obtained using the Euclidean distance principle. D1, D2, 

and D3 are the distances between D and S1, S2, and S3, 

respectively; these were calculated using equation (5). 

 

𝐷𝑖 = √(𝑥𝑠𝑖
− 𝑥𝐷)

2
+ (𝑦𝑠𝑖

− 𝑦𝐷)
2

       (𝑖 = 1,2,3)                (5) 

 

The distances 𝐷𝑚1
, 𝐷𝑚2

, and 𝐷𝑚3
between the defect and each 

of the three sensors measured from the experiment were used 

to calculate the MSE, which represents the error between the 

theoretical and experimental distances. 𝐷𝑚𝑖
, where i =1, 2, or 3, 

was derived from the computation of 𝑆𝑆𝐷 in equation (4). The 

MSE (E) between 𝐷𝑖 and 𝐷𝑚𝑖
 can be written as 

 

𝐸 =
1

𝑁
∑ (𝐷𝑖 − 𝐷𝑚𝑖

)
2

      (𝑁 = 3)𝑁
𝑖=1                                       (6) 

 

The MSE needs to be minimized to determine the optimal 

position of the defect 𝐷(𝑥𝐷, 𝑦𝐷) by taking the partial derivative 

of E with respect to 𝑥𝐷 and 𝑦𝐷, respectively, and moving in the 

opposite direction to the gradient of E. 

 

IV.II Mathematical Formulation for the Gradient of Error 

LMS algorithms are widely used in a number of applications 

due to their computational simplicity and effectiveness [18]. 

The LMS method was used to arrive at estimates of x and y 

coordinates for a defect (𝑥𝐷 and 𝑦𝐷, respectively). The gradient 

of MSE was employed to estimate 𝑥𝐷 and 𝑦𝐷. Because E can 

be written as 

 

𝐸 = 𝐸1 + 𝐸2 + 𝐸3                                                                  (7) 

 

the gradient of E is given by 

 

𝛻𝐸 = 𝛻𝐸1 + 𝛻𝐸2 + 𝛻𝐸3 

  =
1

3
[∇(𝐷1 − 𝐷𝑚1

)
2

+ ∇(𝐷2 − 𝐷𝑚2
)

2
+ ∇(𝐷3 − 𝐷𝑚3

)
2

](8) 

 

As explained previously, 𝑥𝐷  and 𝑦𝐷  need to be estimated. In 

order to accomplish this, it was necessary to calculate the 

gradient of E by taking the partial derivative of E with respect 

to 𝑥𝐷 and 𝑦𝐷. 
𝜕𝐸

𝜕𝑥𝐷
 can be obtained using 
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𝜕𝐸

𝜕𝑥𝐷
=

1

3
[

2(𝐷1 − 𝐷𝑚1
)

𝜕𝐷1

𝜕𝑥𝐷
+

2(𝐷2 − 𝐷𝑚2
)

𝜕𝐷2

𝜕𝑥𝐷
+ 2(𝐷3 − 𝐷𝑚3

)
𝜕𝐷3

𝜕𝑥𝐷

]                  (9) 

 

In equation (9), 
𝜕𝐷1

𝜕𝑥𝐷
 can be written as 

 

𝜕𝐷1

𝜕𝑥𝐷
=

𝜕

𝜕𝑥𝐷
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
]

1

2
  

        =
1

2
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
]

−
1

2
×  

             
𝜕

𝜕𝑥𝐷
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
]  

        =
1

2
𝐷1

−1 × [
2(𝑥𝑠1

− 𝑥𝐷)
𝜕

𝜕𝑥𝐷
(𝑥𝑠1

− 𝑥𝐷) +

2(𝑦𝑠1
− 𝑦𝐷)

𝜕

𝜕𝑥𝐷
(𝑦𝑠1

− 𝑦𝐷)
]  

        =
1

2
𝐷1

−1 × [2(𝑥𝑠1
− 𝑥𝐷)(0 − 1) + 2(𝑦𝑠1

− 𝑦𝐷)(0 − 0)] 

         = −𝐷1
−1(𝑥𝑠1

− 𝑥𝐷)                                                      (10) 

 

In the same way, 
𝜕𝐷2

𝜕𝑥𝐷
 and 

𝜕𝐷3

𝜕𝑥𝐷
  can also be obtained as 

 
𝜕𝐷2

𝜕𝑥𝐷
= −𝐷2

−1(𝑥𝑠2
− 𝑥𝐷)                                                       (11) 

 
𝜕𝐷3

𝜕𝑥𝐷
= −𝐷3

−1(𝑥𝑠3
− 𝑥𝐷)                                                       (12) 

 

Following this, 
𝜕𝐸

𝜕𝑥𝐷
 can be obtained by inserting equations (10), 

(11), and (12) into equation (9), finally resulting in 

 

𝜕𝐸

𝜕𝑥𝐷
= −

2

3
[

(1 − 𝐷𝑚1
𝐷1

−1)(𝑥𝑠1
− 𝑥𝐷) +

(1 − 𝐷𝑚2
𝐷2

−1)(𝑥𝑠2
− 𝑥𝐷) +

(1 − 𝐷𝑚3
𝐷3

−1)(𝑥𝑠3
− 𝑥𝐷)

]                           (13) 

 

Similarly, 
𝜕𝐸

𝜕𝑦𝐷
 can also be calculated as 

 

𝜕𝐸

𝜕𝑦𝐷
=

1

3
[

2(𝐷1 − 𝐷𝑚1
)

𝜕𝐷1

𝜕𝑦𝐷
+

2(𝐷2 − 𝐷𝑚2
)

𝜕𝐷2

𝜕𝑦𝐷
+ 2(𝐷3 − 𝐷𝑚3

)
𝜕𝐷3

𝜕𝑦𝐷

]                (14) 

 

In equation (14), the 
𝜕𝐷1

𝜕𝑦𝐷
 can be written as 

 

𝜕𝐷1

𝜕𝑦𝐷
=

𝜕

𝜕𝑦𝐷
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
]

1

2
  

        =
1

2
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
]

−
1

2
×   

 
𝜕

𝜕𝑦𝐷
[(𝑥𝑠1

− 𝑥𝐷)
2

+ (𝑦𝑠1
− 𝑦𝐷)

2
] 

        =
1

2
𝐷1

−1 × [
2(𝑥𝑠1

− 𝑥𝐷)
𝜕

𝜕𝑦𝐷
(𝑥𝑠1

− 𝑥𝐷) +

2(𝑦𝑠1
− 𝑦𝐷)

𝜕

𝜕𝑦𝐷
(𝑦𝑠1

− 𝑦𝐷)
]  

        =
1

2
𝐷1

−1 × [2(𝑥𝑠1
− 𝑥𝐷)(0 − 0) + 2(𝑦𝑠1

− 𝑦𝐷)(0 − 1)] 

        = −𝐷1
−1(𝑦𝑠1

− 𝑦𝐷)                                                       (15) 

 

 

In the same way, 
𝜕𝐷2

𝜕𝑦𝐷
 and 

𝜕𝐷3

𝜕𝑦𝐷
 also can be obtained as 

 
𝜕𝐷2

𝜕𝑦𝐷
= −𝐷2

−1(𝑦𝑠2
− 𝑦𝐷)                                                       (16) 

 
𝜕𝐷3

𝜕𝑦𝐷
= −𝐷3

−1(𝑦𝑠3
− 𝑦𝐷)                                                       (17) 

 

Finally, 
𝜕𝐸

𝜕𝑦𝐷
 can be obtained by inserting equations (15), (16), 

and (17) into equation (14), resulting in 

 

𝜕𝐸

𝜕𝑦𝐷
= −

2

3
[

(1 − 𝐷𝑚1
𝐷1

−1)(𝑦𝑠1
− 𝑦𝐷) +

(1 − 𝐷𝑚2
𝐷2

−1)(𝑦𝑠2
− 𝑦𝐷) +

(1 − 𝐷𝑚3
𝐷3

−1)(𝑦𝑠3
− 𝑦𝐷)

]                           (18) 

 

The obtained values of 
𝜕𝐸

𝜕𝑥𝐷
 and 

𝜕𝐸

𝜕𝑦𝐷
 were then employed in the 

steepest descent method outlined in the next section. 

 

IV.III Error Minimization using the Gradient Descent 

Algorithm 

The gradient descent algorithm (also known as the steepest 

descent algorithm) is an efficient method because it works with 

true gradient vectors rather than estimates. Therefore, the 

performance of other gradient algorithms can at most be close 

to the performance of the steepest descent method [19][20]. 

Using this iterative minimization procedure, the optimal values 

of 𝑥𝐷  and 𝑦𝐷  which result in the minimum error can be 

achieved by orienting the search in a direction that is opposite 

to that of the gradient of E, which defines the direction of 

maximum increase. The steepest descent algorithm updates the 

coefficients using 

 

𝜗𝑖+1 = 𝜗𝑖 − 𝜖
𝜕𝐹(𝜗)

𝜕𝜗
|

𝜗=𝜗𝑖

                                                      (19) 

 

Because ∇𝜗𝐹 defines the direction of maximum increase in the 

function, the function 𝐹(𝜗) can be minimized by recursively 

calculating ∇𝜗𝐹 and adjusting 𝜗 until it reaches a minimum.  ε 

is the convergence factor because it affects convergence 

behavior. The algorithm for minimizing a function can be 

summarized as follows: 

 

(a) Make the initial guess 𝜗0 

 

(b) Compute ∇𝜗𝐹, that is, 

 
𝜕𝐹(𝜗0)

𝜕𝜗
                                                                     (20) 

 

(c) Adjust 𝜗0  to obtain 𝜗1  by moving in a direction 

opposite to the gradient, that is, 

 

𝜗1 = 𝜗0 − 𝜀 [
𝜕𝐹(𝜗0)

𝜕𝜗
]                                             (21) 

 

(d) Stop when 𝜗𝑖+1 − 𝜗𝑖 is sufficiently small. 

 

This minimization procedure can be applied to minimize E. 𝑥𝐷 

and 𝑦𝐷 were estimated recursively as follows: 
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𝑥𝐷𝑖+1
= 𝑥𝐷𝑖

− 𝜀
𝜕𝐸

𝜕𝑥𝐷
|

𝑥𝐷=𝑥𝐷𝑖

                                                  (22) 

 

𝑦𝐷𝑖+1
= 𝑦𝐷𝑖

− 𝜀
𝜕𝐸

𝜕𝑦𝐷
|

𝑦𝐷=𝑦𝐷𝑖

                                                 (23) 

 
𝜕𝐸

𝜕𝑥𝐷
 and 

𝜕𝐸

𝜕𝑦𝐷
 in equations (22) and (23) can be calculated using 

analytical solutions (equations 13 and 18, respectively). They 

can also be computed numerically 

 

𝑥𝐷𝑖+1
= 𝑥𝐷𝑖

− 𝜀
𝐸|𝑥𝐷=𝑥𝐷𝑖

+∆𝑥𝐷,𝑦𝐷=𝑦𝐷𝑖
−𝐸|𝑥𝐷=𝑥𝐷𝑖

,𝑦𝐷=𝑦𝐷𝑖

∆𝑥𝐷
           (24) 

 

𝑦𝐷𝑖+1
= 𝑦𝐷𝑖

− 𝜀
𝐸|𝑥𝐷=𝑥𝐷𝑖

,𝑦𝐷=𝑦𝐷𝑖
+∆𝑦𝐷

−𝐸|𝑥𝐷=𝑥𝐷𝑖
,𝑦𝐷=𝑦𝐷𝑖

∆𝑦𝐷
           (25) 

 

by choosing appropriately small values of ∆𝑥𝐷 and ∆𝑦𝐷. The 

iteration process should stop, if and only if, |𝑥𝐷𝑖+1
− 𝑥𝐷𝑖

| and 

|𝑦𝐷𝑖+1
− 𝑦𝐷𝑖

|  are sufficiently small. Using this optimization 

procedure, 𝑥𝐷 and 𝑦𝐷 are obtained. Results obtained using this 

procedure are presented in the next section. 
 

V. RESULTS 

 

V.I Results from the Modeled Signals 

To test and verify the proposed source localization system, an 

application program was implemented using MATLAB 7.0. 

Figure 12 shows the application program and its output for the 

LMS signal processing used to optimize 𝑥𝐷 and 𝑦𝐷.  

 

 
Figure 12. MATLAB R2018b application program for source 

localization iteration 

 

The input values for the application program are the three 

sensor positions and the corresponding estimates for TOF, ∆𝑥𝐷, 

and ∆𝑦𝐷, and the initial values of 𝑥𝐷 and 𝑦𝐷, the convergence 

factor, and a threshold value used to determine when to stop the 

gradient descent iteration process. The line starts from the 

position (0,0) and searches for the optimal position of 𝑥𝐷 and 

𝑦𝐷, leaving a trace. The trajectory follows the x and y positions 

which give the minimum error and are in the opposite direction 

of the gradient of E for the difference between the actual and 

estimated distance between the sensor and the defect. The 

output from the program, which is the iteration number and the 

final optimized values of 𝑥𝐷  and 𝑦𝐷 , is displayed under the 

graph. Table 3 shows the optimal values of 𝑥𝐷  and 𝑦𝐷 

produced by the gradient descent algorithm.  

 

Table 3. Optimally estimated values of  𝑥𝐷  and 𝑦𝐷  for eight 

cases from the modeling process (Actual 𝑥𝐷 = 21, 𝑦𝐷 = 21.4, 

HR = hit rate) 
Sensor Numbers 𝑥𝐷(HR) 𝑦𝐷(HR) 

S1, S8, S10 21.21(99%) 21.52(99.44%) 

S4, S5, S7 21.88(95.81%) 21.77(98.27%) 

S1, S7, S8 21.37(98.24%) 21.67(98.74%) 

S5, S8, S10 21.55(97.39%) 21.01(98.18%) 

S1, S5, S7 21.81(96.15%) 21.69(98.64%) 

S7, S8, S10 21.14(99.33%) 21.51(99.49%) 

S4, S8, S10 21.17(99.19%) 21.66(98.79%) 

S6, S7, S10 21.71(96.62%) 21.87(97.8%) 

Average HR 97.72% 98.67% 

 

These values are composed of the estimated x and y coordinates 

for the defect for each of eight cases. The averaged hit ratio for 

the x and y coordinates in this case is 97.72% and 98.67%, 

respectively. 

 

 
Figure 13. Source localization results for the modeled signals 

with sensors: (a) 𝑆1, 𝑆8, and 𝑆10, (b) 𝑆4, 𝑆5, and 𝑆7, (c) 𝑆1, 𝑆7, 

and 𝑆8, and (d) 𝑆5, 𝑆8, and 𝑆10 

 

 
Figure 14. Source localization results for the modelled signals 

with sensors: (a) 𝑆1, 𝑆5, and 𝑆7, (b) 𝑆7, 𝑆8, and 𝑆10, (c) 𝑆4, 𝑆8, 

and 𝑆10, and (d) 𝑆6, 𝑆7, and 𝑆10 
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In order to determine the validity of these results, the optimally 

estimated values of 𝑥𝐷 and 𝑦𝐷 are plotted in Fig. 13 and Fig. 14 

with the presence of the defect and the sensors used in the 

modeling stage. In these figures, the circle, cross, and square 

represent the location of the sensor and the estimated and actual 

location of the defect, respectively. The sensors used to 

estimate the location of the defect are titled to each of pictures 

in Fig. 13 and Fig. 14. It can be observed that the estimated 

positions of the defect are reasonably close to the actual 

positions.  

 

 
Figure 15. Plot of the source localization results for all eight 

modeled signals 

 

Figure 15 shows the plot for all sensors (circles) with the eight 

estimated results (crosses) together and the real position of the 

defect (rectangles). From Fig. 15, it can also be seen that the 

optimally estimated positions of the defect are close to the 

actual location. 

 

V.II Results from the Experimental Signals 

Table 4 shows the optimal values of 𝑥𝐷 and 𝑦𝐷 based on the 

application of the gradient descent algorithm using the distance 

information from the experiments.  

 

Table 4. Optimally estimated values of  𝑥𝐷 and 𝑦𝐷 coordinates 

for four cases from the experiment (A = actual, E = estimated, 

HR = hit rate) 
 A E 

Case 𝑥𝐷 𝑦𝐷 𝑥𝐷(HR) 𝑦𝐷(HR) 

1 3 3 3.81(73%) 3.51(83%) 

2 4 5 4.42(89.5%) 5.25(95%) 

3 4 6 4.36(91%) 6.45(92.5%) 

4 4 4 4.43(89.3%) 3.04(76%) 

Average 85.68% 86.63% 

 

These values are composed of the actual and estimated x and y 

coordinates of the defect for each of four cases. The average hit 

rate for the x and y coordinates was 85.68% and 86.63%, 

respectively, which was lower than for the modeling. This may 

be due to more inaccurate measurement of the TOF and the 

distance between the defect and the sensor in the experimental 

environment. For the purpose of verification, the optimally 

estimated values of 𝑥𝐷 and 𝑦𝐷 were also positioned in Fig. 16 

and Fig. 17 with the existence of the defect. The white spot 

represents the estimated location of the defect based on the 

LMS iteration and indicates the final result of source 

localization signal processing. Lines are included to clarify the 

dimensions of the specimen and it spaces 1 cm every line in 

between for horizontal and vertical directions at the same time.  

 

 
Figure 16. Source localization results for the experimental 

signals: (a) Case 1 and (b) Case 2 

 

 

 
Figure 17. Source localization results for the experimental 

signals: (a) Case 3 and (b) Case 4 
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The rightmost sensor is the actuator and the others act as 

receiving sensors. Because the defect is rectangular, the center 

point is set to the coordinate location of the defect for the best 

optimization. As with the modeling approach, the estimation 

results were reasonably consistent with the actual position of 

the defect source. In order to verify the source localization 

system proposed in this study, we tested the signal processing 

algorithm using the actual distances between the sensors and 

the defect to determine if the optimized output results 𝑥𝐷 and 

𝑦𝐷  exhibited a reasonably good match to the real defect 

coordinates in the testing environment. Table 5 displays the 

verification results for the cases.  

 

Table 5. Verification results for 𝑥𝐷  and 𝑦𝐷  for the modeling 

and experiments 
Modelling 

Sensor Number 𝑥𝐷(HR) 𝑦𝐷(HR) 

S1, S8, S10 21.00(100%) 21.38(99.91%) 

S4, S5, S7 21.01(99.95%) 21.39(99.95%) 

S1, S7, S8 20.98(99.9%) 21.39(99.95%) 

S5, S8, S10 21.01(99.95%) 21.30(99.53%) 

S1, S5, S7 20.98(99.9%) 21.40(100%) 

S7, S8, S10 20.99(99.95%) 21.38(99.91%) 

S4, S8, S10 21.00(100%) 21.38(99.91%) 

S6, S7, S10 21.00(100%) 21.38(99.91%) 

Average HR 99.96% 99.88% 

Experiments 

Case 𝑥𝐷(HR) 𝑦𝐷(HR) 

1 3.00(100%) 2.97(99%) 

2 3.99(99.75%) 4.98(99.6%) 

3 3.99(99.75%) 5.96(99.33%) 

4 4.00(100%) 3.93(98.25%) 

Average HR 99.88% 99.05% 
 

The optimized output results for locating the defect were a good 

match to the actual x and y coordinates of the defect in the 

testing specimen. The average hit ratio for the x and y 

coordinates was 99.96% and 99.88% for the modeling and 

99.88% and 99.05% for the experiments, respectively. This 

means that the LMS signal processing system proposed in this 

research operates as intended and that more precisely estimated 

TOF would produce more accurate estimation results for the 

source localization of a defect. 

 

VI. CONCLUSION 

 

A novel approach to source localization using ultrasonic Lamb 

wave signals in NDE has been described in this paper. The 

method uses an LMS algorithm to estimate the position of a 

defect. The results obtained through modeling and physical 

experiments were compared and analyzed. The proposed 

method for estimating the location of a defect in a specimen 

employed an x-y plane coordinate system and an LMS 

algorithm. The distance between the sensor and the defect was 

measured from the collected data using the position of the peak 

value, the TOF, and velocity effects. Equations for the gradient 

of the MSE with respect to the desired x and y position of the 

source were derived and minimized to produce the most 

accurate estimation results. It was found that the more precise 

the TOF information, the better the results. Therefore, another 

method for measuring TOF more accurately could be applied 

to improve source localization using ultrasonic Lamb waves. In 

order to improve the accuracy and speed of the process, another 

least squares method, such as a Newton-Raphson algorithm, 

which is a second-order method, can be applied to generate 

faster convergence and more accurate x and y coordinates for 

the defect source. For further research, circular-shaped 

materials should also be considered for 3-dimensional source 

localization, for which cylindrical or spherical coordinates will 

need to be employed. 
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