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Abstract  

SSD (Solid state drives) performance can be improved by 

applying a shallow write to short-lived data. For this, the 

lifetime of the data should be accurately predicted, and 

different NAND write mode should be applied according to the 

data lifetime. A wrong prediction can result in degrading the 

performance and the lifetime of SSDs. This study analyses the 

factors that affect the lifetime of the data and presents policies 

that predict the lifetime of the data more accurately. The 

presented policies improves the accuracy by 2.2-89.1% 

compared to the existing policies by considering both write 

request size and previous lifetime of the data.  
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I. INTRODUCTION  

SSDs based on NAND flash memory have gained much 

attention over the past few years because they have better 

performance and consume less heat and energy compared to 

hard disks. SSDs are widely used not only in PCs but also in 

servers and data centres as the price of NAND flash memory is 

gradually lowered due to the development of semiconductor 

processing technology. 

For server workload, most data is updated at very short 

intervals [1, 2]. This means that we do not need to retain the 

written value to NAND for a long time. Therefore, the SSD 

performance can be much improved by applying a shallow 

write, which is fast but do not guarantee a long retention time 

of data [2, 3].  

However, if the prediction is wrong, the performance is 

seriously degraded because the shallowly written data should 

be re-written in a deep write to guarantee a long retention time. 

This also reduces the lifetime of SSDs. Therefore, it is 

important to accurately predict the lifetime of the data. For this, 

this study analyses the factors that perpetuate the lifetime of the 

data and presents more accurate policies than the existing ones. 

 

II. BACKGROUND AND RELATED WORK 

II.I NAND flash memory  

NAND flash memory expresses values by the amount of 

electrons charged to each cell's floating gate. For example, in a 

single level cell (SLC), the state where the floating gate is 

empty indicate 1, and the state where the floating gate is fully 

changed indicates 0. In order to change the state of the floating 

gate, sufficient voltage should be applied.  

As semiconductor processing technology advances, the 

physical size of each cell gradually decreases, and the 

maximum number of electrons that can be charged to the 

floating gate is also decreasing. This makes it difficult to 

distinguish between 0 and 1. In the case of a multiple level cell 

(MLC), it is more difficult to distinguish each value because 

one cell represents two bits. Furthermore, the oxide film 

surrounding the floating gate can be damaged by repeated 

charging and discharging, resulting in a natural leakage of 

electrons even though no voltage is applied. If the electrons are 

discharged too much, the state can be interpreted wrong and a 

bit error can occur, which is called retention error [2]. 

Modern NAND flash memory performs an ISPP (Incremental 

Step Pulse Programming) write operation to charge electrons 

by gradually increasing voltage to accurately control the 

amount of electrons to be charged [4]. As the charged electrons 

are precisely controlled with a low threshold voltage, the 

retention time is increased. However, due to repetitive charging 

operations with the low threshold voltage, the latency of the 

write operation increases. On the other hand, using a high 

threshold voltage can speed up the write operation, but it can 

shorten the retention time because the amount of the charged 

electrons are not precisely controlled.  

Current SSDs are using the low threshold voltage to guarantee 

a sufficiently long retention time. However, in server 

workloads, a considerable amount of data have a short lifetime, 

which means that they do not need a long retention time. For 

the short-lived data, it is better to apply a shallow write, which 

uses the high threshold voltage, for a better performance. Only 

the long-lived data should be written in a deep write that uses 

the low threshold voltage. 

 

II.II Related work 

Server workloads have the characteristics of many data being 

updated at short intervals. Therefore, applying the shallow 

write to short-lived data can significantly improve the SSD 

performance. Several researches have proposed to exploit the 

shallow write for server workloads.  

Liu and Yang assumed that all write requests are short-lived 

data and proposed to apply the shallow write for the write 

requests of hosts [2]. If the shallowly written data are not 
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modified for a certain period of time, they are re-written in the 

deep write mode to ensure a retention period, which results in 

restricting the performance improvement and decreasing the 

lifetime of SSDs. 

To improve the accuracy of the prediction of data lifetime, Shin 

evaluated the data lifetime based on the size of the requested 

data [3]. A small sized request is evaluated to have a short 

lifetime and written in the shallow write. Conversely, a large 

sized request is evaluated to have a long lifetime and written in 

the deep write. This method is very accurate for the data with 

the short lifetime. However, for the data with the long lifetime, 

it turns out inaccurate. 

 

III. PREDICTION OF DATA LIFETIME 

III.I Trace analysis 

Workload analysis was performed using Microsoft Research 

Centre (MSRC) traces [5], to find factors that affect data 

lifetime. First, the distribution of write request size is analysed 

and described in Table 1. From the result, the following can be 

seen: First, requests of 8KB or smaller accounts for 67.5 – 87.9% 

in the most traces excluding proj_0. That is, most write requests 

are small in size. Second, write requests larger than 32KB 

accounts for 5.3 – 11.7% in the most traces excluding proj_0. 

That is, for the most traces, large write requests are low in 

proportion. Third, there are traces that have the exceptional 

tendency. For example, in proj_0, 63.2% of the write requests 

exceed 32KB. Only 22.7 percent of the write requests have 

small size. 

Table 2 shows the ratio of short-lived data to long-lived data 

for each trace. In classifying data according to their lifetime, 

data with a lifetime of less than one day are considered short-

lived and data with a lifetime of longer than one day are 

considered long-lived. The results shows that for the most 

traces except prn_0 and prn_1, short-lived data account for 88.3 

– 98.9%. That is, most of the data written on the server have a 

very short lifetime of less than one day. In prn_0 and prn_1 

traces, the ratio of short-lived data is 74.8% and 67.0%, 

respectively, which is somewhat lower than those of other 

traces, but still, the ratio of short-lived data is high. 

Conclusively, server traces show that most data have a very 

short lifetime of less than one day, and thus it is not efficient to 

guarantee them a long retention time. 

Table 1. Distribution of write request size 

Trace <= 8KB (%) 8KB < && <= 32KB 

(%) 

> 32KB  

(%) 

hm_0 76.7 13.7 9.6 

mds_0 72.4 19.8 7.9 

prn_0 79.5 8.9 11.7 

prn_1 71.4 19.1 9.5 

proj_0 22.7 14.1 63.2 

prxy_0 87.9 6.8 5.3 

stg_0 72.3 18.6 9 

wdev_0 71.6 18.6 9.8 

web_0 67.5 23.8 8.7 

Table 2. Distribution of data lifetime 

Trace Short-lived data 

(%) 

Long-lived data 

(%) 

hm_0 88.3 11.7 

mds_0 95.2 4.8 

prn_0 74.8 25.2 

prn_1 67.0 33.0 

proj_0 98.9 1.1 

prxy_0 98.8 1.2 

stg_0 97.3 2.7 

wdev_0 94.2 5.8 

web_0 90.0 10.0 

 

To find factors that affect the life of the data, we first analysed 

the correlation between the write request size and its lifetime. 

Fig. 1 shows the ratio of short-lived data to the size of the write 

request. The X-axis is the size of the write request, and the Y-

axis illustrates the percentage of short-lived data for each write 

request size. The result shows that the smaller the write request 

size, the higher the short-lived data ratio. For example, in all 

the traces except prn_1, the ratio of short-lived data account for 

95.5 – 100.0% when the request size is equal or less than 2KB. 

When the request size is greater than 16KB and less than 32KB, 

the ratio of short-lived data is 92.4 – 97.6%. However, if the 

size exceeds 32KB, the ratio of short-lived data is relatively low, 

showing a distribution of 48.7 to 98.9%. For the prn_1 trace, 

the ratio of short-lived data is relatively low. However, the 

smaller the request size, the higher the ratio of short-lived data 

can be found to be the same. The results suggest that when the 

size of the write request is small, for example, equal or less than 

32KB, the data is likely to be short-lived. However, if the size 

of the write request exceeds 32KB, the correlation between the 

request size and the lifetime is not significant. 

 

 

Fig. 1. Ratio of short-lived data for each write request size  
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Fig. 2. Accuracy of predicting the lifetime of the next data 

using the lifetime of the previous data  

 

To find another factor that affects data lifetime, we analysed 

whether the lifetime of the previous data written in the same 

sector affects the lifetime of the current data. Fig. 2 shows the 

accuracy of predicting the lifetime of the next data using the 

lifetime of the previous data. The probability that the next data's 

lifetime would be short is 83.1% to 99.9% for each trace when 

the previous data’s lifetime is short. However, when the 

lifetime of the previous data is longer, the probability of the 

next data’s lifetime being longer is 17.8 percent to 53.2 percent, 

with lower predictive accuracy. In other words, it is reasonable 

to predict that the lifetime of the next data will be short if the 

previous data’s lifetime is short, but if the previous data has a 

long lifetime, it is not reasonable to predict the lifetime of the 

next data with the previous data’s lifetime. 

 

III.II Lifetime prediction policies and their accuracy  

To accurately predict the lifetime of the data, two policies are 

designed: First, the lifetime-based policy predicts the lifetime 

of the data using the lifetime of the previously written data. If 

the data written in the same sector has a short lifetime, the 

current data is predicted to have the short lifetime, and if the 

previous data has a long lifetime, the current written data is 

predicted to have a long lifetime. Since the firstly written data 

does not have the lifetime of the previous data, the request size 

is used to estimate the lifetime. Equal or less than 32KB of data 

is expected to be short-lived, otherwise long-lived.  

Second, the lifetime+size policy uses both the lifetime of the 

previous data and the size of the write request. If the data 

written in the same sector has a short lifetime, the current data 

is predicted to have the short lifetime. However, if the previous 

data’s lifetime is long, then the lifetime of the current data is 

estimated by the request size. If the request size is equal or less 

than 32KB, the current data is expected to be short-lived, 

otherwise long-lived. For the firstly written data, the same 

estimation method with the lifetime-based policy is applied.  

 

 

Fig. 3. Error rate of the lifetime prediction policies 

 

Fig. 3 shows the error rate of the policies. The short-only policy 

predicts all write requests as short-lived data [2], and the size-

based policy predicts the lifetime by using only the size of the 

write request [3]. The result shows that the error rate of the size-

based policy vary much depending on the trace, resulting in an 

error rate of about 5.5 – 90.9%. The short-only has an error of 

1.1 – 32.9% depending on the trace. On the other hand, the error 

rates of the lifetime-based and lifetime+size policies proposed 

in this paper are 1.3 – 15.3% and 1.4 – 15.5%, respectively, 

showing improved accuracy compared to the existing policies. 

The difference between the lifetime-based and the lifetime+size 

policies is not significant.  

Meanwhile, in all the traces except prn_1, the size-based policy 

has a higher error rate than the short-only policy, but [3] shows 

that the size-based policy performs better than the short-only 

policy. This is due to the difference in the overhead that occurs 

when short-lived data is mis-predicted as long-lived data and 

the overhead when long-lived data is mis-predicted as short-

lived data. In other words, mis-predicting short-lived data 

results in an overhead of the time difference between the 

shallow write and the deep write because the data that can be 

written in the shallow write is actually written in the deep write. 

However, if long-lived data is mis-predicted, the data written 

in the shallow write should be re- written in the deep write later 

to ensure the retention period. Therefore, the number of NAND 

write operations and subsequently the number of block erase 

operations increase, resulting in degrading the performance 

more. Therefore, it is important to minimize the errors in 

predicting long-lived data incorrectly as short-lived data. 

 

Fig. 4. Error rate for long-lived data 
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Fig. 4 shows the error rate at which long-lived data are 

incorrectly predicted as short-lived data. The result shows that 

the size-based policy has the lowest error rate. The error rate of 

the size-based policy ranges 0.2 – 9.6%. The error rate of the 

short-only policy is the highest and ranges 1.1 – 32.9%. The 

error rate of the life-based and the life-time+size policies is 0.8 

– 11.9 % and 0.8 – 10.7%, respectively, which is higher than 

the size-based policy. Even though the overall error rate of 

However, the overall error rate of the life-based and the life-

time+size policies is significantly lower than the size-based 

policy, the error rate at which long-lived data are incorrectly 

predicted is higher, which is the future research target. 

 

IV. CONCLUSION 

In this study, through the trace analysis, we extracted factors 

that affect the lifetime of the data and designed policies to 

predict the lifetime of the data based on the trace analysis result. 

The proposed policies showed improved the accuracy of the 

lifetime prediction by 2.2 – 89.1% compared to the existing 

policies. However, the error rate of misjudging long-lived data 

as short-lived data was higher than the size-based policy. 

Therefore, we plan to extract additional factors affecting data 

lifetime and improve the accuracy as a future work.  
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