Independent Attributes for m-Concepts in a Soft Context Induced by a Soft Set

Young Key Kim1 and Won Keun Min2 *

1Department of Mathematics, MyongJi University, Youngin 17058, Korea.

2Department of Mathematics, Kangwon National University, Chuncheon 24341, Korea.

Abstract

For the purpose of studying more effective ways of finding the reduction in a formal context, we have combined the formal contexts with the soft sets to form so-called soft contexts, and proposed the notion of soft concepts. And to study the structure of soft contexts, we introduced a new type of soft concept (called m-concept or object oriented soft concept) based on soft sets and the set of all m-concepts. In this paper, we introduce and study the notion of m-dependent and m-independent attributes in a given soft context. And, we show that every m-dependent attribute is generated by some m-independent attributes and the family of all m-independent attributes generates all m-concepts in a given soft context. Finally, we show that a reduction of a soft concept lattice is obtained by the family of all m-independent attributes.

AMS Subject Classification: 94D05, 94D99, 03E70, 03E72.

Key Words and Phrases: formal concept, soft context, soft concepts, m-concepts, object oriented soft concept, m-independent attributes, m-concept lattices.

*Corresponding author: wkmin@kangwon.ac.k
1. Introduction

Wille introduced the formal concept analysis in [18], which is an important theory for the research of information structures induced by a binary relation between the set of attributes and objects attributes. The basic notions of formal concept analysis are formal context, formal concept, and concept lattice. A formal context is a kind of information system, which is a tabular form of an object-attribute value relationship [3, 4, 6, 7]. A formal concept is a pair of a set of objects as called the extent and a set of attributes as called the intent. The set of all formal concepts together with the order relation forms a complete lattice called the concept lattice [6, 17]. Formal concept lattice is the core data structure and a kind of a formal knowledge representation.

Molodtsov introduced the notion of soft set in 1999 [15], which is to deal complicated problems and uncertainties. Maji et al. introduced the operations for soft set theory in [12]. In [1], Ali et al. proposed new operations modified some concepts introduced by Maji. Until recently, researches combining soft sets with other mathematical concepts have been extensively studied. [2, 4, 5, 11, 13, 16]

In [14], we have formed a soft context by combining the concepts of the formal context and the soft set defined by the set-valued mapping. And we introduced and studied the new concepts named soft concepts and soft concepts lattices. Furthermore, in [8], we introduced some operations on a parameter set of a soft set, and studied some properties of such notions. In [9], for a soft set over a universe set, we investigated a special operation induced by two operations defined in [8], and studied some related properties and several characterizations. And also, by using the two operation, we investigated the new concept of m-concepts related closely the object oriented concept in formal context, and showed that the family of all the m-concepts in a soft context is a supra topology but not a topology. Moreover, we studied the notion of independent and dependent m-concept. In particular, we showed that the set of all independent m-concepts completely determines every m-concept in a soft context and the smallest base for the set of all soft concepts as a supratopological structure.

In this paper, we introduce and study the notion of m-dependent and m-independent attributes in a given soft context (Definition 3.1). And, we show that every m-dependent attribute is generated by some m-independent attributes (Theorem 3.9) and the family of all m-independent attributes generates all m-concepts in a given soft context (Theorem 3.13). Finally, we show that a reduction of a soft concept lattice is obtained by the family of all m-independent attributes (Theorem 3.16).

2. Preliminaries

A formal context is a triplet (U, V, I), where U is a non-empty finite set of objects, V is a nonempty finite set of attributes, and I is a relation between U and V. Let (U, V, I) be a formal context. For a pair of elements $x \in U$ and $y \in V$, if $(x, y) \in I$, then it
means that object x has attribute y and we write xIy. The set of all attributes with a given object $x \in U$ and the set of all objects with a a given attribute $y \in V$ are denoted as the following [17,18]:

$$x^* = \{y \in V | xIy\}; \ y^* = \{x \in U | xIy\}.$$

And, the operations for the subsets $X \subseteq U$ and $Y \subseteq V$ are defined as:

$$X^* = \{y \in V | \text{for all } x \in X, xIy\}; \ Y^* = \{x \in U | \text{for all } y \in Y, xIy\}.$$

In a formal context (U, V, I), a pair (X, Y) of two sets $X \subseteq U$ and $Y \subseteq V$ is called a formal concept of (U, V, I) if $X = Y^*$ and $X = Y^*$, where X and Y are called the extent and the intent of the formal concept, respectively.

Let U be a universe set and E be a collection of properties of objects in U. We will call E the set of parameters with respect to U.

A pair (F, E) is called a soft set [15] over U if F is a set-valued mapping of E into the set $P(U)$ of all subsets of the set U, i.e.,

$$F : E \rightarrow P(U).$$

In other words, for $a \in E$, every set $F(a)$ may be considered as the set of a-elements of the soft set (F, E).

Let $U = \{z_1, z_2, \ldots, z_m\}$ be a non-empty finite set of objects, $E = \{e_1, e_2, \ldots, e_n\}$ a non-empty finite set of attributes, and $F : E \rightarrow P(U)$ a soft set. Then the triple (U, E, F) is called a soft context [14].

And, in a soft context (U, E, F), we introduced the following mappings:

For each $Z \in P(U)$ and $Y \in P(E)$,

- (1) $F^+ : P(E) \rightarrow P(U)$ is a mapping defined as $F^+(Y) = \bigcap_{y \in Y} F(y)$;
- (2) $F^- : P(U) \rightarrow P(E)$ is a mapping defined as $F^-(Z) = \{a \in E : Z \subseteq F(a)\}$;
- (3) $\Psi : P(U) \rightarrow P(U)$ is an operation defined as $\Psi(Z) = F^+ F^-(Z)$.

Then Z is called a soft concept [14] in (U, E, F) if $\Psi(Z) = F^+ F^-(Z) = Z$. The set of all soft concepts is denoted by $sC(U, E, F)$.

In [10], we introduced the notion of m-concepts which is independent of the notion of soft concepts to each other as the following: For each $X \in P(U)$,

$$\mathcal{F} : P(U) \rightarrow P(U) \text{ is an operation defined by } \mathcal{F}(X) = \mathcal{F}^\mathcal{F} (X),$$

where two operators $\mathcal{F} : P(A) \rightarrow P(U)$ and $\mathcal{F}^\mathcal{F} : P(U) \rightarrow P(A)$ are defined by:

$$\mathcal{F}(C) = \cup_{c \in C} F(c); \quad \mathcal{F}^\mathcal{F} (X) = \{c \in A : F(c) \subseteq X\}.$$
Then for $X \in P(U)$, X is called an m-concept (or object oriented soft concept) in (U, A, F) if $\mathcal{F}(X) = \bigcup_{a \in M_d} F(a) = X$.

The set of all m-concepts is denoted by $m(U, A, F)$.

Theorem 2.1 ([10]) Let (U, A, F) be a soft context. Then we have:

1. $\mathcal{F}(\emptyset) = \emptyset$.
2. $\mathcal{F}(X)$ is an m-concept.
3. For $B \subseteq A$, $\mathcal{F}(B)$ is an m-concept.
4. For $a \in A$, $\mathcal{F}(a)$ is an m-concept.
5. X is an m-concept if and only if there is some $B \subseteq A$ such that $X = \bigcup_{a \in M_d} F(a)$.

In [10], we introduced the notion of independent and dependent soft concepts: Let (U, A, F) be a soft context. Then for $Z \in m(U, A, F)$,

1. Z is said to be dependent on $m(U, A, F)$ if there exist $Z_1, \cdots, Z_n \in m(U, A, F)$ satisfying $Z_1 \subseteq Z$ and $Z = \bigcup_{i=1}^{n} Z_i$.
2. Z is said to be independent of $m(U, A, F)$ if Z is not dependent.

We will denote:

$mD = \{Z \in m(U, A, F) \mid X \text{ is dependent on } m(U, A, F)\}$;

$mI = \{Z \in m(U, A, F) \mid X \text{ is independent of } m(U, A, F)\}$.

Theorem 2.2 ([10]) Let (U, A, F) be a soft context. Then

1. $mD \cap mI = \emptyset$; $mD \cup mI = m(U, A, F)$.
2. For each $X \in mD$, there is a family $B \subseteq mI$ satisfying $X = \bigcup B$.
3. For $Z \in mI$, there is $c \in A$ satisfying $F(c) = Z$.

3. Main Results

First, we study the notion of m-dependent and m-independent attributes in a given soft context. And, we show that the family of all m-independent attributes is a base for the set of all m-concepts in a given soft context. Finally, we show that a reduction of a soft concept lattice $mL(U, A, F)$ is obtained by the family of all m-independent attributes.

Definition 3.1 Let (U, A, F) be a soft context. Put $M_d = \{g \in A \mid F(a) \supseteq F(g)\}$. Then for $d \in A$, d is said to be m-dependent on A if there exists $M_d \neq \emptyset$ satisfying $F(d) = \mathcal{F}(M_d) = \bigcup_{a \in M_d} F(a)$.
Otherwise, \(d\) is said to be \(m\)-independent on \(A\).

We denote:
\[M_D = \{a \in A \mid a \text{ is } m\text{-dependent on } A\}; \]
\[M_I = \{a \in A \mid a \text{ is } m\text{-independent on } A\}. \]

Example 3.2 Let \(U = \{1, 2, 3, 4, 5\}\) and \(A = \{a, b, c, d, e, f, g\}\). Consider a soft context \((U, A, F)\) as Table 1.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then, the set-valued mapping \(F : A \rightarrow P(U)\) is defined as follows:
\[F(a) = \{1, 2, 4\}; \quad F(b) = F(f) = \{1, 3, 5\}; \quad F(c) = \{2, 4\}; \quad F(d) = \{1, 3\}; \]
\[F(e) = \{1, 5\}; \quad F(g) = \{1\}. \]

So,
\[M_a(A) = \{c, g\}; \quad M_b(A) = M_f(A) = \{d, e, g\}; \quad M_c(A) = \emptyset; \]
\[M_d(A) = M_e(A) = \{g\}; \quad M_g(A) = \emptyset. \]

For \(a, b, f \in A\),
\[F(a) = \mathbb{F}(M_a) = F(c) \cup F(g); \]
\[F(b) = F(f) = \mathbb{F}(M_b) = \mathbb{F}(M_f) = F(d) \cup F(e) \cup F(f). \]

So, \(a, b\) and \(f\) are \(m\)-dependent. But since \(F(d) \neq \mathbb{F}(M_d) = F(g)\) and \(F(e) \neq \mathbb{F}(M_e) = F(g)\), \(d\) and \(e\) are not \(m\)-dependent.

Then, we have:
\[M_D = \{a, b, f\}; \quad M_I = \{c, d, e, g\}. \]

Theorem 3.3 Let \((U, A, F)\) be a soft context. Then
(1) \(M_D \cap M_I = \emptyset; \quad M_D \cup M_I = A\).
(2) \(a\) is \(m\)-independent if and only if either \(M_a = \emptyset\) or if \(M_a \neq \emptyset\), then \(\mathbb{F}(M_a) = \bigcup_{g \in M_a} F(g) \neq F(a)\).
(3) For \(a \in A \), \(a \in M_D \) if and only if \(F(a) \in mD \).

(4) For \(a \in A \), \(a \in M_I \) if and only if \(F(a) \in mI \).

Proof.

(1) and (2) Obvious.

(3) Let \(a \in M_D \). Then \(M_a(A) = \{ g \in A \mid F(a) \supseteq F(g) \} \neq \emptyset \) and \(\mathbb{F}(M_a) = \bigcup_{g \in M_a} F(g) = F(a) \). Hence, by definition of dependency of soft concepts, \(F(a) \in mD \).

For the converse, let \(F(a) \in mD \) for \(a \in A \). Then, by (5) of Theorem 2.1, there exists \(B \in P(A) \) such that \(\mathbb{F}(B) = F(a) \). It implies that \(B \subseteq M_a = \{ g \in A : F(a) \supseteq F(g) \} \). And from \(\mathbb{F}(B) \subseteq \mathbb{F}(M_a) \), it follows \(F(a) \supseteq \mathbb{F}(M_a) \supseteq \mathbb{F}(B) = F(a) \). Consequently, there is nonempty set \(M_a \) satisfying \(\mathbb{F}(M_a) = F(a) \). So, \(a \in M_D \).

(4) For \(a \in M_I \), suppose \(F(a) \notin mI \). Then from \(mD \cap mI = \emptyset \) and \(mD \cup mI = m(U, A, F) \), \(F(a) \in mD \). Then by (1), \(a \in M_D \) and \(a \notin M_I \), which is a contradiction. Hence, \(F(a) \in mI \).

In the same way, the converse is obviously showed.

\[\blacksquare \]

Theorem 3.4 Let \((U, A, F)\) be a soft context. If \(\varphi : M_I \to mI \) is a mapping as defined by \(\varphi(a) = F(a) \) for \(a \in M_I \), then \(\varphi \) is surjective.

Proof. Let \(a \in M_I \). Then \(F(a) \in mI \) and \(\varphi(a) = F(a) \in mI \). Thus, the mapping \(\varphi \) is well-defined. For the surjection, let \(X \in mI \). Then by (3) of Theorem 2.2, there exists an element \(a \in A \) such that \(F(a) = X \). From (4) of Theorem 3.3, \(a \in M_I \) and \(X = F(a) \). Thus, \(\varphi \) is surjective.

\[\blacksquare \]

Definition 3.5 Let \((U, A, F)\) be a soft context. For \(a \in A \), we say that an element \(a \) is generated by finitely many elements if \(F(a) = \bigcup_{b \in B} F(b) \) for \(B = \{ b_1, b_2, \ldots, b_n \} \subseteq A \), and \(b \in B \) is called generator for \(a \).

Lemma 3.6 Let \((U, A, F)\) be a soft context. For \(d \in A_D \), \(M_d = \{ g \in A \mid F(d) \supseteq F(g) \} \) is a set of generators for \(d \).

Proof. Obvious.

\[\blacksquare \]

Example 3.7 In Example 3.2, for \(b \in A \), \(b \) is generated by \(\{ d, e \} \) and \(M_b(A) = \{ d, e, g \} \), respectively. \(d, e, \) and \(g \) are generators of \(b \).
Theorem 3.8 ([10]) Let \((U, A, F)\) be a soft context. Then for each \(X \in mD\), there is a family \(B \subseteq mI\) such that \(X = \cup B\).

Theorem 3.9 Let \((U, A, F)\) be a soft context. For each \(d \in M_D\), there exists \(B \subseteq M_I\) such that \(F(B) = \cup_{b \in B} F(b) = F(d)\).

Proof. Let \(d \in M_D\). Then \(F(d) \in mD\) and since \(F(d)\) is a dependent soft concept, there exist \(Z_1, \ldots, Z_n \in m(U, A, F)\) such that \(F(d) \supseteq Z_i\) and \(F(d) = \cup Z_i, i = 1, \ldots, n\). And, since \(mI\) is a base for \(m(U, A, F)\), for each \(Z_i\), there exists \(T_i \subseteq mI\) such that \(\cup T_i = Z_i\) for \(i = 1, \ldots, n\).

And, for each \(T_i, T_j \subseteq mI\) \((j = 1, \ldots, l)\), by (3) of Theorem 2.2, there is an \(m_{ij} \in A\) such that \(F(m_{ij}) = T_i\). Then for each \(F(m_{ij}) = T_i\), from \(F(m_{ij}) = T_i \subseteq mI\) and (4) of Theorem 3.4, \(m_{ij} \in M_I\). Put
\[
B_i = \{m_{ij} \in M_I \mid F(m_{ij}) = T_i \text{ for } T_i \subseteq mI\}
\]
\((i = 1, \ldots, n)\).

Then for \(i = 1, \ldots, n\), \(B = \cup B_i \subseteq M_I\) and \(F(B) = \cup_{b \in B} F(b) = \cup (\cup_{m_{ij} \in B} F(m_{ij})) = \cup (\cup T_i) = \cup Z_i = F(d)\). So, the proof is completed.

Let \((U, A, F)\) be a soft context. Then a family \(S\) of subsets of \(m(U, A, F)\) is called a base for \((U, A, F)\) if it satisfies the following two conditions:

1. \(S \subseteq m(U, A, F)\).
2. For each \(X \in m(U, A, F)\), there exists \(S' \subseteq S\) such that \(X = \cup S'\).

In [10], we obtained the properties of base for \((U, A, F)\) as the following:

Theorem 3.10 ([10]) Let \((U, A, F)\) be a soft context. Then:

1. The family \(F_A = \{F(a) \mid a \in A\}\) is a base:
2. \(mI\) is the smallest base for \(m(U, A, F)\):
3. For \(B \subseteq A\), if a set-valued mapping \(\varphi : B \to mI\) defined by \(\varphi(b) = F(b)\) for \(b \in B\) is surjective, then \(\varphi(B) = \{F(b) \mid b \in B\}\) is a base for \(m(U, A, F)\).

Theorem 3.11 Let \((U, A, F)\) be a soft context. Then \(M = \{F(a) \mid a \in M_I\}\) is a base for \(m(U, A, F)\).

Proof. From Theorem 3.4, a set-valued mapping \(\varphi : M_I \to mI\) defined by \(\varphi(a) = F(a)\) for \(a \in M_I\) is surjective, and by (3) of Theorem 3.10, \(\varphi(M_I) = \{F(a) \mid a \in M_I\} = M\) is a base for \(m(U, A, F)\).

Corollary 3.12 Let \((U, A, F)\) be a soft context. Then \(\cup_{a \in M_I} F(a) = U\).
Proof. It follows from Theorem 3.11. ■

Finally, using Theorem 3.11, we have the following theorem:

Theorem 3.13 Let \((U, A, F)\) be a soft context and \(F_{M_I} = \{ F(a) \mid a \in M_I \} \). Then
\[
m(U, A, F) = \{ \cup S \mid S \subseteq F_{M_I} \}.
\]

Example 3.14 For \(U = \{1, 2, 3, 4, 5\} \) and \(A = \{a, b, c, d, e, f, g\} \), let us consider a soft context \((U, A, F)\) as in Example 3.2. In the example, we showed that:
\[
M_D = \{a, b, f\}; \quad M_I = \{c, d, e, g\}.
\]

For \(F(c) = \{2, 4\}, \quad F(d) = \{1, 3\}, \quad F(e) = \{1, 5\}, \) and \(F(g) = \{1\}\),
\[
F_{M_I} = \{\{1\}, \{1, 3\}, \{1, 5\}, \{2, 4\}\}.
\]

So,
\[
m(U, A, F) = \{ \cup S \mid S \subseteq F_{M_I} \}
= \{\emptyset, \{1\}, \{1, 3\}, \{1, 5\}, \{2, 4\}, \{1, 2, 4\}, \{1, 3, 5\}, \{1, 2, 3, 4\}, \{1, 2, 4, 5\}, U\}.
\]

Now, we recall the notion of order on \(m(U, A, F)\) defined in [10] as the following: For \(X, Y \in m(U, A, F)\),
\[
X \preceq Y \text{ if and only if } X \subseteq Y.
\]

\(X\) is called a **sub-m-concept** of \(Y\), and \(Y\) is called a **super-m-concept** of \(X\).

For the ordered set \((m(U, A, F), \preceq)\), the infimum \(\wedge\) and supremum \(\vee\) are defined by:
\[
X \wedge Y = \exists (X \cap Y); \quad X \vee Y = X \cup Y.
\]

Then \((m(U, A, F), \preceq, \wedge, \vee)\) is complete lattice.

The complete lattice \((m(U, A, F), \preceq, \wedge, \vee)\) is called **m-concept lattice** (or **object oriented soft concept lattice**) and simply will be denoted by \(mL(U, A, F)\).

Let \(mL(U, B, F)\) and \(mL(U, C, G)\) be two \(m\)-concept lattices. \(mL(U, B, F)\) is said to be finer than \(mL(U, C, G)\), which is denoted by
\[
mlL(U, B, F) \preceq mL(U, C, G) \iff mL(U, C, G) \subseteq mL(U, B, F)
\]
If \(mL(U, B, F) \leq mL(U, C, G) \) and \(mL(U, C, G) \leq mL(U, B, F) \), then two \(m \)-concept lattices are said to be isomorphic to each other, and denoted by \(mL(U, B, F) \cong mL(U, C, G) \).

Theorem 3.15 ([10]) Let \((U, A, F)\) be a soft context and \(C \subseteq A\). Then \(mL(U, A, F) \cong mL(U, C, F_C) \) if and only if \(\text{Im}(F) = \text{Im}(F_C) \).

Theorem 3.16 Let \((U, A, F)\) be a soft context. Then \(mL(U, A, F) \cong mL(U, M_I, F_{M_I}) \).

Proof. From Theorem 3.11, \(\text{Im}(F) = \text{Im}(F_{M_I}) \). So, \(mL(U, A, F) \cong mL(U, M_I, F_{M_I}) \).

Finally, by using the family of all \(m \)-independent attributes, we show a reduction process of a soft context concept lattice \(mL(U, A, F) \):

Remark. Let us consider a soft context \((U, A, F)\) as shown in Table 2, where \(U = \{1, 2, 3, 4, 5\}, A = \{a, b, c, d, e, f, g\} \).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((F, A)\) is a soft set as follows:
\(F(a) = \{1, 2\}; \ F(b) = \{1, 3\}; \ F(c) = \{2, 5\}; \ F(d) = F(f) = \{1, 2, 3\}; \ F(e) = \{1, 2, 5\}; \ F(g) = \{1, 2, 3, 4\}. \)

And,
\(M_D = \{d, e, f\}; \ M_I = \{a, b, c, g\}. \)
\(mL(U, A, F) = \{\emptyset, \{1, 2\}, \{1, 3\}, \{2, 5\}, \{1, 2, 3\}, \{1, 2, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, U\}. \)
Hence, $mL(U, A, F)$ is obtained as shown in the below diagram:

$$A = \{a, b, c, d, e, f, g\}$$

$$U$$

$\{1, 2, 3, 5\} \quad \{1, 2, 3, 4\}$

$\uparrow \quad \leftarrow \uparrow$

$\{1, 2, 5\} \quad \{1, 2, 3\}$

$\uparrow \quad \leftarrow \uparrow \uparrow$

$\{2, 5\} \quad \{1, 2\} \quad \{1, 3\}$

$\leftarrow \uparrow \uparrow \uparrow$

\emptyset

$mL(U, A, F)$

Finally, for $M_I = \{a, b, c, g\}$, by Theorem 3.16, we have $mL(U, A, F) \cong mL(U, M_I, F_{M_I})$ as the following diagram.

$$A = \{a, b, c, d, e, f, g\} \supseteq M_I = \{a, b, c, g\}$$

$$U$$

$\{1, 2, 3, 5\} \quad \{1, 2, 3, 4\}$

$\uparrow \quad \leftarrow \uparrow$

$\{1, 2, 5\} \quad \{1, 2, 3\}$

$\uparrow \quad \leftarrow \uparrow \uparrow$

$\{2, 5\} \quad \{1, 2\} \quad \{1, 3\}$

$\leftarrow \uparrow \uparrow \uparrow$

\emptyset

$mL(U, A, F) \cong mL(U, M_I, F_{M_I})$
4. Conclusion

In particular, we showed that every m-dependent attribute is generated by some m-independent attributes and the family of all the m-independent attributes determines all m-concepts of a given m-context. Also, we showed that a reduction of a soft concept lattice $mL(U, A, F)$ is obtained by the family of all m-independent attributes. In the next research, we will study a variety of ways to reduce the soft concept lattices using any family of m-independent attributes and investigate how to combine soft concepts and m-concepts to efficiently reduce the soft concepts lattices.

Acknowledgments This work was supported by 2017 Research Fund of Myongji University

References

