Designing and Optimization of Inset Fed Rectangular Microstrip Patch Antenna (RMPA) for Varying Inset Gap and Inset Length

Vinayak Samarthay1, Swarna Pundir2, Bansi Lal3

1,3 Deenbandhu Chhotu Ram University of Science and Technology, 50th K. M. Stone, N. H. 1, Murthal (Sonepat) Haryana
2 Rajasthan Technical University | Rawatbhata Road, Kota-324010

ABSTRACT

This paper investigate the dependency of antenna parameters designed for 10 GHz inset fed rectangular micro strip patch antenna (RMPA), on varying inset width and inset gap for proper impedance matching so as to have minimum return loss and achieve efficient operation. Here we are analyzing as well as comparing the variation in parameters by varying both the inset gap (Y-axis) and inset length (X-axis). It has been observed that the performance of patch antenna depends more on inset gap between patch conductor and inset fed line rather than inset length. The simulated result also shows that the proposed antenna design has a good bandwidth (BW) antenna efficiency, radiation efficiency, directivity and gain.

KEY WORDS: RMPA, Inset fed, Dielectric Constant, Return loss.

1. INTRODUCTION-

Micro strip patch antenna has drawn attention of researchers over the last decade due to their Low profile, light weight, low cost and ease of integration with printed technology. They have a wide range of applications from cell phones to life saving biomedical applications. The research on patch antenna basically demands size reduction, wide bandwidth, increasing gain and system level integration. Though some of the antenna parameters are more likely to depend upon the geometry of antenna, type of feed, substrate materials height and dielectric constant. Inset fed antenna has the advantage of having the simplest to implement and easy to study the behavior of basic patch antenna where the properties of antenna can be easily controlled by the inset gap and inset length. The inset-fed micro strip antenna provides a method of impedance control with a planar feed configuration [1-2]. The
Experimental and numerical results showed that the input impedance of an inset-fed rectangular patch varied as a \cos^4 function of the normalized inset depth [1]. A more recent study proposed a modified shifted \sin^2 form that well characterizes probe-fed patches with a notch [3]. It is found that a shifted \cos^2 function works well for the inset-fed patch [4][5].

![Fig 1: Radiation Mechanism for Microstrip Patch Antenna](image)

2. DESIGN PROCEDURE FOR PATCH
While adopting the design strategy we try to keep the return loss as minimum as possible. Design procedure is conventional based on existing literature, choosing ε_r in advance as dielectric of substrate are not easily available which alongside also brings the thickness of the material with itself.

Steps Involved:

\[
W_p = \frac{C}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}} \quad \text{Eq. 1}
\]

2. Calculate $\varepsilon_{\text{reff}}$ [6]

\[
\varepsilon_{\text{reff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{W_p} \right]^{-1/2}
\quad \text{for } W_p/h \geq 1
\quad \text{Eq. 2}
\]
Designing and Optimization of Inset Fed Rectangular Microstrip Patch Antenna (RMPA)

3. Calculate ΔL i.e. normalized length [5]

$$\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{ref}-0.3)(W_p h + 0.264)}{(\epsilon_{ref}-0.258)(W_p h + 0.8)}$$

Eq. 3

4. Calculate L_p

$$L_p = \frac{v_0}{\sqrt{\epsilon_{reff}}} 2\Delta L$$

Eq. 4

5. Calculating Z_0 [7, 8]

$$Z_0 = R_{in} \cos^2 \left(\frac{\pi}{L_p} - d \right)$$

Eq. 5

Tabulated values using above equations are shown in Table 1.

Table 1: Physical Dimensions of Microstrip patch Antenna

<table>
<thead>
<tr>
<th>Operating frequency</th>
<th>10 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>4.4 (FR-4)</td>
</tr>
<tr>
<td>Length of the patch L</td>
<td>6.48 mm</td>
</tr>
<tr>
<td>Width of the patch W</td>
<td>9.128 mm</td>
</tr>
<tr>
<td>Thickness (t) of the Substrate</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Model for Analysis</td>
<td>Transmission Line TLM</td>
</tr>
<tr>
<td>Substrate Length</td>
<td>15.48 mm</td>
</tr>
<tr>
<td>Substrate Width</td>
<td>18.12 mm</td>
</tr>
</tbody>
</table>

Table 2. Iteration Results for RMPA using Different Inset Length and Inset Width

<table>
<thead>
<tr>
<th>Iteration Patch No.</th>
<th>Inset Gap X (mm)</th>
<th>Inset Gap Y (mm)</th>
<th>Resonance Frequency (f_r) (GHz)</th>
<th>Return Loss S_{11} (dB)</th>
<th>Antenna Efficiency (%)</th>
<th>Radiation Efficiency (%)</th>
<th>Directivity (dbi)</th>
<th>Gain (dbi)</th>
<th>Bandwidth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.571</td>
<td>-11.353</td>
<td>80.216%</td>
<td>99.150%</td>
<td>6.553</td>
<td>5.595</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.2</td>
<td>10.634</td>
<td>-11.555</td>
<td>78.634%</td>
<td>99.133%</td>
<td>6.565</td>
<td>5.521</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.2</td>
<td>10.646</td>
<td>-11.778</td>
<td>78.330%</td>
<td>99.129%</td>
<td>6.566</td>
<td>5.505</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>0.2</td>
<td>10.664</td>
<td>-11.996</td>
<td>77.814%</td>
<td>99.122%</td>
<td>6.566</td>
<td>5.477</td>
<td>5.8</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>0.2</td>
<td>10.683</td>
<td>-12.328</td>
<td>77.133%</td>
<td>99.118%</td>
<td>6.566</td>
<td>5.439</td>
<td>6.1</td>
</tr>
<tr>
<td>6</td>
<td>0.7</td>
<td>0.2</td>
<td>10.698</td>
<td>-12.654</td>
<td>76.773%</td>
<td>99.113%</td>
<td>6.566</td>
<td>5.418</td>
<td>6.5</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
<td>0.2</td>
<td>10.796</td>
<td>-15.065</td>
<td>72.921%</td>
<td>99.109%</td>
<td>6.568</td>
<td>5.197</td>
<td>6.5</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
<td>0.2</td>
<td>10.783</td>
<td>-14.672</td>
<td>73.713%</td>
<td>99.108%</td>
<td>6.559</td>
<td>5.235</td>
<td>6.8</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>0.3</td>
<td>10.675</td>
<td>-12.550</td>
<td>77.175%</td>
<td>99.124%</td>
<td>6.569</td>
<td>5.443</td>
<td>6.3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>10.850</td>
<td>-19.081</td>
<td>69.497%</td>
<td>99.099%</td>
<td>6.563</td>
<td>4.983</td>
<td>7.6</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>0.5</td>
<td>10.782</td>
<td>-17.887</td>
<td>72.637%</td>
<td>99.050%</td>
<td>6.569</td>
<td>5.180</td>
<td>7.5</td>
</tr>
<tr>
<td>12</td>
<td>5.7</td>
<td>0.2</td>
<td>9.711</td>
<td>-20.482</td>
<td>91.007%</td>
<td>98.905%</td>
<td>6.592</td>
<td>6.183</td>
<td>6.3</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0.2</td>
<td>9.650</td>
<td>-30.159</td>
<td>91.422%</td>
<td>98.980%</td>
<td>6.585</td>
<td>6.196</td>
<td>7.7</td>
</tr>
</tbody>
</table>
4. Graphical Representation for different Iteration of Patch

Fig. 2: Dimensional Layout for Proposed Antenna

Fig. 3: Return Loss for Patch 1

Fig. 4: Radiation pattern for Patch 1
Fig. 5: Return Loss for Patch 11

Fig. 6: Radiation pattern for Patch 11

Fig. 7: Return Loss for Patch 13
Results and Conclusions
Here keeping inset fed width (Wf) to 1 mm, we increased the inset gap(X) while keeping inset length (Y) constant. We can easily analyze that with increasing inset gap increases return loss of the patch as well as gain, radiation, antenna efficiency and bandwidth. A slight change in inset length with respect to inset gap also changes the overall performance of the patch antenna. It can be easily concluded that the effect of varying inset gap has more pronounced effect on parameters of antenna as compared to the inset length.

REFERENCES

Designing and Optimization of Inset Fed Rectangular Microstrip Patch Antenna (RMPA)

