i-Hamiltonian Laceability in Product Graphs

1Girisha A. and 2R. Murali
1Department of Mathematics, Acharya Institute of Technology, Bangalore, India
2Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, India
E-mail: girisha@acharya.ac.in, dr_muralir@hotmail.com

Abstract

For a connected graph G, let h(G) be the length of a Hamiltonian walk in G and call it the Hamiltonian number of G. Let i be a non-negative integer. A connected graph G of order n is called i-Hamiltonian if h(G)=n+i. In this paper, we define i-Hamiltonian-t-laceable graphs and i-Hamiltonian-t*-laceable graphs. We explore i-Hamiltonian-t*-laceability properties in the cartesian product of graphs involving paths and cycles.

Keywords: Connected graph, Hamiltonian-t-laceable, Hamiltonian-t*-laceable, i-Hamiltonian-t-laceable, i-Hamiltonian-t*-laceability

2000 Mathematics Subject Classification: 05C45, 05C99

Introduction

Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices in G. The distance between u and v denoted by d(u,v) is the length of a shortest u-v path in G. In [1] Goodman and Hedetniemi introduced the concept of a Hamiltonian walk in a connected graph G, defined as a closed spanning walk of minimum length in G. They denoted the length of a Hamiltonian walk in G by h(G) and called h(G) as the Hamiltonian number of G. Therefore, for a connected graph of order n≥3, it follows that h(G)=n if and only if G is Hamiltonian. Figure 1 below shows a connected graph G with h(G)=6.

Let i be a non-negative integer. A connected graph G of order n is called i-Hamiltonian [2] if h(G)=n+i. Thus a 0-Hamiltonian graph is Hamiltonian. An almost Hamiltonian graph is a graph G of order n and h(G)=n+1.

A graph G is Hamiltonian-t-laceable [3] if there exists in G a Hamiltonian path between every pair of vertices u and v with d(u,v)=t, 1≤ t ≤ diamG, where t is a positive integer.
A graph G is Hamiltonian-t^*-laceable [4] if there exist in G a Hamiltonian path between at least one pair of distinct vertices u and v such that $d(u,v)=t, 1 \leq t \leq \text{diam}G$.

With the concepts of i-Hamiticnicity and Hamiltonian Laceability, we define the following:

Definition 1: Let G be a connected graph of order n, let $h_p(G)$ be the length of a Hamiltonian path between any two distinct vertices in G. A Hamiltonian path in G is called a 0-Hamiltonian path if $h_p(G)=n-1$ and a path in G is called 1-Hamiltonian path if $h_p(G)=n$.

Definition 2: Let i be a non-negative integer. A connected graph G of order n is called i-Hamiltonian-t-laceable if there exists in G, a i-Hamiltonian path between every pair of distinct vertices u and v with the property $d(u,v)=t, 1 \leq t \leq \text{diam}G$.

Definition 3: A connected graph G of order n is called i-Hamiltonian-t^*-laceable if there exists in G, a i-Hamiltonian path between at least one pair of distinct vertices u and v with the property $d(u,v)=t, 1 \leq t \leq \text{diam}G$.

Figure 1 below illustrates a 1-Hamiltonian graph G with $h(G)=6$. With respect to the vertices v_1 and v_2 this graph is 1-Hamiltonian-2^*-laceable.

![Figure 1: A graph with $h(G)=6$](image)

Results

Theorem 1: Let $G=P_m$ and $H=P_n$. If m and n are odd integers such that $m, n \geq 3$, the Cartesian-product $G \times H$ is 1-Hamiltonian-t^*-laceable, for $t=1, 3$ and 5.

Proof: Let $G_1=G \times H$. In G_1 there are mn vertices and diameter of $G \times H$ is $(m+n)-1$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$.

Let B_i denote the m paths in G_1 given by; $B_i: a_{i1}-a_{i2}-a_{i3}-\ldots-a_{im}$ and let P_j denote the n paths in G_1 given by; $P_j: a_{j1}-a_{j2}-a_{j3}-\ldots-a_{mj}$.

Then, in G_1, $d(a_{i1},a_{i2})=1$ and the path P: $\{P_1 \cup B_m \cup (a_{mn},a_{m-1n}) \cup (a_{m-2},a_{m-2}) \cup$
\[(B_{m-1} - (a_{m-11}, a_{m-12})) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_{4} - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_{3} - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (B_{2} - (a_{2n}, a_{2n-1})) \cup \ldots \cup (a_{23}, a_{22}) \cup (a_{22}, a_{21})) \cup (B_{1} - (a_{1n-1}, a_{1n-2}) \ldots \ldots (a_{14}, a_{13}) \cup (a_{13}, a_{12})) \cup (a_{12}, a_{11})) \cup (a_{2n-2}, a_{1n-2}) \cup \ldots \cup (a_{24}, a_{23}) \cup (a_{23}, a_{13}) \cup (a_{13}, a_{12}) \cup (a_{12}, a_{11}) \cup (a_{1n-1}, a_{2n-1}) \cup (B_{1} - (a_{1n}, a_{1n-1}) \ldots \ldots (a_{14}, a_{13}))\]

is a 1-Hamiltonian path. Hence \(G_{1}\) is 1-Hamiltonian-1*-laceable.

Figure 2: Cartesian product of \(G = P_{m}\) and \(H = P_{n}\), \(d(a_{11}, a_{12}) = 1\)

Also, in \(G_{1}\), \(d(a_{11}, a_{14}) = 3\) and the path \(P:\{P_{1} \cup B_{m} \cup (a_{m-12}, a_{m-22}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_{4} - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_{3} - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (a_{2n}, a_{2n-1}) \cup (B_{2} - (a_{2n}, a_{2n-1})) \cup (a_{2n-2}, a_{2n-2}) \ldots \ldots (a_{24}, a_{23}) \cup (B_{1} - (a_{1n}, a_{1n-1}) \ldots \ldots (a_{13}, a_{12}))\}\) is a 1-Hamiltonian path. Hence \(G_{1}\) is 1-Hamiltonian-3*-laceable.

Figure 3: Cartesian product of \(G = P_{m}\) and \(H = P_{m}\), \(d(a_{11}, a_{14}) = 3\)
Further, in G_1 $d(a_{11}, a_{1n-1}) = 5$ and the path $P: \{P_1 \cup B_m \cup (a_{m,12}, a_{m-22}) \cup (B_m-1 - (a_{m-11}, a_{m-12})) \cup (B_m-2 - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (B_{2n}, a_{1n}) \cup (a_{1n}, a_{2n}) \cup (a_{22}, a_{12}) \cup (B_2 - (a_{21}, a_{2n-1}) \cup \ldots \cup (B_{31}, a_{22})) \cup (B_1 - (a_{11}, a_{12}) \cup \ldots \cup (a_{1n}, a_{1n-1})) \}$ is a 1-Hamiltonian path. Hence G_1 is 1-Hamiltonian-5*-laceable.

Figure 4: Cartesian product of $G=P_m$ and $H=P_n$, $d(a_{11}, a_{1n-1}) = 5$

Hence the proof.

Theorem 2: Let $G=P_m$ and $H=P_n$. If m and n are odd integers such that $m, n \geq 3$, the Cartesian-product $G \times H$ is 1-Hamiltonian-2*-laceable, for $t=2, 4$ and 6.

Proof: Let $G_1 = G \times H$. In G_1 there are mn vertices and diameter of $G \times H$ is $(m+n)-1$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$.

Let B_i denote the m paths in G_1 given by: $B_i: a_{i1}, a_{i2}, a_{i3}, \ldots, a_{in}$ and let P_j denote the n paths in G_1 given by: $P_j: a_{j1}, a_{j2}, a_{j3}, \ldots, a_{jm}$.

Then, in G_1, $d(a_{11}, a_{13}) = 2$ and the path $P: \{P_1 \cup B_m \cup (a_{m,12}, a_{m-22}) \cup (B_m-1 - (a_{m-11}, a_{m-12})) \cup (B_m-2 - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (B_2 - (a_{21}, a_{2n-1}) \cup \ldots \cup (a_{22}, a_{21})) \cup (a_{2n}, a_{1n}) \cup (B_1 - (a_{1n}, a_{1n-1}) \ldots a_{14}, a_{13}) \cup (a_{11}, a_{12}) \cup (a_{1n-1}, a_{2n-1}) \cup (a_{2n}, a_{1n-2}) \cup \ldots \cup (a_{14}, a_{24}) \cup (a_{22}, a_{12})) \}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-2*-laceable.
Figure 5: Cartesian product of $G=P_m$ and $H=P_n$, $d(a_{11}, a_{13}) = 2$

Also, in G_1, $d(a_{11}, a_{1n-2}) = 4$ and the path P: $\{P_1 \cup B_m \cup (a_{mn}, a_{m-1m}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (a_{m-12}, a_{m-22}) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (B_2 - (a_{21}, a_{22})) \cup \ldots \cup (a_{2m}, a_{2m-1}) \cup (B_{l-1} - (a_{l1}, a_{l2})) \cup (a_{l1}, a_{l2}))\}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-4^*-laceable.

Figure 6: Cartesian product of $G=P_m$ and $H=P_n$, $d(a_{11}, a_{1n-2}) = 4$

Further, in G_1, $d(a_{11}, a_{1n}) = 6$ and the path P: $\{P_1 \cup B_m \cup (a_{m12}, a_{m22}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{3n}, a_{2n}) \cup (B_2 - (a_{21}, a_{22})) \cup (a_{2n}, a_{2n-1}) \cup (B_{l-1} - (a_{l1}, a_{l2})) \cup (a_{l1}, a_{l2}))\}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-6^*-laceable.
Figure 7: Cartesian product of $G=P_m$ and $H=P_n$, $d(a_{11}, a_{1n}) = 6$

Hence the proof

Theorem 3: Let $G=P_m$ and $H=P_n$. If m and n are even integers such that $m, n \geq 3$, the Cartesian-product $G \times H$ is 1-Hamiltonian-t^*-laceable, for $t=2, 4$ and 6.

Proof: Let $G_1 = G \times H$. In G_1 there are mn vertices and diameter of $G \times H$ is $(m + n) - 1$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$. Let B_i denote the m paths in G_1 given by $B_i: a_{i1} - a_{i2} - a_{i3} - \ldots - a_{im}$ and let P_j denote the n paths in G_1 given by $P_j: a_{1j} - a_{2j} - a_{3j} - \ldots - a_{nj}$.

Then in G_1, $d(a_{11}, a_{13}) = 2$ and the path $P: \{P_1 \cup B_m \cup (a_{mn}, a_{m-1, n}) \cup (B_{m-1} - (a_{m-1, 1}, a_{m-1, 2})) \cup (a_{m-1, 2}, a_{m-2, 2}) \cup (B_{m-2} - (a_{m-2, 1}, a_{m-2, 2})) \cup \ldots \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{32}, a_{22}) \cup (B_2 - (a_{2n}, a_{2n-1})) \cup \ldots \cup (a_{21}, a_{22})) \cup (B_1 - (a_{1n-1}, a_{1n-2} - \ldots - a_{11}, a_{12})) \cup (a_{2n, a_{2n}}) \cup (a_{1m-1, a_{1m-2}}) \cup (a_{2m-2, a_{1m-2}}) \cup \ldots \cup (a_{14, a_{24}}) \cup (a_{22, a_{12}})\}$ is a 1-Hamiltonian path. Hence G_1 is 1-Hamiltonian-2^*-laceable.

Figure 8: Cartesian product of $G=P_m$ and $H=P_n$, $d(a_{11}, a_{13}) = 2$
Also, in \(G_1 \), \(d(a_{11}, a_{1n-2}) = 4 \) and the path \(P: \{P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (a_{m-12}, a_{mn}) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (a_{2n}, a_{2n}) \cup (B_2 - (a_{21}, a_{22})) \cup (B_1 - (a_{11}, a_{12})) \} \) is a 1-Hamiltonian path. Hence \(G_1 \) is 1-Hamiltonian-4*-laceable.

Further in \(G_1 \), \(d(a_{11}, a_{1n}) = 6 \) and the path \(P: \{P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (a_{m-12}, a_{mn}) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (a_{2n}, a_{2n}) \cup (B_2 - (a_{21}, a_{22})) \cup (a_{12}, a_{22}) \cup (B_1 - (a_{11}, a_{12})) \} \) is a 1-Hamiltonian path. Hence \(G_1 \) is 1-Hamiltonian-6*-laceable.
Hence the proof.

Theorem 4: Let $G = P_m$ and $H = P_n$. Then the Cartesian product $G \times H$ is 0-Hamiltonian-t^*-laceable, for $t=1, 3, 5$ such that $1 \leq t \leq (m+n)-2$ where m and n be even for $m, n \geq 3$.

Proof: Let $G_1 = G \times H$. In G_1 there are mn vertices and diameter of $G \times H$ is $(m + n) - 1$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$. Let B_i denote the m paths in G_1 given by B_i: $a_{i1}a_{i2}a_{i3} \ldots \ldots a_{in}$ and P_j denote the n paths in G_1 given by P_j: $a_{1j}a_{2j}a_{3j} \ldots \ldots a_{mj}$.

Then in G_1, $d(a_{11}, a_{12}) = 1$ and the path P: $\{P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (a_{m-12}, a_{m-22}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_5 - (a_{51}, a_{52})) \cup (a_{53}, a_{54}) \cup (B_4 - (a_{41}, a_{42})) \cup (a_{43}, a_{44}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{33}, a_{34}) \cup (B_2 - (a_{21}, a_{22})) \cup (a_{23}, a_{24}) \cup (B_1 - (a_{11}, a_{12}))\}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-I^*-laceable.

![Figure 11: Cartesian product of $G = P_m$ and $H = P_n$, $d(a_{11}, a_{12}) = 1$](image)

Also, in G_1, $d(a_{11}, a_{14}) = 3$ and the path P: $\{P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (a_{m-12}, a_{m-22}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_5 - (a_{51}, a_{52})) \cup (a_{53}, a_{54}) \cup (B_4 - (a_{41}, a_{42})) \cup (a_{43}, a_{44}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{33}, a_{34}) \cup (B_2 - (a_{21}, a_{22})) \cup (a_{23}, a_{24}) \cup (B_1 - (a_{11}, a_{12}) \cup (a_{13}, a_{14}))\}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-3^*-laceable.
Further in G_1, $d(a_{11}, a_{1n,l}) = 5$ and the path P: $\{P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (a_{m-12}, a_{m-22}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup \ldots \cup (B_5 - (a_{51}, a_{52})) \cup (a_{52}, a_{42}) \cup (B_4 - (a_{41}, a_{42})) \cup (a_{43}, a_{3n}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{32}, a_{22}) \cup (B_2 - (a_{21}, a_{22})) \cup (a_{22}, a_{23}) \cup (a_{24}, a_{25}) \ldots \ldots \cup (a_{2n-3}, a_{2n-2}) \cup (a_{2n-2}, a_{2n-1}) \cup (B_1 - (a_{11}, a_{12})) \cup (a_{12}, a_{13}) \cup (a_{13}, a_{14}) \cup \ldots \ldots \cup (a_{1n-3}, a_{1n-2}) \cup (a_{12}, a_{13}) \cup (a_{13}, a_{14}) \cup (a_{24}, a_{25}) \ldots \ldots (a_{2n-3}, a_{2n-2}) \}$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-t^*-laceable.

Hence the proof

Theorem 5: Let $G=C_m$ and $H=P_n$. If $n \geq 2$ is an integer and $m \geq 3$ is an odd integer, the Cartesian-product $G \times H$ is 0-Hamiltonian-t^*-laceable for $t=1,2$ and 3.
Proof: Let $G_1 = G \times H$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$. Let B_i denote the m paths in G_1 given by $B_i: a_{i1} - a_{i2} - a_{i3} - \ldots - a_{in}$ and P_j denote the n paths in G_1 given by $P_j: a_{1j} - a_{2j} - a_{3j} - \ldots - a_{nj}$. Where n is an integer and m is odd.

Then in G_1, $d(a_{11}, a_{1n}) = 1$ and the path $P: P_1 \cup B_m \cup (a_{mn}, a_{m-1n}) \cup (B_{m-1} - (a_{m-11}, a_{m-12})) \cup (a_{m-12}, a_{m-22}) \cup (B_{m-2} - (a_{m-21}, a_{m-22})) \cup \ldots \cup (B_2 - (a_{21}, a_{22})) \cup (a_{22}, a_{32}) \cup (B_3 - (a_{31}, a_{32})) \cup (a_{32}, a_{42}) \cup (B_4 - (a_{41}, a_{42})) \cup (a_{42}, a_{52}) \cup \ldots \cup (B_{n-1} - (a_{n-11}, a_{n-12})) \cup (a_{n-12}, a_{n-22})$ is a 0-Hamiltonian path. Hence G_1 is a 0-Hamiltonian-1*-laceable.

Figure 14: Cartesian product of $G = C_m$ and $H = P_n$, $d(a_{11}, a_{1n}) = 1$

Also, in G_1, $d(a_{11}, a_{1n-1}) = 2$ and the path $P: (a_{11}, a_{1n}) \cup (a_{1n}, a_{2n}) \cup (a_{2n}, a_{21}) \cup (a_{21}, a_{31}) \cup (a_{31}, a_{3n}) \cup (a_{3n}, a_{4n}) \cup (a_{4n}, a_{41}) \cup \ldots \cup (a_{m-1n}, a_{m-1n-1}) \cup (a_{m-1n-1}, a_{m-1n-2}) \cup (B_{m-1} - (a_{m-1n-2}, a_{m-1n-1})) \cup (a_{m-1n-1}, a_{m-2n}) \cup (B_{m-2} - (a_{m-2n}, a_{m-2n-1})) \cup (a_{m-2n}, a_{m-3n}) \cup (B_{m-3} - (a_{m-3n}, a_{m-3n-1})) \cup (a_{m-3n}, a_{m-4n}) \cup (B_{m-4} - (a_{m-4n}, a_{m-4n-1})) \cup \ldots \cup (P_{m-2} - (a_{mn-2}, a_{mn-1})) \cup (a_{mn-1}, a_{mn}) \cup (B_{m-1} - (a_{mn-1}, a_{mn-2})) \cup (a_{mn-2}, a_{mn}) \cup \ldots \cup (P_{m-1} - (a_{mn-1}, a_{mn-2}))$ is a 0-Hamiltonian path. Hence G_1 is a 0-Hamiltonian-2*-laceable.

Figure 15: Cartesian product of $G = C_m$ and $H = P_n$, $d(a_{11}, a_{1n-1}) = 2$
Further, in G_1, $d(a_{11},a_{1n-2})=3\) and the path
\[P: (a_{11}, a_{1n}) \cup (a_{1n}, a_{2n}) \cup (a_{2n}, a_{3n}) \cup (a_{3n}, a_{4n}) \cup \ldots \ldots \cup (a_{m-2n}, a_{m-1n}) \cup (a_{m-1n}, a_{mn}) \cup (B_{m-1}^{-1}(a_{mn}, a_{mn-1}) \cup (a_{mn-1}, a_{mn-2}) \cup \ldots \ldots \cup (a_{2n-1}, a_{2n}) \cup (a_{2n-1}, a_{1n-1}) \cup (B_1^{-1}(a_{1n}, a_{1n-1}) \cup \ldots \ldots \cup (a_{13}, a_{14}) \cup (a_{11}, a_{12})) \] is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-3*-laceable.

Figure 16: Cartesian product of $G=C_m$ and $H=P_n$, $d(a_{11}, a_{1n-2})=3$

Hence the proof

Theorem 6: Let $G=C_m$ and $H=P_n$. If $n \geq 2$ is an integer and $m \geq 3$ is an even integer, the Cartesian-product $G \times H$ is (i) 0-Hamiltonian-t^*-laceable for $t=1$ and 3 (ii) 1-Hamiltonian-t^*-laceable for $t=2$ and 4.

Proof: Let $G_1=G \times H$. Let the vertices of G_1 be denoted by a_{ij}, $1 \leq i \leq m$, $1 \leq j \leq n$. Let B_i denote the m paths in G_1 given by B_i: $a_{i1}-a_{i2}-a_{i3}-\ldots-a_{im}$ and P_j denote the n paths in G_1 given by P_j: $a_{j1}-a_{j2}-a_{j3}-\ldots-a_{mj}$. Where n is any integer and m is even.

Then in G_1, $d(a_{11}, a_{1n})=1$ and the path
\[P: P_1 \cup (a_{m1}, a_{m2}) \cup P_2 \cup (a_{n1}, a_{n2}) \cup P_3 \cup (a_{m3}, a_{m4}) \cup P_4 \cup \ldots \ldots \cup P_{n-1} \cup (a_{mn-1}, a_{mn}) \cup P_n \] is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-I^*-laceable.
Figure 17: Cartesian product of $G=C_m$ and $H=P_n$, $d(a_{11},a_{1n})=1$

Also, in G_1, $d(a_{11},a_{2n})=2$ and the path

$P: P_1 \cup (a_{m1},a_{m2}) \cup P_2 \cup (a_{12},a_{13}) \cup P_3 \cup (a_{m3},a_{m4}) \cup P_4 \cup \ldots \cup (P_{n-1} \cup (a_{mn-1},a_{mn})) \cup (P_n \cup (a_{3n},a_{2n})) \cup (a_{3n},a_{1n})$ is a 1-Hamiltonian path. Hence G_1 is 1-Hamiltonian-2*-laceable.

Figure 18: Cartesian product of $G=C_m$ and $H=P_n$, $d(a_{11},a_{2n})=2$

Further in G_1, $d(a_{11},a_{3n})=3$ and the path $P: P_1 \cup (a_{m1},a_{m2}) \cup P_2 \cup (a_{12},a_{13}) \cup P_3 \cup (a_{m3},a_{m4}) \cup P_4 \cup \ldots \cup (P_{n-1} \cup (a_{1n-1},a_{2n-1})) \cup (a_{1n-1},a_{1n}) \cup (a_{2n-1},a_{2n}) \cup (a_{mn-1},a_{mn}) \cup (P_n \cup (a_{3n},a_{2n}))$ is a 0-Hamiltonian path. Hence G_1 is 0-Hamiltonian-3*-laceable.
Next in G_1, $d(a_{11},a_{4n})=4$ and the path
\[P: P_1 \cup (a_{m1},a_{m2}) \cup P_2 \cup (a_{n1},a_{n2}) \cup P_3 \cup (a_{m3},a_{m4}) \cup P_4 \cup \ldots \cup (P_{n-1},a_{2n-1},a_{2n}) \cup (a_{2n-1},a_{3n-1}) \cup (a_{mn-1},a_{mn}) \cup (P_{n},a_{1n},a_{2n}) \cup (a_{3n},a_{4n}) \cup (a_{1n},a_{2n-1}) \]
is a 1-Hamiltonian path. Hence G_1 is 1-Hamiltonian-4-laceable.

\[\text{Figure 19: Cartesian product of } G=C_m \text{ and } H=P_n, \quad d(a_{11},a_{3n})=3 \]

\[\text{Figure 20: Cartesian product of } G=C_m \text{ and } H=P_n, \quad d(a_{11},a_{4n})=4 \]

Hence the proof.

Acknowledgements
The first author is thankful to the management and the staff of the department of Mathematics, Acharya Institute of Technology, Bangalore for their support and
encouragement The authors are also thankful to the management and R&D centre, Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore.

References

