Pebbling Number of the Sequential Join of Complete Graphs

Anil Kumar M. S.

Department of Mathematics, VTMNSS College, Dhanuvachapuram, University of Kerala, Trivandrum, Kerala, India E mail: animankulam@yahoo.co.in

Abstract

Given a configuration of pebbles on the vertices of a graph G, a *pebbling* move consists of taking two pebbles off some vertex v and putting one of them back on a vertex adjacent to v. A graph is called pebbleable if for each vertex v there is a sequence of pebbling moves that would place at least one pebble on v. The pebbling number of graph G, is the smallest integer m such that G is pebbleable for every configuration of m pebbles on G. Let G_1 and G_2 be graphs such that G_1 and G_2 have disjoint vertex sets V_1 and V_2 and edges sets E_1 and E_2 respectively. Their join G_1+G_2 consists of G_1UG_2 and all edges joining V_1 with V_2 . For three or more disjoint graphs G_1 , G_2, G_n , the sequential join $G_1+G_2+....+G_n$ is the graph $(G_1+G_2)\cup (G_2+G_3)\cup....\cup (G_{n-1}+G_n)$. In this paper we find the pebbling number of the sequential join of complete graphs.

AMS Subject classification: 05C99

Keywords: pebbling, complete graphs

Introduction

A pebbling configuration of a graph G is a distribution of pebbles on G. A pebbling move consists of removing two pebbles lying on the some vertex v and placing one of these pebbles on some vertex that is adjacent to v. A distribution (configuration) p is "v-solvable" (v is reachable under p), if v has a pebble after some (possibly empty) pebbling sequence (sequence of pebbling moves) starting from p. The pebbling number of a graph G is the minimum number m of pebbles that ensure that every

vertex of G is pebbleable, no matter what initial distribution of m pebbles we start with. Let f(G, v) denotes the pebbling number of a vertex v of G, and f(G) the pebbling number of G.

T. Clarke et al [3] defined class 0 and class 1 graphs. They defined a graph G to be class 0 if f(G) = n(G), the number of vertices in G and of class 1 if f(G) = n(G) + 1.

Let G_1 and G_2 be graphs such that G_1 and G_2 have disjoint vertex sets V_1 and V_2 and edges sets E_1 and E_2 respectively. Their join G_1+G_2 consists of G_1 U G_2 and all edges joining V_1 with V_2 . For three or more disjoint graphs G_1 , G_2 ,..., G_n , the sequential join , $G_1+G_2+...+G_n$ is the graph $(G_1+G_2)\cup (G_2+G_3)\cup ...\cup (G_{n-1}+G_n)$.

Theorem 1[1]: If diam (G) = 2 and K (G) \geq 3, then G is of class 0. The graph H in figure 1 is $K_1+K_2+K_2+K_1$. It is clear that H is not class 0. More generally, the graph $K_1+K_r+K_r+K_1$ is class 0 if $r\geq 3$ and not otherwise.

Figure 1: A graph H which is not class 0.

Theorem 2: The graph $K_1 + K_{n-2} + K_1$ is class 0, if $n \ge 4$.

Proof: The proof is obvious.

We say that a vertex v in graph G is *substituted* by H if v is replaced by H and if uv is an edge in G, $\{uw/w \in V(H)\}$ will be edges in the new graph. If G^1 is the graph obtained, then

$$G^1 = \{G - v\} \cup H \cup \{ux : x \in V(H), u \in N(v)\}$$

Lemma 3: Let G be a connected graph. Let $v \in G$ be substituted by K_n , a complete graph on a vertices. Let G^1 be the new graph obtained. Let $V^1=V(K_n)$ and $w \in v^1$, then $f(G^1,w)=f(G,v)+n-1$.

Proof: Let f(G, v)=r. Let p be a non v-solvable distribution of pebbles for G with |p|=r-1. Clearly p(v)=0.

Let p^1 be the pebbling distribution of G^1 with $p/G - \{v\} = p^1/G - \{v\}$ and one

pebble on each vertex of K_n except w. Then $|p^1|=r+(n-2)$ and is, clearly, not w solvable.

Let Q be any distribution of r+n-1 pebbles on the vertices of G¹.

Then, either $Q/|V^1| \ge n$ or $Q/\{V(G) - V^1| \ge f(G, v)$

So, Q is w solvable.

Hence the lemma.

Lemma 4: Let G, V, G^1 be as in lemma 3. Let $uv \in E(G)$. Then $f(G^1,u) \le f(G,u) + |V(H)|$.

If there is at least one non u- solvable distribution of f(G, u)-1 pebbles on G, with p(v) = 1, then $f(G^1, u) \ge f(G, u) + |V(H)| - 1$.

(In particular, if deg v=1, the equality holds)

Theorem 5: The $K_{n1} + k_{n2} + K_{n3}$ is class of 0, if $\sum_{i=1}^{3} n_i \ge 4$ and $n_2 \ge 2$.

Proof: the graph is 3 –connected and is of diameter 2 and hence a class 0 graph.

Theorem 6: Let G denotes the sequential join of the four complete graphs

 K_{n1} , k_{n2} , K_{n3} . K_{n4} Then $f(G) = \sum_{i=1}^{4} n_i$, where $n_2 \ge 2$, $n_3 \ge 2$, $n_2 + n_3 \ge 5$. That is, G is a diameter 3, class 0, graph.

Proof: Consider the path P_4 with vertex set $\{u,v,w,x\}$. We have

$$G \cong K_{n1} + k_{n2} + K_{n3} + K_{n4}$$
.

G can be obtained by substituting u,v,w and x by K_{n1} , k_{n2} , K_{n3} and K_{n4} respectively. We calculate the pebbling number of G in four steps.

Step 1: Replace one pendant vertex of P_4 say u by K_{n1} . Let G_1 be the new graph obtained. It is easy to see that $f(G_1) = n_1 + 7$.

Step 2: We now replace x in G_1 by K_{n4} . Let G_2 be the new graph obtained. Then $f(G_2) = n_1 + n_4 + 6$.

Step 3: In G_2 , we substitute K_{n2} in the place of v. Let G_3 be the new graph obtained.

We have
$$f(G_3) = \begin{cases} n+3, & \text{if} & n_2 = 2\\ n+2, & \text{if} & n_2 = 3\\ n+1, & \text{if} & n_2 \ge 4, \end{cases}$$

Step 4: The vertex w in G_3 is replaced by K_{n3} . Let G_4 be the new graph obtained. We see that G₄ is required graph G. Again it is easy to prove that

$$f(G) = \begin{cases} & n & \text{if} & n_2 + n_3 \ge 6 \\ & n + 1 & \text{if} & n_2 + n_3 = 5 \\ & n + 2 & \text{if} & n_2 = n_3 = 2 \end{cases}$$

Hence the theorem

We now have the following conjecture.

Conjecture 7: If
$$G = K_{n1} + K_{n2} + \dots + K_{nr}$$
, $r \ge 4$, then

Conjecture 7: If
$$G=K_{n1}+K_{n2}+\ldots+K_{nr}$$
, $r\geq 4$, then G is class 0 if $n_2,\,n_3,\,\ldots,\,n_{r-1}\geq \frac{2r}{r-1}$

Acknowledgement

I am grateful to Prof M I Jinnah for his help in preparing this paper.

References

- [1] F. Buckley and F Harary, Distance in Graphs, Addison Wesley Publishing Company, 1989.
- [2] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math. 2 (1989), 467-472.
- [3] T. Clarke, R. Hochberg and G. Hurlbert, Pebbling in diameter two graphs and products of paths, J. Graph Theory. 25 (1997), 119-128.