Pebbling Number of the Sequential Join of Complete Graphs

Anil Kumar M. S.

Department of Mathematics, VTMNSS College,
Dhanuvachapuram, University of Kerala, Trivandrum, Kerala, India
E mail : animankulam@yahoo.co.in

Abstract

Given a configuration of pebbles on the vertices of a graph G, a pebbling move consists of taking two pebbles off some vertex v and putting one of them back on a vertex adjacent to v. A graph is called pebbleable if for each vertex v there is a sequence of pebbling moves that would place at least one pebble on v. The pebbling number of graph G, is the smallest integer m such that G is pebbleable for every configuration of m pebbles on G. Let G1 and G2 be graphs such that G1 and G2 have disjoint vertex sets V1 and V2 and edges sets E1 and E2 respectively. Their join G1+G2 consists of G1∪G2 and all edges joining V1 with V2. For three or more disjoint graphs G1, G2……, Gn, the sequential join G1 + G2 +…..+ Gn is the graph (G1 + G2) ∪ (G2 + G3) ∪…..∪ (Gn-1 + Gn). In this paper we find the pebbling number of the sequential join of complete graphs.

AMS Subject classification: 05C99

Keywords: pebbling, complete graphs

Introduction

A pebbling configuration of a graph G is a distribution of pebbles on G. A pebbling move consists of removing two pebbles lying on the same vertex v and placing one of these pebbles on some vertex that is adjacent to v. A distribution (configuration) p is “v-solvable” (v is reachable under p), if v has a pebble after some (possibly empty) pebbling sequence (sequence of pebbling moves) starting from p. The pebbling number of a graph G is the minimum number m of pebbles that ensure that every
vertex of G is pebbleable, no matter what initial distribution of m pebbles we start with. Let $f(G, v)$ denotes the pebbling number of a vertex v of G, and $f(G)$ the pebbling number of G.

T. Clarke et al [3] defined class 0 and class 1 graphs. They defined a graph G to be class 0 if $f(G) = n(G)$, the number of vertices in G and of class 1 if $f(G) = n(G) + 1$.

Let G_1 and G_2 be graphs such that G_1 and G_2 have disjoint vertex sets V_1 and V_2 and edges sets E_1 and E_2 respectively. Their join $G_1 + G_2$ consists of $G_1 \cup G_2$ and all edges joining V_1 with V_2. For three or more disjoint graphs $G_1, G_2, ..., G_n$, the sequential join $G_1 + G_2 + ... + G_n$ is the graph $(G_1 + G_2) \cup (G_2 + G_3) \cup ... \cup (G_{n-1} + G_n)$.

Theorem 1[1]: If $\text{diam}(G) = 2$ and $K(G) \geq 3$, then G is of class 0.

The graph H in figure 1 is $K_1 + K_2 + K_2 + K_1$. It is clear that H is not class 0. More generally, the graph $K_1 + K_r + K_r + K_1$ is class 0 if $r \geq 3$ and not otherwise.

![Figure 1: A graph H which is not class 0.](image)

Theorem 2: The graph $K_1 + K_{n-2} + K_1$ is class 0, if $n \geq 4$.

Proof: The proof is obvious. We say that a vertex v in graph G is substituted by H if v is replaced by H and if uv is an edge in G, $\{uw/w \in V(H)\}$ will be edges in the new graph. If G^1 is the graph obtained, then

$$G^1 = \{G - v\} \cup H \cup \{ux : x \in V(H), u \in N(v)\}$$

Lemma 3: Let G be a connected graph. Let $v \in G$ be substituted by K_n, a complete graph on n vertices. Let G^1 be the new graph obtained. Let $V^1 = V(K_n)$ and $w \in V^1$, then $f(G^1, w) = f(G, v) + n - 1$.

Proof: Let $f(G, v) = r$. Let p be a non v-solvable distribution of pebbles for G with $|p| = r - 1$. Clearly $p(v) = 0$.

Let p^1 be the pebbling distribution of G^1 with $p/G - \{v\} = p^1/G - \{v\}$ and one pebble on each vertex of K_n except w. Then $|p^1| = r + (n-2)$ and is, clearly, not w solvable.

Let Q be any distribution of $r + n - 1$ pebbles on the vertices of G^1. Then, either $Q/\{v\} \geq n$ or $Q/\{V(G) - V\} \geq f(G, v)$

So, Q is w solvable.

Hence the lemma.

Lemma 4: Let G, V, G^1 be as in lemma 3. Let $uv \in E(G)$. Then $f(G^1, u) \leq f(G, u) + |V(H)|$.

If there is at least one non u-solvable distribution of $f(G, u) - 1$ pebbles on G, with $p(v) = 1$, then $f(G^1, u) \geq f(G, u) + |V(H)| - 1$.

(In particular, if $\text{deg} v = 1$, the equality holds)

Theorem 5: The $K_{n_1} + K_{n_2} + K_{n_3}$ is class of 0, if $\sum_{i=1}^{3} n_i \geq 4$ and $n_2 \geq 2$.

Proof: The graph is 3-connected and is of diameter 2 and hence a class 0 graph.

Theorem 6: Let G denotes the sequential join of the four complete graphs $K_{n_1}, K_{n_2}, K_{n_3}, K_{n_4}$. Then $f(G) = \sum_{i=1}^{4} n_i$, where $n_2 \geq 2$, $n_3 \geq 2, n_2 + n_3 \geq 5$. That is, G is a diameter 3, class 0, graph.

Proof: Consider the path P_4 with vertex set $\{u, v, w, x\}$. We have $G \cong K_{n_1} + K_{n_2} + K_{n_3} + K_{n_4}$.

G can be obtained by substituting u, v, w and x by $K_{n_1}, K_{n_2}, K_{n_3}$ and K_{n_4} respectively. We calculate the pebbling number of G in four steps.

Step 1: Replace one pendant vertex of P_4 say u by K_{n_1}. Let G_1 be the new graph obtained. It is easy to see that $f(G_1) = n_1 + 7$.

Step 2: We now replace x in G_1 by K_{n_4}. Let G_2 be the new graph obtained. Then $f(G_2) = n_1 + n_4 + 6$.

Step 3: In G_2, we substitute K_{n_2} in the place of v. Let G_3 be the new graph obtained.

We have $f(G_3) = \begin{cases} n + 3, & \text{if } n_2 = 2 \\ n + 2, & \text{if } n_2 = 3 \\ n + 1, & \text{if } n_2 \geq 4. \end{cases}$
Step 4: The vertex w in G_3 is replaced by K_{n_3}. Let G_4 be the new graph obtained. We see that G_4 is required graph G. Again it is easy to prove that

$$f(G) = \begin{cases} n & \text{if } n_2+n_3 \geq 6 \\ n+1 & \text{if } n_2+n_3 = 5 \\ n+2 & \text{if } n_2-n_3 = 2 \end{cases}$$

Hence the theorem

We now have the following conjecture.
Conjecture 7: If $G = K_{n_1} + K_{n_2} + \ldots + K_{n_r}$, $r \geq 4$, then G is class 0 if n_2, n_3, \ldots, $n_{r-1} \geq \frac{2r}{r-1}$

Acknowledgement
I am grateful to Prof M I Jinnah for his help in preparing this paper.

References