Characterization of Two Domination Number and Chromatic Number of a Graph

G. Mahadevan, A. Selvam Avadyappan and A. Mydeen bibi

1Department of Mathematics, Anna University of Technology, Tirunelveli-627002, India.
E-mail: gmaha2003@yahoo.co.in

2Department of Mathematics, V.H.N.S.N. College, Virudhunagar, India.
E-mail: avadayappan@yahoo.co.in

3Research Scholar, Mother Teresa Women’s University, Kodaikanal, India.
E-mail: amydeen2006@yahoo.co.in

Abstract

A Subset S of V is called a dominating set in G if every vertex in V-S is adjacent to at least one vertex in S. A Dominating set is said to be two dominating set if every vertex in V-S is adjacent to at least two vertices in S. The minimum cardinality taken over all, the minimal two dominating set is called two domination number and is denoted by $\gamma_2(G)$. The minimum number of colors required to colour all the vertices such that adjacent vertices do not receive the same colour is the chromatic number $\chi(G)$. In this paper, we characterize the classes of graphs whose sum of two domination number and chromatic number is equals to 2n-5 and 2n – 6.

Keywords: Two Domination Number, Chromatic Number.

AMS Subject Classification: 05C.

Introduction

Let $G= (V, E)$ be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with u and is denoted by $d(u)$. The minimum and maximum degree of a vertex is denoted by $\delta(G)$ and $\Delta(G)$ respectively; P_n denotes the path on n vertices. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph. A colouring of a graph is an assignment of colours to its vertices so that two adjacent vertices have the same color. An n-colouring of a graph G uses n colours. The Chromatic Number χ is defined to be
the minimum n for which G has an n-colouring. If $\chi(G) = k$ but $\chi(G) < k$, for every proper subgraph H of G, then G is k-critical.

A subset S of V is called a dominating set in G if every vertex in V-S is adjacent to at least one vertex in S. The minimum cardinality taken over all dominating sets in G is called the domination number of G and is denoted by γ. A dominating set is said to be two dominating set if every vertex in V-S is adjacent to at least two vertices in S. The minimum cardinality taken over all the minimal two dominating set is called two domination number and is denoted by $\gamma_2(G)$.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [10], Paulraj Joseph J and Arumugam S proved that $\gamma + k \leq p$. In [11], Paulraj Joseph J and Arumugam S proved that $\gamma + \chi = p + 1$. They also characterized the class of graphs for which the upper bound is attained. They also proved similar results for γ and γ_t. In [7], Paulraj Joseph J and Mahadevan G, proved that $\gamma_{cc} + \chi \leq 2n - 1$ and characterized the corresponding extremal graphs. In [12], Paulraj Joseph J and Mahadevan G proved that $\gamma_{pr} + \chi \leq 2n - 1$ and characterized the corresponding extremal graphs. In [8], Paulraj Joseph J and Mahadevan G introduced the concept of complementary perfect domination number γ_{cp} and proved that $\gamma_{cp} + \chi \leq 2n - 2$, and characterized the corresponding extremal graphs. They also obtained the similar results for the induced complementary perfect domination number and chromatic number of a graph. In this paper, we obtain sharp upper bound for the sum of the two domination number and chromatic number and characterize the corresponding extremal graphs. Terms not defined here, are used in the sense of Hanary[1].

Notations: $K_n (P_m)$ denotes the graph obtained from K_n by attaching the end vertex of P_m to any one of the vertices of K_n. $K_n (m_1, m_2, m_3, \ldots, m_k)$ denotes the graph obtained from K_n by attaching m_1 edges to the vertex u_i of K_n, m_2 edges to the vertex u_j for $i \neq j$ of K_n, ..., m_k edges to all the distinct vertices of K_n.

Previous Results

Theorem 1.1: For any connected graph G, $\gamma_2(G) \leq n$

Theorem 1.2: For any connected graph G, $\chi(G) \leq \Delta(G) + 1$

Theorem 1.3: For any connected graph G, $\gamma_2(G) + \chi(G) \leq 2n$ and the equality holds if and only if $G \cong K_2$.

Main Results

Theorem 2.1: For any connected graph G, $\gamma_2(G) + \chi(G) = 2n - 5$ if and only if $G \cong K_2(4,0,0)$, $K_2(3,1,0)$, $K_2(2,2,0)$, $S(K_1,3)$, $K_4(1,1,1,0)$, $K_4(3,0,0,0)$, $K_4(2,1,0,0)$, $K_5(P_3)$, $K_3(P_3,P_2,0)$, $K_4(P_3)$, $K_5(2,0,0,0,0)$, $K_5(2,2,0,0,0)$, $K_6(P_2)$, K_7 or one of the following graphs in the figure 2.1.
Proof: If \(G \) is anyone of the graph given in the figure, then clearly \(\gamma_2(G) + \chi(G) = 2n - 5 \). Conversely assume that \(\gamma_2(G) + \chi(G) = 2n - 5 \). This is possible only if \(\gamma_2 = n, \chi = n - 5 \) (or) \(\gamma_2 = n - 1, \chi = n - 4 \) (or) \(\gamma_2 = n - 2, \chi = n - 3 \) (or) \(\gamma_2 = n - 3, \chi = n - 2 \) (or) \(\gamma_2 = n - 4, \chi = n - 1 \) (or) \(\gamma_2 = n - 5, \chi = n \).

Case (i) Let \(\gamma_2 = n \) and \(\chi = n - 5 \), since \(\chi = n - 5 \), \(G \) contains a clique \(K \) on \(n - 5 \) vertices. Let \(S = \{x_1, x_2, x_3, x_4, x_5\} \in V - S \). Then \(<S> = K_5, \bar{K}_5, P_5, K_4 \cup K_1, P_3 \cup K_2, K_4, P_2 \cup K_3, K_2, K_3 \cup K_2 \). In all the above cases, it can be verified that no new graph exists.

Case (ii) Let \(\gamma_2 = n - 1 \) and \(\chi = n - 4 \), since \(\chi = n - 4 \), \(G \) contains a clique \(K \) on \(n - 4 \) vertices. Let \(S = \{x_1, x_2, x_3, x_4\} \). Then \(<S> = K_4, \bar{K}_4, P_4, K_3 \cup K_1, K_3 \cup K_2, K_2 \cup K_3 \). If \(<S> = K_4 \), then no graph exists.

Subcase (a) Let \(<S> = \bar{K}_4 \), since \(G \) is connected. One of the vertices of \(K_{n-4} \) say \(u_i \) is adjacent to all the vertices of \(S \) (or) three vertices of \(S \) are adjacent to the vertex \(u_i \) and the fourth one is adjacent to \(u_i \) for \(i \neq j \) (or) two vertices of \(S \) are adjacent to the vertex \(u_i \) and the remaining vertices of \(S \) are adjacent to \(u_j \) (or) two vertices of \(S \) are adjacent to the vertex \(u_i \) and in the remaining vertices one is adjacent to \(u_j \) and another one is adjacent to \(u_k \) for \(i \neq j \neq k \) (or) all the vertices of \(S \) are adjacent to the distinct vertices of \(K_{n-4} \). Then in all the cases, \(\gamma_2 = 6 \), since \(\gamma_2 = n - 1 \). So that \(n = 7 \). Since \(\chi = n - 4 = 3 \). Hence \(K = K_3 \). Let \(u_1, u_2, u_3 \) be the vertices of \(K_3 \). If all the vertices of \(S \) are adjacent to \(u_1 \) then \(\gamma_2 = 6 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \). Hence \(G \cong G_1 \). If three vertices of \(S \) are adjacent to \(u_1 \) and the fourth one is adjacent to \(u_2 \) then \(\gamma_2 = 6 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \). Hence \(G \cong G_3 \). If two vertices of \(S \) are adjacent to \(u_1 \) and the remaining two vertices are adjacent to \(u_2 \), then \(\gamma_2 = 6 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \). Hence \(G \cong G_3 \). If two vertices of \(S \) are adjacent to \(u_1 \) and the remaining two vertices are adjacent to \(u_2 \), then \(\gamma_2 = 6 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \). Hence \(G \cong G_3 \).

Subcase (b) Let \(<S> = P_4 = (x_1, x_2, x_3, x_4) \), since \(G \) is connected. There exists a vertex say \(u_i \) in \(K_{n-4} \) is adjacent to \(x_1 \) (or equivalently \(x_4 \)) (or) \(x_2 \) (or equivalently \(x_3 \)). Let \(u_i \) be

![Figure 2.1](image-url)
adjacent to \(x_1\). Then \(\{x_2, x_4, u_i, u_j\}\) for \(i \neq j\) is a \(\gamma_2\) set. So that \(\gamma_2 = 4\), since \(\gamma_2 = n-1\) implies that \(n=5\). Since \(\chi = n - 4 = 1\) which is a contradiction. Since \(G\) is totally disconnected. Hence no graph exists. Let \(u_i\) be adjacent to \(x_2\). Then \(\{x_1, x_2, x_4, u_i, u_j\}\) for \(i \neq j\) is a \(\gamma_2\) set. So that \(\gamma_2 = 5\), since \(\gamma_2 = n-1\) implies that \(n=6\). Since \(\chi = n - 4 = 2\). Hence \(K = K_2 = uv\).

If \(u\) is adjacent to \(x_1\) then \(\gamma_2 = 4\) which is a contradiction. Hence no graph exists.

Subcase(c) Let \(<S> = K_{4,3}\). Let the vertex \(x_1\) be adjacent to \(x_2, x_3, x_4\). Since \(G\) is connected, there exists a vertex \(u_i\) in \(K_n-4\) which is adjacent to \(x_1\) or any one of \(\{x_2, x_3, x_4\}\). Let \(u_i\) be adjacent to \(x_1\), then \(\{x_2, x_3, x_4, u_i, u_j\}\) for \(i \neq j\) is a \(\gamma_2\) set so that \(\gamma_2 = 5\), since \(\gamma_2 = n-1\) implies that \(n=6\). Since \(\chi = n - 4 = 2\). Hence \(K = K_4\). Let \(u_1, u_2, u_3\) be the vertices of \(K_4\). Without loss of generality, \(u_1\) is adjacent to \(x\) and \(u_2\) is adjacent to \(y\) and \(u_3\) is adjacent to \(z\) since \(\gamma_2 = 4\). If \(d(x) = d(y) = d(z) = 1\). Then \(G \cong G_4\).

Subcase(d) Let \(<S> = K_2 \cup K_1\). Let \(xy\) be the edge in \(K_2 \cup K_1\), since \(G\) is connected. There exists a \(u_i\) in \(K_{n-3}\) is adjacent to \(x\). If \(z\) is adjacent to same \(u_i\) or \(z\) is adjacent to \(u_j\) for \(i \neq j\) in \(K_{n-3}\). Then \(\{y, z, u_i, u_j\}\) for \(i \neq j\) is a \(\gamma_2\) set. So that \(n=6\). Hence \(K = K_3\). Let \(u_1, u_2, u_3\) be the vertices of \(K_3\). If \(u_1\) is adjacent to \(x\), then \(\gamma_2 = 4\). Hence \(G \cong G_3\). If \(u_1\) is adjacent to \(y\), then \(\gamma_2 = 4\). Hence \(G \cong G_2\).

Case (iv) Let \(\gamma_2 = n-3\) and \(\chi = n-2\), since \(\chi = n-2\), \(G\) contains a clique \(K\) on \(n-2\) vertices. Let \(S = \{x, y\} \in V-S\). \(<S> = K_2\) or \(K_2\).
Characterization of Two Domination Number

Subcase (a) Let $\langle S \rangle = K_2$, since G is connected. There exists a vertex u_i in K_{n-2} is adjacent to x. Then $\{y, u_i, u_j\}$ is a γ_2 set. So that $n=6$. Hence $K=K_4$. Let u_1, u_2, u_3, u_4 be the vertices of K_4. Let u_i be adjacent to x, if $d(x) = 2$ and $d(y) = 1$, then $G \cong K_4(P_3)$.

Subcase (b) Let $\langle S \rangle = \overline{K}_2$, since G is connected. There exists a vertex u_i in K_{n-2} is adjacent to x and y (or) x is adjacent to u_i and y is adjacent to u_j. In both the cases, $\{x, y, u_i, u_j\}$ is a γ_2 set. So that $n=7$, hence $K=K_5$. Let u_1, u_2, u_3, u_4, u_5 be the vertices of K_5. Let x and y be adjacent to u_1 then $\gamma_2 = 4$. If $d(x) = d(y) = 1$, then $G \cong K_5(2,0,0,0,0)$. Let u_1 be adjacent to x and u_2 be adjacent to y, then $\gamma_2 = 4$. If $d(x) = d(y) = 1$, then $G \cong K_5(1,1,0,0,0)$.

Case (v) Let $\gamma_2 = n-4$ and $\chi = n-1$, since $\chi = n-1$, G contains a clique K on $n-1$ vertices or does not contain a clique on $n-1$ vertices. There exists a vertex u_i in K_{n-1} is adjacent to x. Then $\{x, u_i, u_j\}$ for $i \neq j$ is a γ_2 set. So that $n = 7$. Hence $K=K_6$. Let $u_1, u_2, u_3, u_4, u_5, u_6$ be the vertices of K_6. Let u_1 is adjacent to x, so that $\gamma_2 = 3$. If $d(x) = 1$, then $G \cong K_6(P_2)$.

Case (vi) Let $\gamma_2 = n-5$ and $\chi = n$, since $\chi = n$. Then $G = K_n$, but for K_n, $\gamma_2 = 2$ implies that $n=7$. Hence $G \cong K_7$.

Theorem 2.2: For any connected G, $\gamma_2(G) + \chi(G) = 2n-6$ if and if only $G \cong K_3(5,0,0)$, $S(K_1,6)$, $K_4(4,0,0,0)$, $K_4(3,1,0,0)$, $K_4(2,2,0,0)$, P_6, $K_5(1,3,0)$, $K_5(3,0,0,0,0)$, $K_5(2,1,0,0,0)$, $K_5(1,1,1,0,0)$, $K_4(P_4)$, $K_5(P_3)$, $K_6(2,0,0,0,0,0)$, $K_6(1,1,0,0,0,0)$, $K_7(1,0,0,0,0,0)$, K_8 or any one of the following graphs in the figure 2.2.
Proof: If \(G \) is anyone of the graph given in the figure, then clearly \(\gamma_2(G) + \chi(G) = 2n-6 \), conversely assume that \(\gamma_2(G) + \chi(G) = 2n-6 \). This is possible only if \(\gamma_2(G) = n \), \(\chi(G) = n-6 \)(or)\(\gamma_2(G) = n-1 \), \(\chi(G) = n-5 \)(or)\(\gamma_2(G) = n-2 \), \(\chi(G) = n-4 \)(or)\(\gamma_2(G) = n-3 \), \(\chi(G) = n-3 \)(or)\(\gamma_2(G) = n-4 \), \(\chi(G) = n-2 \)(or)\(\gamma_2(G) = n-5 \), \(\chi(G) = n-1 \)(or)\(\gamma_2(G) = n-6 \), \(\chi(G) = n \).

Case (i) Let \(\gamma_2(G) = n \), \(\chi(G) = n-6 \), since \(\chi = n-6 \), \(G \) contains a clique \(K \) on \(n-6 \) vertices. Let \(S = \{x_1, x_2, x_3, x_4, x_5, x_6\} \in V-S \). Then \(\langle S \rangle = K_6, K_6, P_6, K_3 \cup K_3, K_2 \cup K_2, P_3 \cup K_3, K_2 \cup K_4, K_1, K_3, K_3, K_2, 4 \).

If \(\langle S \rangle = K_6 \), then no graph exists.

Subcase(a) Let \(\langle S \rangle = K_6 \). Since \(G \) is connected, one of the vertices of \(K_{n-6} \) say \(u_i \) is adjacent to all the vertices of \(S \). Then \(\gamma_2 = 8 \). Hence \(n = 8 \). So that \(K = K_2 = uv \). In all the cases, no new graph exists.

For all the remaining cases, no new graph exists.

Case (ii) Let \(\gamma_2(G) = n-1 \), \(\chi(G) = n-5 \). Since \(\chi = n-5 \), \(G \) contains a clique \(K \) on \(n-5 \) vertices or does not contain a clique \(K \) on \(n-5 \) vertices. Let \(S = \{x_1, x_2, x_3, x_4, x_5\} \in V-S \). Then \(\langle S \rangle = K_5, K_5, P_5, P_3 \cup K_2, K_3 \cup K_4, K_4 \cup K_1, P_4 \cup K_1, K_1, K_2, 3 \).

If \(\langle S \rangle = K_5 \), then no graph exists.
Subcase(a) Let \(\langle S \rangle = \overline{K}_5 \). Since \(G \) is connected. There exists a vertex \(u_i \) in \(K_{n-5} \) is adjacent to all the vertices of \(S \) (or) four vertices of \(S \) (or) three vertices of \(S \) (or) two vertices on \(S \) (or) one vertex of \(S \). Then in all the cases, \(\{ x_1, x_2, x_3, x_4, x_5, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(\gamma_2 = 7 \). Hence \(n = 8 \). So that \(K = K_4 \). Let \(u_1, u_2, u_3, u_4 \) be the vertices of \(K_3 \). If \(u_1 \) is adjacent to all the vertices of \(S \) and if \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = d(x_5) = 1 \), then \(G \cong K_4(5,0,0) \). In all other cases, no new graph exists.

Subcase(b) Let \(\langle S \rangle = P_4 \cup K_1 \). Since \(G \) is connected. Let \(P_4 = (x_1, x_2, x_3, x_4) \) and \(x_5 \) be the vertex of \(K_1 \). There exists a \(u_i \) in \(K_{n-5} \) is adjacent to \(x_1 \) and \(x_5 \) (or) \(u_i \) is adjacent to \(x_1 \) and \(u_j \) for \(i \neq j \) is adjacent to \(x_5 \). Then in both the cases \(\{ x_2, x_4, x_5, u_i, u_j \} \) is a \(\gamma \) set. So that \(n = 6 \), since \(\chi = n-5 = 1 \), for which \(G \) is totally disconnected. Hence no graph exists. If \(u_i \) is a adjacent to \(x_2 \) (or equivalently \(x_3 \)) and \(x_5 \). Then \(\{ x_1, x_3, x_4, x_5, u_i, u_j \} \) is a \(\gamma \) set. So that \(n = 7 \). Hence \(K = K_2 = uv \). If \(u \) is adjacent to \(x_2 \) and \(x_5 \), then \(G \cong G_1 \). In all other cases, no new graph exists.

Subcase(c) Let \(\langle S \rangle = K_1, 4 \). Since \(G \) is connected. Let the vertex \(x_1 \) be adjacent to \(x_2, x_3, x_4, x_5 \). There exists a vertex \(u_i \) in \(K_{n-5} \) which is adjacent to \(x_1 \) or any one of \(\{ x_2, x_3, x_4, x_5 \} \). Then \(\{ x_2, x_3, x_4, x_5, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(n = 7 \). Hence \(K = K_2 = uv \).

For all the remaining cases, no new graph exists.

Case (iii) Let \(\gamma_2 (G) = n-2 \), \(\chi (G) = n-4 \), since \(\chi = n-4 \), \(G \) contains a clique \(K \) on \((n-4) \) vertices or does not contain a clique \(K \) on \(n-4 \) vertices. Let \(S = \{ x_1, x_2, x_3, x_4 \} \in V-S \).

Then \(\langle S \rangle = K_4, K_4, P_4, K_3 \cup K_1, K_1, K_2 \cup K_2, P_3 \cup K_1 \).

If \(\langle S \rangle = K_4 \), then no graph exists.

Subcase(a) Let \(\langle S \rangle = \overline{K}_4 \). Since \(G \) is connected, one of the vertices of \(K_{n-4} \) says \(u_i \) is adjacent to all the vertices of \(S \) (or) three vertices of \(S \) (or) two vertices of \(S \) (or) one vertex of \(S \). Then in all the cases, \(\{ x_1, x_2, x_3, x_4, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(n = 8 \). Hence \(K = K_4 \). Let \(u_1, u_2, u_3, u_4 \) be the vertices of \(K_4 \). If all the vertices of \(S \) are adjacent to \(u_1 \), then \(\gamma_2 = 6 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \). Hence \(G \cong K_4(4, 0, 0, 0) \). If three vertices of \(S \) are adjacent to \(u_1 \) and the fourth one is adjacent to \(u_2 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \), then \(\gamma_2 = 6 \). Hence \(G \cong K_4(3, 1, 0, 0) \). If two vertices of \(S \) are adjacent to \(u_1 \) and the remaining two vertices are adjacent to \(u_2 \) and \(d(x_1) = d(x_2) = d(x_3) = d(x_4) = 1 \), then \(\gamma_2 = 6 \). Hence \(G \cong K_4(2, 2, 0, 0) \).

Subcase(b) Let \(\langle S \rangle = P_4 = (x_1, x_2, x_3, x_4) \). Since \(G \) is connected, there exists a vertex say \(u_i \) in \(K_{n-4} \) is adjacent to \(x_1 \) (or equivalently \(x_4 \)) (or) \(x_2 \) (or equivalently \(x_3 \)). Let \(u_i \) be adjacent to \(x_1 \), then \(\{ x_2, x_3, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(n = 6 \). Hence \(K = K_2 = uv \).

If \(u_1 \) is adjacent to \(u \), then \(\gamma_2 = 4 \). Hence \(G \cong P_6 \). Let \(u_i \) be adjacent to \(x_2 \), then \(\{ x_1, x_3, x_4, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(n = 7 \). Hence \(K = K_3 \). Let \(u_1, u_2, u_3 \) be the vertices of \(K_3 \). If \(x_1 \) of \(S \) is adjacent to \(u_1 \), then \(\gamma_2 = 4 \), which is a contradiction. Hence no graph exists.

Subcase(c) Let \(\langle S \rangle = K_1, 3 \). Let the vertex \(x_1 \) be adjacent to \(x_2, x_3, x_4 \). Since \(G \) is connected, there exists a vertex \(u_i \) in \(K_{n-4} \) which is adjacent to \(x_1 \) or any one of \((x_2, x_3, x_4) \). Then in both the cases, \(\{ x_2, x_3, x_4, u_i, u_j \} \) for \(i \neq j \) is a \(\gamma \) set. So that \(n = 7 \).
Hence $K=K_3$. Let u_1,u_2,u_3 be the vertices of K_3. If u_1 is adjacent to x_1 then $\gamma_2 = 5$. Hence $G \cong G_3$. If u_4 is adjacent to x_4 then $\gamma_2 = 5$. Hence $G \cong G_4$.

Subcase (d) Let $<S> = P_3 \cup K_1$. Let $P_3 = (x_2,x_3,x_4)$. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to x_1. Again since G is connected, we consider the following two situations: (i) The vertex u_i is adjacent to x_2 (or equivalently x_4) or x_3. (ii) There exists a vertex u_i for $i \neq j$ in K_{n-4} such that u_i is adjacent to x_2 (or equivalently x_4) or x_3. Then in all the cases, $\{x_1,x_2,x_4,u_i,u_j\}$ for $i \neq j$ is a γ_2 set. So that $n=7$. Hence $K=K_3$. Let u_1,u_2,u_3 be the vertices of K_3. Let u_1 be adjacent to x_1 and x_2 (or equivalently x_3) and let u_2 be adjacent to x_2 (or equivalently x_1) and let u_1 be adjacent to x_1 and x_3. Then in all the cases, $\gamma_2 = 5$. Hence $G \cong G_5,G_6,G_7,K_3(1,3,0)$.

Subcase (e) Let $<S> = K_2 \cup K_2$. Let x_1x_2 and x_3x_4 be the edges in $<S>$. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to x_1 and x_3 in S (or) u_i is adjacent to x_1 and u_j is adjacent to x_3 for $i \neq j$ in K_{n-4}. Then in both the cases, $\{x_2,x_4,u_i,u_j\}$ for $i \neq j$ is a γ_2 set, hence $\gamma_2 = 4$, so that $n=6$. Hence $K=K_2 = uv$. If u is adjacent to x_1 and x_3 then $\gamma_2 = 4$. Hence $G \cong G_8$. If u is adjacent to x_1 and v is adjacent to x_3, then $\gamma_2 = 4$. Hence $G \cong G_9$.

Subcase (f) Let $<S> = K_3 \cup K_1$. Since G is connected, there exists a vertex u_i in K_{n-4} such that x_1 and x_4 (or) u_i is adjacent to x_1 and u_j is adjacent to x_4 for $i \neq j$ in K_{n-4}. Then in both the cases, $\{x_2,x_3,x_4,u_i,u_j\}$ for $i \neq j$ is a γ_2 set of G. So that $\gamma_2 = 5$. Hence $n=7$. Since $\chi = n-4 = 3$. Hence $K=K_3$. Let u_1,u_2,u_3 be the vertices of K_3. If u_1 is adjacent to x_1 and x_3 then $\gamma_2 = 5$. Hence $G \cong G_{10}$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_3, then $\gamma_2 = 4$, which is a contradiction. Hence no graph exists.

Case (iv) Let $\gamma_2 = n-3$ & $\chi = n-3$. Since G is connected. Since $\chi = n-3$, G contains a clique K on $(n-3)$ vertices or does not contain a clique K on $(n-3)$ vertices. Let $S = \{x_1,x_2,x_3\} \in V-S$. Then $<S> = K_3,K_3, P_3 , K_2 \cup K_1 , P_2 \cup K_1$.

Subcase (a) Let $<S> = K_3$. Since G is connected, let x_1 be adjacent to u_i for some i in K_{n-3}. Then $\{x_1,x_2,x_3,u_i,u_j\}$ for $i \neq j$ is a γ_2 set . So that $\gamma_2 = 4$ implies that $n=7$. Hence $K=K_4$. Let u_1,u_2,u_3,u_4 be the vertices of K_4. If u_1 is adjacent to x_1 then $\gamma_2 = 4$. Hence $G \cong G_{11}$. If u_1 is adjacent to x_2 and u_2 is adjacent to x_3 and u_3 is adjacent to x_4, then $\gamma_2 = 4$, which is a contradiction. Hence no graph exists.
There exists an u_i in K_{n-3} is adjacent to x_1 and x_3 (or) u_i is adjacent to x_1 and u_j for $i \neq j$ is adjacent to x_3. Then in both the cases, $\{x_2,x_3,u_i,u_j\}$ for $i \neq j$ is a γ_2 set. So that $\gamma_2=4$, implies that $n=7$. Hence $K=K_7$. Let u_1,u_2,u_3,u_4 be the vertices of K_4. If u_1 is adjacent to x_1 and x_3, then $\gamma_2=4$ and $d(x_1)=2$ and $d(x_2)=d(x_3)=1$. Hence $G \cong G_{12}$. If u_1 is adjacent to x_1 and u_2 is adjacent to x_3, then $\gamma_2=4$. Hence $G \cong G_{13}$.

Case (v): Let $\gamma_2=n-4$ and $\chi=n-2$, since $\chi=n-2$, G contains a clique K on $(n-2)$ vertices or does not contain a clique K on $n-2$ vertices. Let $S=\{x_1,x_2\} \in V-S$. Then $<S>=K_2$ or K_2.

Subcase(a) Let $<S>=K_2$. Since G is connected, there exists a vertex u_i in K_{n-2} is adjacent to x_1. Then $\{x_2,u_i,u_j\}$ for $i \neq j$ is a γ_2 set. So that $n=7$. Hence $K=K_7$. Let u_1,u_2,u_3,u_4,u_5 be the vertices of K_5. If u_i is adjacent to x_1, then $\gamma_2=3$ and $d(x_1)=2$, $d(x_2)=1$. Hence $G \cong K_5(P_3)$.

Subcase(b) Let $<S>=K_2$. Since G is connected, there exists a vertex u_i in K_{n-2} is adjacent to x_1 and x_2 (or) If u_i is adjacent to x_1 and u_j for $i \neq j$ is adjacent to x_2. Then in both the cases, $\{x_1,x_2,u_i,u_j\}$ for $i \neq j$ is a γ_2 set. So that $n=8$. Hence $K=K_8$. Let u_1,u_2,u_3,u_4,u_5,u_6 be the vertices of K_6. If x_1 and x_2 be adjacent to u_1, then $\gamma_2=4$ and $d(x_1)=d(x_2)=1$. Hence $G \cong K_8(2,0,0,0,0,0)$. If x_1 is adjacent to u_1 and x_2 is adjacent to u_2, then $\gamma_2=4$ and $d(x_1)=d(x_2)=1$. Hence $G \cong K_8(1,1,0,0,0,0)$.

Case (vi) Let $\gamma_2=n-5$ and $\chi=n-1$, since $\chi=n-1$, G contains a clique K on $(n-1)$ vertices or does not contain a clique K on $n-1$ vertices. There exists a vertex u_i in K_{n-1} is adjacent to x. Then $\{x,u_i,u_j\}$ for $i \neq j$ is a γ_2 set. So that $n=8$. Hence $K=K_8$. Let $u_1,u_2,u_3,u_4,u_5,u_6,u_7$ be the vertices of K_7. If u_i is adjacent to x then $\gamma_2=3$. Hence $G \cong K_8(1,0,0,0,0,0,0)$.

Case (vii) Let $\gamma_2=n-6$ and $\chi=n$, since $\chi=n$ then $G=K_n$, G must be complete. But for K_n, $\gamma_2=2$. So that $n=8$. Hence $G \cong K_8$.

References

