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Abstract 

In a pendulum, if the weight of the rod and friction at bearings are considered, 

this is called a real pendulum. If a constant torque T acts on it which opposes 

the rotational motion, as in case of dynamic friction, it will dissipate energy as 

heat due to work done by friction and the amplitude of oscillation will 

gradually decrease. In this study, a real pendulum is taken up for analysis. 

Expressions are derived for angular velocity and angular acceleration with or 

without constant resisting torque acting on it. Further, the motion is analyzed 

to find gradually decreasing amplitudes in successive swings. As a next step, it 

is presumed that energy is manually supplied at one end after each one full 

swing of the pendulum so that the pendulum goes on oscillating between two 

extreme fixed deflection angles. The energy manually supplied at the end of 

each cycle is converted to work done by pendulum in the ensuing cycle. 

Keywords: Real pendulum; swing; energy; angular velocity; angular 

acceleration.  

 

1 INTRODUCTION 

If the mass of the string / rod is not considered, it is a simple pendulum with time 

period of oscillation      
 

 
  . In the real pendulum the mass of the rod is also 

considered. In this study the mass of the rod is considered and a disc with the centre at 

the pivot point of the pendulum is also considered. Energy is manually imparted to the 

pendulum at one end of the swing and work output is obtained at the pin at the pivot 

point of the pendulum. Maintaining the proper energy balance, the manual energy 

input can be converted to work done at the end of the pivot pin. This energy output 

can be utilized in various ways such as running a compressor of an air-conditioner / 

refrigerator etc. 
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Nakamura et al. [1] proposed construction of a simulator for the real pendulum 

covering the upswing phase of the pendulum motion. Tarzo and Peranzoni [2] 

presented use of real time data acquisition with the aid of simple numerical 

simulations and included the analysis of both damping and large oscillations. Mathew 

et al. [3] elaborated on design of a controller for swinging up an inverted pendulum 

from downward equilibrium position to an upright unstable equilibrium position. 

Alvarez-Icaza [4] designed an IDA-PBC (Interconnection and damping assignment 

passivity based control) to stabilize an inverted pendulum in upright position. 

Okanouchi et al. [5] used a variable length pendulum with pivot movable in horizontal 

direction to control the dampening of oscillations. Xin Xin [6] worked on analysis of 

energy based swing up control of a cart – double pendulum system. Analysis of 

convergence of energy was used to show that in long run the energy of the system can 

be controlled to the energy at the up-right equilibrium position.  Takhaashi et al. [7] 

showed that, by controlling the amplitude of sinusoidal signal provided at the pivot of 

a single link pendulum, the pendulum can be swung from the pendant position to the 

up-right position. Aoustin et al. [8] considered three unstable equilibrium positions of 

a two link pendulum. They contemplated stabilization of the system with a flywheel.  

 In this work, angular velocity and angular acceleration are calculated at different 

angles of the pendulum swing in all the four relevant sectors of the movement of the 

pendulum i.e. moving up and moving down on the right and on the left side of the 

equilibrium position. Considerations of the conservation of energy are applied and 

energy losses due to friction, available energy at the output point are calculated for 

utilization in useful work output. 

2 SIMPLE PENDULUM 

  In a simple pendulum, the bob of mass M is connected to the pivot through a string 

or a mass less rod of length l (Fig.1). The forces acting on the bob, as shown in the 

figure are weight of the bob Mg and tension T in the rod. The restoring torque at an 

angle θ is provided by the component Mg sin  and the moment of inertia of the bob 

about the axis of rotation O is M 2 . 
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The governing equation for the system is: 
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This is angular simple harmonic motion with angular frequency 


g
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g
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3  REAL PENDULUM – WITHOUT RESISTING TORQUE 

In case of a real pendulum, mass m of the rod is also considered and the restoring 

torque becomes 

 sin
2

sin


 mgMg   

We may also consider a disc of mass m’ and radius r attached to the rod and pivoted 

at O (Fig.2). Expressions will be derived for angular velocity and angular acceleration 

of the pendulum at a deflection   based on principle of conservation of mechanical 

energy and linear relationship between torque and angular acceleration (  I ). 

 

3.1 Angular Velocity ( ) 

 To calculate angular velocity   at an angular deflection  , energy conservation 

principle can be applied as no non-conservative forces are acting on the system. The 

principle of conservation of mechanical energy envisages that  

KE + PE = constant at any position 
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 Considering that the pendulum was initially released from an angular deflection   

and taking lowest position of the bob as reference level with PE = 0, the above 

equation leads to (Fig.2)  

KE1 + PE1    =   KE2    +   PE2 
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Where I’, I” are moments of inertia of rod and disc respectively about the axis through 

‘O’. Rotational KE of bob about its own axis is neglected taking the size of the bob 

(radius) small.  

Hence, 
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The graph in Fig.3 (a) shows the variation of    with cos  a parabolic curve. As the 

pendulum is released at position 1 with cos  cos and ,0  the pendulum 
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accelerates up to equilibrium position 2 with        following a parabolic 

curve. From 2 onwards   increases in –ve direction and cos  decreases from 1.0 to 

position 3 where again 0  and  cos  cos . From 3 to 4,   increases from 0 to 

        in opposite direction and cos  increases from cos   to 1.0. From 4 to 1, 

  increases and cos  decreases from 1.0 to cos   and the value of   becomes 0. 

 

3.2 Angular Acceleration ( )  

Angular acceleration     at an angular deflection   is calculated from the formula 

 I . 

Restoring Torque = Mg  sin
2

sin


 mg  

       
 

 
         (-ve sign is used as    is opposite to ) 
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The graph in figure 4 shows variation of angular acceleration   with . 

The pendulum moves from position 12341 as shown in figure 4 and value of 

  changes from - ' sin   to 0 , 0 to ' sin  , ' sin   to 0 and 0 to - ' sin   as a 

sinusoidal function. 

Example: Consider a real pendulum with following parameters. 

Mass of bob (M) = 60 kg; Radius of disc(r) = 0.25 m; Mass of rod (m) = 0.5kg; Initial 

deflection  ( ) = 80 0 ; Length of rod () = 1m; Mass of disc (m’)   = 1kg 

Angular velocity  is given by the equation 
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411.3cos64.192     

 

For example, at 60.1341.3866.064.19,30 20   ; 69.3  rad/s 

Angular acceleration   is given by the equation  sin . 
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For example at 
2

1
82.9,30 0   ; 91.4  rad/s 2  

(-ve sign indicates that angular acceleration is in opposite direction to the deflection) 

 

 

 

4  REAL PENDULUM WITH CONSTANT RESISTING TORQUE: 

In this case it is assumed that a constant resisting torque T acts on the real pendulum 

described in section 3. This torque T may be due to dynamic friction or an external 

load at the pivot point. Angular velocity and angular acceleration for this model are 

derived below. 

 

 4.1 Angular Velocity ( ) 

Since non-conservative forces (due to friction/external load) are also acting on the 

pendulum, we apply work energy theorem. The initial potential energy Mgl(1 – 

cosØ0) equals the new potential energy Mgl(1 – cosØ1) plus the energy lost due to the 

dry friction work C(Ø0 + Ø1) (Torzo, Giacomo et al [3]). 

∆KE = work done on the system by all the forces 

 

Sector 1 (Extreme Right to Equilibrium Position) 

Movement of the pendulum is clockwise and resisting torque is counterclockwise. See 

figure 5 
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Sector 2   (Equilibrium position to extreme left) 

 

Movement of the pendulum is clockwise and torque T is counterclockwise. See figure 

6. 
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(η,   and µ are as explained in sector 1)  

:1 Maximum angle in sector 2 

The pendulum stops at 
1   angle in sector 2. 

∆KE= 0 (initial and final angular velocities are zero) 
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1  is calculated from the above equation by hit and trial method. 
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Sector 3 (Extreme left to equilibrium position) 

Movement of pendulum is counterclockwise and torque T is clockwise. See figure 7. 
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Sector 4 (Equilibrium position to extreme right) 

Movement of the pendulum is counterclockwise and torque T is clockwise (Ref.figure 

8). 
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Where ,   and  are as defined earlier 
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(b) Angular Acceleration (α) 

Sector 1: (Extreme right to equilibrium position). See figure 9. 

Torque= ]sin
2

sin[ TmgMg  


  

I= 222

2

1

3

1
rmmM    

 I  

]
2

1

3

1
[

sin)
2

(

222
1

rmmM

Tg
m

M

I








 


  

I

T
  sin1     -------------(8) 

Where
I

g
m

M )
2

( 

 and 222

2

1

3

1
rmmMI    

Sector 2 (Equilibrium position to extreme left  

Torque TmgMg   sin
2

sin


  

I

T

I

g
m

M










sin)
2

(

2



 

I

T
  sin2    --------------------(9) 

 

 

 

 



Functional Analysis and Energy Input/Output Modeling of a Real Pendulum 91 

 

 

Sector 3 (Extreme left to equilibrium position) 

Torque TmgMg   sin
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Sector 4 (Equilibrium to extreme right position) 
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Example: 

For the pendulum taken up for example, assuming torque applied is 8 Nm and initial 

deflection   is 80
0
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For sector 1 
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Graph showing variation of angular acceleration  with   is given in figure 10. 

  increases from -9.54 rad/s
2
, at position 1 to +9.73 rad/s

2
 at 3 and from 9.47 rad/s

2
 

from 3’ (downward motion) to -9.65 rad/s
2
 at position 5 (2 and 4 are equilibrium 

positions with   = 0 and   =
I

T . 

 

 

 

5  EXTREME ANGULAR DEFLECTION WITH RESISTING TORQUE 

APPLICATION:  

To calculate extreme angular deflection on either side during each swing while a 

constant resisting torque is applied, the work energy theorem is applied. 

KE = Work done by all forces. 

Here the resisting torque T may represent torque due to frictional forces or torque due 

to an external load being driven by the pendulum. 
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The pendulum is released from an initial angular deflection  . It goes up to an angle

1   on extreme left and subsequently up to an extreme angular deflection 
2 on 

extreme right position (See figure 11). Successive maximum angular deflections at the 

end of swings will be 4,3  and so on. 

1  (77.8
0)

 and 
2 (75.7

0)
 have been calculated in preceding section. 

If a pendulum swings from an initial known angle 
1  (released from rest) to an 
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extreme angle 
2  (where it comes to a stop) on other side under a constant opposite 

torque (See figure 12), then 
2  can be calculated by applying work energy theorem 

KE = Total work done 

)()cos(cos
2

)cos(cos0 211212   TmgMg


  

0]cos)
2

[()(cos])
2

[( 1122   Tg
m

MTg
m

M   

For 
1 : 

For initial angle 1

0 ,80    is calculated from  

0]396.1880cos181.925.60[8cos181.925.60 0

11    

which gives the solution 0

1 8.77  

For 
2 : 

0]
31.57

8.7788.77cos05.591[8cos05.591 0

22    

which gives the solution 0

2 7.75  

For 3 : 

0]
31.57

7.75
87.75cos05.591[8cos05.591 0

33    

which gives the solution 
0

3 6.73  

For 
4 : 

0]
31.57

6.73
86.73cos05.591[8cos05.591 0

44    

which gives the solution 0

4 6.71  

For 5 : 

0]
31.57

6.71
86.71cos05.591[8cos05.591 0

55    

which gives the solution 
0

5 6.69  

For 6 : 

0]
31.57

6.69
86.69cos05.591[8cos05.591 0

66    
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which gives the solution 0

6 6.67  

Further diminishing extreme angles can be calculated on the same lines. 

It is observed that during each swing, the maximum angular deflection reduces by 

approximately 2
º
; this is due to the negative work done by the constant torque T. 

 

6  WORK DONE BY TORQUE 

Work done by torque on a given mechanism is given by  
2

1





 dW   

where under torque , the link rotates from angle 
1  to 

2 . 

If the torque is constant, the above formula can be described as W    where   

is total angle moved. 

In case of the pendulum taken up in Example, 

For angle   to 
1  : (

1 : extreme angle on the other side) 

)
31.57

8.7780
(8)( 11


 TW  = -22.032 J 

For angle 
1  to 

2 : (
2 on other side), 2W )

31.57

7.758.77
(8


   = -21.43 J 

For angle 
2 to 3 : ( 3 on other side), )

31.57

6.737.75
(83


W   = -20.84 J 

For angle 3  to 
4 : (on other side), )

31.57

6.716.73
(84


W  = -20.27 J 

For 
4 to 5  : (on other side), ]

31.57

6.696.71
[85


W   =-19.71 J 

For angle 5  to 6 : (on other side), )
31.57

6.676.69
(86


W  =  -19.15 J 
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Graph showing work done against each swing is given in figure 13. 

The relationship is observed to be linear as, in each swing, approximately 2º
 
angular 

deflection is lost which is more or less constant. 

 

7 ENERGY SUPPLIED TO COMPENSATE FOR WORK DONE  

We can now consider a case in which energy is supplied manually to the pendulum at 

the end of each cycle which is equal to the work done by the pendulum (or the 

negative work done by the resistive torque T on the pendulum) in one cycle. 

 

Suppose the pendulum is released from angle  , energy is supplied to it during initial 

angular deflection   and it goes up to an extreme angle   on the other side. In the 

return journey, it deflects to the same angle   at which it had started. 
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Thus the pendulum will go on oscillating between extremes   and . See figure 14.  

The energy supplied to it between angles   and )(   is equal to the –ve work done 

by the constant resistive torque T. If F is the manually applied force while supplying 

energy during deflection through the angle α,  

Work done by manual force =       (in one cycle)  = F  

Work done by torque T = )(  T     (in one cycle) 

Since initial and final speeds are zero and work done by gravity is zero in one cycle, 

0)(   FT  

The above equation gives relationship between F, T, α,   and  . 

 

Example: 

 For the pendulum taken up in examples, assume that force applied by the man is 10 x 

9.81 = 98.1 N. It is further assumed that this force is applied during deflection of 10
0
 

(0.174 radians), the work done by the man will be: 

W 174.011.98 F J    = J17  

Hence the work done by the torque is  

17)(2 T  or 17)(82    

radians063.1
16

17
 (

089.6031.57063.1   ) ----------(9) 

To determine   and   separately, we consider the return journey in which the 

pendulum swings from deflection   to   under the constant resistive torque T and 

gravity. 



100 S.K. Bhatnagar and B.S. Gill 

Applying work energy theorem, 

0KE    as initial and final speeds are zero 

0)cos(cos)
2

()(   g
m

MTW  

063.18)cos(cos81.925.60   = 8.504 

0144.0
05.591

504.8
coscos      ----------(10) 

Solving equation (9) and (10), 063.29  and 
026.31 . 

The pendulum is released initially at an angular deflection 29.63
0
, energy 17J is 

supplied to it during 10
0
 deflection at the beginning of the cycle, it swings up to a 

maximum deflection of 31.26
0
 on the other side and comes back to the same starting 

point.  

 

8 CONCLUSION 

A simple pendulum, if deflected by a small angle, performs angular simple harmonic 

motion. When mass of the suspension rod is also significant, it is called a physical or 

real pendulum. 

In the present study, motion of a real pendulum having significant masses of bob, rod 

and an integral disc is analyzed to find out angular velocity and angular acceleration 

at different angles of deflection when approached from two sides, towards or away 

from equilibrium position. Analysis is carried out in both conditions – with and 

without a constant resistive torque. Finally, work done by the torque is calculated for 

each sector of swing of the pendulum. 

 

The device can be used for giving work output from the pendulum by providing 

manual energy input at the start of each cycle. It can be used for various purposes like 

driving a machine, achieving repetitive motion from a mechanism or storing energy to 

be utilized at an appropriate time. 
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