The Deficient Discrete Quartic Spline Interpolation

Y.P. Dubey*
Department of Mathematics S.V.N. University, Sager M.P, India.

Suyash Dubey
Department of Mathematics,
GGITS Jabalpur M.P., India.

Abstract
The object of the paper is to investigate precise error estimate existence and uniqueness of deficient discrete quartic spline interpolation.

Keywords and Phrases: Deficient, Discrete, Quartic Spline, Interpolation, Error bound.

1980 AMS Subject Classification Code: Primary 41A05, 65D07

1. INTRODUCTION
Deficient Splines are more useful than usual spline because they require less continuity requirement. Dubey, Rana and Dubey [10] have obtained precise error estimate concerning deficient discrete Quartic spline which interpolates given functional values at one intermediate points see also [1]. Rana and Dubey [6] have obtained local behavior of deficient discrete cubic spline which is some time used to smooth histogram. Best summation formula for discrete cubic spline given by Mangasarian and Schumaker [3, 4]. For some constructive aspect for discrete spline see Jia [7], Niyazi Ari and Savaş Tuylu [2], Astor and Duris [5].

* Corresponding Author
2. EXISTENCE AND UNIQUENESS

Let us consider a mesh point on [0, 1] defined by

\[P: 0 = x_0 < x_1 < \ldots \ldots \ldots x_n = 1 \]

Such that

\[x_i - x_{i-1} = P_i \quad \text{for} \quad i = 1, 2, \ldots \ldots n \]

Throughout \(h \) will represent a given position real number. The class \(D(m, r, p, h) \) of deficient discrete spline of degree-m with deficiency \(r \) is the set of all continuous function \(S(x, h) \) such that for \(i = 0, 1, \ldots \ldots, n-1 \) the restriction \(S_i \) of \(S(x, h) \) on \([x_i, x_{i+1}] \) is a polynomial of degree \(m \) or less and

\[D^{(1)}_h s_i(x_i, h) = D^{(0)}_h s_{i-1}(x_i, h), \quad j = 0, 1, \ldots \ldots, m-r-1. \quad (2.1) \]

Where the difference operator \(D^{(i)}_h \) for a function \(f \) is defined by

\[D^{(0)}_h f(x) = f(x) \]
\[D^{(1)}_h f(x) = \frac{f(x+h) - f(x-h)}{2h} \quad \text{for} \quad i = 0, 1 \]

Taking \(m=4 \) and \(r=1 \) in (2.1), the class of all such deficient discrete quartic with deficiency 1 satisfies the boundary condition

\[s(x_0, h) = f(x_0, h) \]
\[s(x_n, h) = f(x_n, h) \]

is denoted by \(D^* (4, 1, P, h) \)

Problem 1.1: Given \(h > 0 \) for what restriction on \(P \) does there exist an unique \(s(x, h) \in D^*(4, 1, P, h) \) which satisfies the following interpolatory condition.

\[s(\alpha_i) = f(\alpha_i) \quad \alpha_i = x_i + \frac{1}{3} P_i \quad (2.2) \]
\[s(\beta_i) = f(\beta_i) \quad \beta_i = x_i + \frac{1}{2} P_i \quad (2.3) \]

\[D^{(1)}_h s\{\gamma_i\} = D^{(1)}_h s\{\gamma_i\} \quad \text{where} \quad \gamma_i = x_i + \theta P_i \quad 0 < \theta < 1 \quad (2.4) \]

Let \(P(t) \) be the quartic polynomial on [0, 1] then we can show that

\[P(t) = P \left(\frac{1}{3} \right) Q_1(t) + P \left(\frac{1}{2} \right) Q_2(t) + P(\theta)Q_3(t) + P(0)Q_4(t) + P(1)Q_5(t) \quad (2.5) \]
Where

\[
Q_1(t) = \left\{ 36 \theta^3 - \frac{81}{2} \theta^2 + 9\theta + \left(36\theta - \frac{27}{2} \right) h^2 \right\} z \\
+ \left\{ -108 \theta^3 - \frac{189 \theta^2}{2} - \frac{9}{2} + \left(-108\theta + \frac{63}{2} \right) h^2 \right\} z^2 \\
+ \left\{ 72\theta^3 - 63\theta + \frac{27}{2} + 72\theta h^2 \right\} z^3 \\
+ \left\{ 54\theta - 9 - 54\theta^2 - 18h^2 \right\} z^4 / A
\]

\[
Q_2(t) = \left\{ -\frac{64\theta^3}{3} + 64\theta^2 - \frac{32\theta}{9} + \left(-\frac{64\theta}{3} + \frac{64}{9} \right) h^2 \right\} z \\
+ z^2 \left\{ \frac{256}{3}\theta^3 - \frac{48}{27} + \left(\frac{256\theta}{3} - \frac{208}{9} \right) h^2 - \frac{208}{3} \theta^2 \right\} \\
+ z^3 \left\{ -64\theta^3 + \frac{416\theta}{9} - \frac{64}{9} - 64\theta h^2 \right\} \\
+ z^4 \left\{ 48\theta^2 + 16h^2 - \frac{128\theta}{3} + \frac{16}{3} \right\} / A
\]

\[
Q_3(f) = \left\{ -\frac{z}{9} + \frac{2z^2}{3} - \frac{11z^3}{9} + \frac{2z^4}{3} \right\} / A
\]

\[
Q_4(t) = \left\{ 1 + \left\{ -16\theta^3 + 20\theta^2 - \frac{50\theta}{9} + \left(-16\theta + \frac{20}{3} \right) h^2 \right\} z \\
+ \left\{ \left(\frac{88\theta}{3} - \frac{85}{9} \right) h^2 + \left(\frac{88\theta^3}{3} - \frac{85\theta}{3} \theta^2 \right) + \frac{25}{9} \right\} z^2 \\
+ \left\{ -16\theta^3 + \frac{170}{9} \theta - \frac{20}{3} - 16\theta \cdot h^2 \right\} z^3 \\
+ \left\{ 4 - \frac{44}{3} \theta + 12\theta^2 + 4h^2 \right\} z^4 \right\} / A
\]

\[
Q_5(z) = \left\{ \frac{4}{3} \theta^3 - \frac{5}{6} \theta^2 + \frac{\theta}{9} + \left(\frac{4}{3} \theta - \frac{5}{18} \right) h^2 \right\} z \\
+ \left\{ -\frac{20}{3} \theta^3 + \frac{19}{6} \theta^2 - \frac{1}{18} - \left(\frac{20}{3} \theta - \frac{19}{18} \right) h^2 \right\} z^2 \\
+ \left\{ 8\theta^3 + \frac{5}{18} - \frac{38\theta}{18} + 8\theta h^2 \right\} z^3 + \left\{ \frac{10}{3} \theta - 6\theta^2 - 2h^2 - \frac{1}{3} \right\} z^4 \right\} / A
\]
Where

\[A = \left[(8\theta^3 - \frac{4}{3}\theta^2 - \frac{4}{3}\theta - \frac{1}{9} + \left(\frac{8}{3}\theta - \frac{11}{9}\right)h^2 \right] \]

Now we are set to answer the problem 1.1 in the following

Theorem 2.1: for any \(h > 0 \) there exist an unique deficient discrete quartic spline \(s(x, h) \in D^*(4, 1, P, h) \) which satisfies the condition (2.2) - (2.4)

Proof :- Denoting \((x-x_i)/P_i \) by \(t \), \(0 < t < 1 \) we can write (2.5) in the form of the restriction \(s_i(x, h) \) of the deficient discrete quartic spline \(s(x, h) \) on \([x_i, x_{i+1}]\) as follows

\[
s_i(x, h) = f(\alpha_i)Q_1(t) + f(\beta_i)Q_2(t) + P_i(\gamma_i)Q_3(t) + s_i(x_i)Q_4(t) + s_i(x_{i+1})Q_5(t) \tag{2.6}
\]

From equation (2.6) we can easily verified that \(s_i(x, h) \) is quartic on \([x_i, x_{i+1}]\) for \(i = 0, 1, \ldots, n-1 \) satisfying (2.2) - (2.4), we apply the continuity of first difference of \(s_i(x, h) \) at \(x_i \) in (2.1) to see that

\[
p_i^3 \left[\left(\frac{16}{3}\theta^3 - \frac{34}{3}\theta^2 + \frac{68}{9}\theta - \frac{14}{9} + h^2 \left(\frac{16}{3}\theta - \frac{34}{9} \right) \right) \right] p_{i-1}^2
\]

\[+ h^2 \left[16\theta^3 - 48\theta^2 + \frac{358\theta}{9} + (16\theta - 16)h^2 + \frac{28}{3} \right] s_{i-1} \]

\[+ p_{i-1}^3 \left[-12\theta^3 + \frac{37\theta^2}{2} - \frac{64\theta}{9} + \frac{11}{18} + h^2 \left(\frac{37}{6} - 12\theta \right) \right] p_{i-1}^2
\]

\[+ \left(8\theta^2 + \frac{19}{18} - \frac{101\theta}{9} + 24\theta^2 - (8\theta - 8)h^2 \right) h^2 \]

\[+ p_{i-1}^3 \left[\left(-16\theta^3 + 20\theta^2 - \frac{50\theta}{9} + \left(-16\theta + \frac{20}{3} \right)h^2 \right) \right] p_{i-1}^2
\]

\[+ \left(-16\theta^3 + \frac{170}{9}\theta - \frac{20}{3} - 16\theta h^2 \right) h^2 \]

\[+ p_{i-1}^3 s_{i+1} \left[\left(-128\theta^3 + \frac{224}{3}\theta^2 + \frac{28}{9} + \left(\frac{4}{3} - \frac{5}{18} \right) h^2 \right) \right] p_{i-1}^2
\]

\[+ \left(8\theta^3 + \frac{5}{18} - \frac{38\theta}{18} + 8\theta h^2 \right) h^2 = F_i \]

Where,

\[
F_i = p_i^3 \left\{ 36\theta^3 + 36\theta - \frac{9}{2} - \frac{135}{2}\theta^2 + \left(36\theta + \frac{45}{2} \right) h^2 \right\} p_{i-1}^2
\]

\[+ h \left\{ 72\theta^3 - 153\theta - \frac{45}{2} - 216\theta^2 + 72(\theta - 1)h^2 \right\} f(\alpha_{i-1}) - p_{i-1}^3 \left\{ 36\theta^3 - \frac{81\theta^2}{2} + 9\theta + \left(36\theta - \frac{27}{2} \right) h^2 \right\} p_{i-1}^2
\]

\[+ \left\{ 72\theta^3 - 63\theta + \frac{27}{2} + 72\theta h^2 \right\} h^2 f(\alpha_i) + p_i^3 \left\{ \left(\frac{128}{3}\theta^3 + \frac{224}{3}\theta^2 - \frac{320\theta}{9} + \frac{32}{9} \right) + \right\}
\]
3. ERROR BOUNDS

It may be observed that system of equation (2.7) may be written as

\[A(h)M(h) = F \] \hspace{1cm} (3.1)

Where \(A(h) \) is coefficient matrix and \(M(h) = s_i(x, h) \). However as already shown in proof of theorem 2.1 \(A(h) \) is invertible. Denoting the inverse of \(A(h) \) by \(A^{-1}(h) \) we note that row max norm \(\| A^{-1}(h) \| \) satisfies the following inequality

\[\| A^{-1}(h) \| \leq y(h) \] \hspace{1cm} (3.2)

Where,

\[y(h) = \max \{ C_i(h) \}^{-1} \]

For convenience we assume in this section that 1=Nh, where N is a positive integer. It is also assumed that the mesh points \(\{ x_i \} \) are such that \(x_i \in [0,1] \) for \(i=1, 2, \ldots, n \) where discrete interval \([0, 1]n\) is the set of points \(\{0, h, 2h, \ldots, Nh\} \). For a function \(F \) and two distinct points \(x_1, x_2 \) in its domain the divided difference is defined by

\[[x_1, x_2]f = \frac{f(x_1) - f(x_2)}{(x_1 - x_2)}. \]

For convenience we write \(f^{(1)} \) for \(D_h^{(1)} f \) and \(w(f, p) \) is the modulus of continuity of \(f \). The discrete norm of a function \(f \) over interval \([0, 1]n\) is defined by

\[\|f\| = \max_{x \in [0,1]} |f(x)| \] \hspace{1cm} (3.3)

Without assuming any smoothness condition on data \(f \), we shall obtain in the following bounds of error function

\[e(x) = s(x, h) - f(x) \] over the discrete interval \([0, 1]h\)
Theorem: Suppose \(s(x, h) \) is the deficient discrete quartic spline interpolation of theorem 2.1 then

\[
|| e(x) || \leq y(h) k(P, h) w(f, P) \tag{3.4}
\]

\[
|| e(x) || \leq k^*(P, h) w(f, P) \tag{3.5}
\]

and

\[
|| e_{1}(x) || \leq k^{**}(P, h) w(f, P) \tag{3.6}
\]

Where \(k(P, h) \), \(k^*(P, h) \) and \(k^{**}(P, h) \) are some positive function of \(p \) and \(h \)

Proof: writing \(f(x_i) = f_i \) we notice that the equation (3.1) may be written as

\[
A(h) \cdot e(x_i) = F_i(h) - A(h) f_i = L_i \quad \text{(say)} \tag{3.7}
\]

Put \(e(x) = s(x, h) - f_i(x) \)

We need the following result due to Lyche [8, 9] to estimate R.H.S. of (3.7)

Lemma 3.1 - Let \(\{a_i\}_{i=1}^m \) and \(\{b_j\}_{j=1}^n \) be given of non negative real numbers such that

\[
Σa_i = Σb_j
\]

Then for any real valued function \(f \) defined on discrete interval \([0, 1]_h\) we have

\[
Σ_{i=1}^m a_i [x_{i,0}, x_{i,1}, \ldots, x_{ik}] f - Σ_{j=1}^n b_j [y_{j0}, y_{j1}, \ldots, y_{jk}] f | < w[f^{(k)}, 1 - kh|Σa_i|k|] \tag{3.8}
\]

Where \(x_{ik}, y_{jk} \in [0, 1] \) for relevant values of i, j and k. It may be observed that R.H.S. of (3.7) is written as

\[
(L_i) = |Σ_{i=1}^5 a_i [x_{i0}, x_{i1}] f - Σ_{j=1}^3 b_j [y_{j0}, y_{j1}] f |	ag{3.9}
\]

Where,

\[
a_1 = p_i^3 p_{i-1} \left\{ \frac{20}{3} \theta^3 - \frac{2 \theta}{9} + \frac{17}{36} - \frac{43}{12} \theta^2 - \left(\frac{10}{3} \theta + \frac{43}{36} \right) h^2 \right\} p_{i-1}^2
\]

\[
- h^2 \left\{ 4 \theta^3 + \frac{257 \theta}{18} - \frac{149}{36} - 12 \theta^2 + 4(\theta - 1)h^2 \right\}
\]

\[
a_2 = p_i^3 p_{i-1} \left\{ \frac{16}{3} \theta^3 - \frac{34}{3} \theta^2 + \frac{68 \theta}{9} - \frac{14}{9} + h^2 \left(\frac{16}{3} \theta - \frac{34}{9} \right) \right\} p_{i-1}^2
\]

\[
+ h^2 \left\{ 16 \theta^3 - 48 \theta^2 + \frac{20}{3} + \frac{358 \theta}{9} + 16(\theta - 1)h^2 \right\}
\]

\[
a_3 = p_i^3 p_{i-1} \left\{ \frac{2}{9} p_{i-1}^2 + \frac{13}{9} h^2 \right\}
\]
\[a_4 = p_i^3 p_i \left[\left\{ \frac{64}{18} \theta^3 - \frac{64}{18} \theta^2 + \frac{32 \theta}{54} + \left(\frac{64}{18} \theta - \frac{64}{54} \right) h^2 \right\} p_i^2 \\
+ \left\{ \frac{64}{18} \theta^3 - \frac{416}{54} \theta + \frac{64}{6} \theta h^2 \right\} h^2 \right] \]

\[a_5 = p_i^3 p_{i-1} \left[\left\{ \frac{-8}{9} \theta^3 + \frac{10}{18} \theta^2 - \frac{2 \theta}{27} - \left(\frac{8 \theta}{9} - \frac{10}{54} \right) h^2 \right\} p_i^2 \\
+ \left\{ \frac{-16}{3} \theta^3 - \frac{10}{54} + \frac{76}{18} \theta - \frac{16}{3} \theta h^2 \right\} h^2 \right] \]

\[b_1 = p_i^3 p_{i-1} \left[\left\{ \frac{63 + 6 \theta - \frac{3}{4} \frac{135}{12} \theta^2 + \left(6 \theta - \frac{45}{12} \right) h^2 \right\} p_{i-1}^2 \\
+ h^2 \left\{ \frac{12 \theta^3 + \frac{153 \theta}{6} - \frac{45}{12} - 36 \theta^2 + (12 \theta - 12) h^2 \right\} \right] \]

\[b_2 = p_i^3 p_{i-1}^3 \left[\left\{ \frac{8}{3} \theta^3 - \frac{11}{3} \theta^2 + \frac{4}{3} \theta + \left(\frac{8 \theta}{3} - \frac{11}{3} \right) h^2 \right\} \right] \]

\[b_3 = p_i p_{i-1}^3 \left[\left\{ \frac{8}{3} \theta^3 - 3 \theta^2 + \frac{14}{27} \theta + \left(\frac{8 \theta}{3} - 3 \right) h^2 \right\} p_i^2 \\
+ \left\{ \frac{16}{3} \theta^3 - \frac{170 \theta}{27} + \frac{20}{9} + \left(\frac{16}{3} \theta h^2 \right) \right\} \right] \]

\[b_4 = p_i^3 p_{i-1} \left[-\frac{1}{9} \right] \]

\[b_5 = p_i^3 p_{i-1}^3 \left(\frac{11}{9} \right) h^2 \]

and

\[x_{10} = p_{i-1}, \quad x_{11} = x_i = x_{20} = x_{21} \]

\[x_{20} = x_{i-1}, \quad x_{30} = y_{i-1}-h, \quad x_{31} = y_{i-1}+h \]

\[x_{40} = \alpha_i, \quad x_{41} = \beta_i, \quad x_{50} = \alpha_i, \quad x_{51} = \alpha_{i-1} \]

\[y_{10} = \alpha_{i-1}, \quad y_{11} = \beta_{i-1}, \quad y_{20} = x_i, \quad y_{21} = \alpha_i \]

\[y_{30} = x_i, \quad y_{31} = \alpha_i, \quad y_{40} = \gamma_i-h=y_{50}, \quad y_{41} = \gamma_i+h=51 \]
\[
\sum_{i=1}^{5} a_i = \sum_{j=1}^{5} b_j
\]
\[
= p_i^3 p_{i-1}^3 \left[\left(\frac{26}{3} \theta^3 - \frac{189}{12} \theta^2 + \frac{22}{3} \theta - \frac{1}{9} + \left(\frac{10\theta}{3} - \frac{1}{12} \right) h^2 \right) p_{i-1}^2
+ h^2 \left\{ 12\theta^3 + \frac{153\theta}{6} - \frac{45}{12} - 36\theta^2 + 12(\theta - 1) h^2 \right\}
+ p_i p_{i-1}^3 \left\{ \frac{8}{3} \theta^3 - 3\theta^2 + \frac{14}{27} \theta + \left(\frac{8\theta}{3} - 3 \right) h^2 \right\} p_i^2
+ \left\{ \frac{16}{3} \theta^3 - \frac{170\theta}{27} + 1 + \frac{16}{3} \theta h^2 \right\} h^2 \right]
\]
\[
= k(P,h) \text{ (Say)} \quad (3.10)
\]
Thus apply Lemma 3.1 suitable in (3.10) for \(m=n=5\) and \(k=1\) to see that
\[
| L_i | \leq k(P,h) \text{ w } (f^{(i)}) | I-P |
\] \quad (3.11)
Now using the equation (3.2) and (3.11) in (3.7) we get
\[
|| e(x_i) || \leq y(h) k(P,h) \text{ w } (f^{(1)}) | I-P |
\] \quad (3.12)
Thus in equality (3.4) of theorem (3.1) To obtain the bound of \(e(x)\) we replace \(s_i(x,h)\) by \(e(x_i)\) in equality (2.6) to get
\[
e(x) = [e(x_i) Q_1(t) + e(x_{i+1}) Q_2(t)] + M_i(f)
\] \quad (3.13)
Where,
\[
M_i(f) = [f(\alpha_i) Q_1(t) + f(\beta_i) Q_2(t) + P_{i-1} f^{(i)}(\gamma_i) Q_3(t) + f(x_{i-1}) Q_4(t) + f(x_i) Q_5(t) - f(x)]
\]
A Little computation shows that \(M_i(f)\) in (3.13) may be rewritten in the form of divided difference as follows
\[
|M_i(f)| = \left| \sum_{i=1}^{3} a_i [x_{i0}, x_{i1}] f - \sum_{j=1}^{2} b_j [y_{i0}, y_{i1}] f \right|
\] \quad (3.14)
Where,
\[
a_1 = \left[t(-6\theta^3 + \frac{81}{12} \theta^2 - \frac{3}{2} \theta - (6\theta - \frac{27}{12}) h^2
+ t^2 \left\{ \frac{108}{6} \theta^3 - \frac{189}{12} \theta^2 + \frac{3}{4} - h^2 \left(-18\theta + \frac{21}{4} \right) \right\}
+ t^3 \left\{ -12\theta^3 - \frac{21\theta}{2} \theta^2 - \frac{9}{4} - 12\theta h^2 \right\} + t^4 \left\{ -9\theta + \frac{3}{2} + 9\theta^2 + 3h^2 \right\} \right]
\]
The Deficient Discrete Quartic Spline Interpolation

\[a_2 = P_i \left[\left\{ t(8\theta^3 - 10\theta^2 + \frac{25}{9} \theta + \left(8\theta - \frac{10}{3}\right) h^2) \right\} \\
+ \left\{ \frac{-44}{3} \theta^3 + \frac{85}{6} \theta^2 + \frac{25}{18} \left(\frac{44}{3} \theta - \frac{85}{18}\right) h^2 \right\} t^2 \\
+ \left\{ 8\theta^3 - \frac{170}{18} \theta + \frac{10}{3} + 8\theta h^2 \right\} t^3 + \left\{ -2 + \frac{29}{3} \theta - 6\theta^2 - 2h^2 \right\} t^4 \right] \]

\[b_1 = P_i \left[t\left\{ \frac{-2}{3} \theta^3 + \frac{5}{12} \theta^2 - \frac{\theta}{18} + \left(\frac{2}{3} \theta + \frac{5}{36}\right) h^2 \right\} \\
+ \left\{ \frac{10}{3} \theta^3 - \frac{19}{12} \theta^2 + \frac{1}{36} + \left(\frac{10}{3} \theta + \frac{19}{36}\right) h^2 \right\} t^2 \\
- \left\{ 4\theta^3 + \frac{5}{36} \theta - \frac{19}{36} + 4\theta h^2 \right\} t^3 - \left(\frac{5}{3} \theta - 3\theta^2 - h^2 - \frac{1}{6}\right) t^4 \right] \]

\[b_2 = P_i \left(\frac{8}{3} \theta^3 - \frac{11}{3} \theta^2 + \frac{4\theta}{3} - \frac{1}{9} + \left(\frac{8}{3} \theta - \frac{11}{9}\right) h^2 \right) \]

\[a_3 = P_i \left(\frac{1}{9} t + \frac{2}{3} t^2 - \frac{11}{9} t^3 + \frac{2}{3} t^4 \right) \]

And

\[x_{10} = \alpha_i \quad x_{11} = \beta_i = x_{21} \]
\[x_{20} = x_{i-1} \quad x_{30} = \gamma_i - h \quad x_{3i} = \gamma_i + h \]
\[y_{10} = \beta_i \quad y_{11} = x_i \quad y_{20} = x_{i-1} \quad y_{21} = x \]

Clearly

\[\sum_{i=1}^{3} a_i = \sum_{j=1}^{2} b_j \]

\[= \left[\left\{ 2\theta^3 - \frac{39}{12} \theta^2 + \frac{23}{18} \theta - \frac{1}{9} + \left(2\theta - \frac{13}{12}\right) h^2 \right\} t \\
+ t^2 \left\{ \frac{20}{6} \theta^3 - \frac{19}{12} \theta^2 + \frac{1}{36} + \left(\frac{10}{3} \theta - \frac{19}{36}\right) h^2 \right\} \\
+ \left(-4\theta^3 + \frac{19}{18} \theta - \frac{5}{36} - 4\theta h^2 \right) t^3 + \left(-\frac{5}{6} + \frac{2}{3} \theta + 3\theta^2 + h^2 \right) t^4 \right] \]

\[= K^* (P, h) \]

Therefore applying lemma (3.1) for m=3, n=2 and k=1 we get

\[| M_i(f) | < K^*(P, h) w (f^{(1)}, P) \quad (3.15) \]
Finally applying bounds of (3.12) and (3.15) in (3.13) we get inequality (3.5) when proceed to obtain an upper bound for $e^{i\ell}(x)$ for this we use first difference operator in (2.6) and get

$$P_i D_h^{i\ell} s_i(x, h) = f(\alpha_i) Q_i^{i\ell}(t) + f(\beta_i) Q_2^{i\ell}(t) + P_{f^{i\ell}}(\gamma) Q_3^{i\ell}(t) + s_{i-1}(x) Q_4^{i\ell}(t) + s_i(x) Q_5^{i\ell}(t)$$

Replace $s_i(x)$ by $e(x)$ we get

$$P_i e^{i\ell}(x) = e_{i-1} Q_4^{i\ell}(t) + e_i Q_5^{i\ell}(t) + U_i(f)$$

(3.16)

Where,

$$U_i(f) = f(\alpha_i) Q_i^{i\ell}(t) + f(\beta_i) Q_2^{i\ell}(t) + \beta f^{i\ell} (\gamma) Q_3^{i\ell}(t) + f_{i-1} Q_4^{i\ell}(t) + f_i Q_5^{i\ell}(t) - P_{f^{i\ell}}(x)$$

(3.17)

Now rewriting $U_i(f)$ in terms of Divided difference we have

$$|U_i(f)| = \left| \sum_{i=1}^{3} a_i[x_{i0}, x_{i1}]_f - \sum_{j=1}^{2} b_j[y_{j0}, y_{j1}]_f \right|$$

Where,

$$a_1 = P_i \left\{ 8\theta^3 - 10\theta^2 + \frac{25}{9} \theta + h^2 \left(-8\theta + \frac{10}{3} \right) \right\}$$

$$+ t \left\{ -\frac{88}{3} \theta^3 + \frac{85}{3} \theta^2 - \frac{25}{9} - \frac{88}{3} \theta - \frac{85}{9} h^2 \right\}$$

$$+ (3t^2 + h^2) \left\{ 8\theta^3 - \frac{85}{3} \theta + \frac{10}{3} + 8\theta h^2 \right\}$$

$$+ \left\{ -2 + \frac{22}{3} \theta - 6\theta^2 - 2h^2 \right\} (4t)(t^2 + h^2)$$

$$a_2 = P_i \left\{ \frac{2}{3} \theta^3 - \frac{5}{12} \theta^2 + \frac{\theta}{18} + h^2 \left(\frac{2}{3} \theta - \frac{5}{36} \right) \right\}$$

$$+ \left\{ -\frac{20}{3} \theta^3 + \frac{19}{6} \theta^2 - \frac{1}{18} - \frac{20}{3} \theta - \frac{19}{18} h^2 \right\} 2t$$

$$+ \left\{ 4\theta^3 + \frac{5}{36} - \frac{19}{18} \theta + 4\theta h^2 \right\} (t^2 + h^2)$$

$$+ \left\{ \frac{5}{3} \theta - 3\theta^2 - h^2 - \frac{1}{6} \right\} 4t(t^2 + h^2)$$

$$a_3 = P_i \left\{ -\frac{1}{9} + \frac{4}{3} t - \frac{11}{9} (3t^2 + h^2) + \frac{8}{3} t(t^2 + h^2) \right\}$$
The Deficient Discrete Quartic Spline Interpolation

\[b_1 = p_i \left[6\theta^3 - \frac{81}{12} \theta^2 + \frac{3}{2} \theta + \left(6\theta - \frac{9}{4} \right) h^2 \right. \]
\[+ t \left\{ -36\theta^3 + \frac{63}{2} \theta^2 - \frac{3}{2} + \left(-36\theta + \frac{21}{2} \right) h^2 \right\} \]
\[+ \left\{ 12\theta^3 - \frac{21}{2} \theta + \frac{9}{4} + 12\theta h^2 \right\} \left(3t^2 + h^2 \right) \]
\[+ \left(9\theta - \frac{3}{2} - 9\theta^2 - 3h^2 \right) 4t (t^2 + h^2) \]
\[b_2 = p_i \left[\frac{8}{3} \theta^3 - \frac{11}{3} \theta^2 + \frac{4}{3} \theta - \frac{1}{9} + \left(\frac{8}{3} \theta - \frac{11}{9} \right) h^2 \right] \]

It can easily seen that

\[\sum_{i=1}^{3} a_i = \sum_{j=1}^{2} b_j \]

\[= p_i \left[\frac{26}{3} \theta^3 - \frac{125}{2} \theta^2 + \frac{17}{6} \theta \left(\frac{26}{3} \theta - \frac{125}{36} \right) h^2 \right. \]
\[+ t \left\{ -36\theta^3 + \frac{63}{2} \theta^5 - \frac{3}{2} + \left(-36\theta + \frac{21}{2} \right) h^2 \right\} \]
\[+ \left\{ 12\theta^3 - \frac{21}{2} \theta + \frac{9}{4} + 12\theta h^2 \right\} \]
\[+ \left(9\theta - \frac{3}{2} - 9\theta^2 - 3h^2 \right) 4t (t^2 + h^2) \]

and

\[y_{10} = \alpha_i \quad y_{11} = \beta_i \]
\[y_{20} = x+h \quad y_2 = x-h \quad x_{10} = \beta_i \quad x_{11} = x_i \]
\[x_{30} = \gamma-h \quad x_{20} = \beta_i \quad x_{21} = x_{i+1} \quad x_{31} = \gamma+h \]

This complete proof of inequality (3.6)

REFERENCES

