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Abstract 

Modeling of claim frequency is a vital factor in the non-life insurance 

industry. The claim count data in non-life insurance may not follow the 

traditional regression count data models with the use of Poisson or negative 

binomial distribution in numerous circumstances due to excessive number of 

zeros in the real data set. If the excessive number of zeros is not considered 

with sufficient weight, it will lead to information shortage to get a accurate 

rate making for the non-life insurance portfolio. In this paper we compared 

different claim count models such as zero-inflated Poisson (ZIP) regression 

model, hurdle model with back propagation neural network (BPNN) for 

modeling the count data which has excessive number of zeros. We shown 

from our empirical study that BPNN outperforms the conventionally used 

models and provided better fit to claim count data in terms of mean squared 

error (MSE). 

Keywords: Artificial Neural Network; Back Propagation Algorithm; Claim 

frequency; Mean Squared Error 

 

1. INTRODUCTION 

In non-life insurance, potential profits are determined by a sequence of income 

payments called premiums and outgoing payments called claims. Therefore 

estimating the accurate premium expenses is the most vital task in the general 

insurance. To model the distribution for pure premiums, the traditional two part model 

method is usually used by disintegrating the total payments into number of claims or 
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claim frequency or claim counts and the amount of claim or claim severity (Klugman 

et.al, 2008).  In this paper the focal point of concentration is on the claim frequency 

which is the most essential part of setting the premium. Therefore modeling the claim 

count distribution is an important and difficult task in general insurance practice.  The 

traditional statistical methods assumes that the number of claims follow the Poisson 

distribution (Antonio and Valdez, 2012; Renshaw, 1994; Cameron and Trivedi, 1986). 

A commonly used method preferred for modeling claim frequency or claim count is 

the regression model, where individual features are taken into account by 

incorporating a regression constituent. Denuit, et. al (2007) used a particular type of 

generalized linear model (GLM) called Poisson regression model for modeling claim 

frequency distribution. But most of the time insurance data holds excessive number of 

zeros, since many policies did not have claim for a specific time period. For instance 

there is a possibility that policyholders doesn’t report the small claims for getting no 

claim bonus and deductibles for reducing the premium of forthcoming year (Yip and 

Yau, 2005), due to this reason Poisson regression models may not give adequate 

result in this circumstance. Further the most important equidispersion property of 

Poisson distribution is violated. Then for handling the over dispersed count data, 

negative binomial model was formulated as an alternative to Poisson model but this 

model also does not provide exact prediction in certain situations. 

To overcome the limitation of these regression models, Lambert (1992) presented a 

more realistic way for modeling count data which has large counts and zeros, called 

zero-inflated Poisson (ZIP) regression models. Numerous alterations of the Poisson 

regression model have been presented by Greene (1994) as an extension to Lambert’s 

ZIP regression model.  A number of parametric zero-inflated count distributions have 

been presented by Yip and Yao (2005) to provide accommodation to the surplus zeros 

to insurance claim count data. Flynn (2009) made a comparative study of zero-

inflated models with conventional GLM frame work having negative binomial and 

Poisson distribution choice. Instead of taking the excess number of zeros in one part 

and a standard count distribution such as regular Poisson or negative binomial 

distribution in the another part, hurdle model take account of all zeros in the right 

censored  part and all positive counts in the left truncated-at-zero part. The hurdle 

models for count data has been first discoursed by Mullahy (1986). Heilbron (1994) 

called this model as a two part model. For handling the over dispersion and under 

dispersion present in the data, Gurmu (1998) initiated the generalized hurdle model. 

Saffari, et.al (2012) recommended censored negative binomial hurdle model 

specification to model the count data with excessive number of zeros which 

successfully deal with over dispersion problem. The difference between zero-inflated 

models and hurdle models have been re-examined by Loeys, et.al, (2012) in their 

tutorial. Baetschmann & Winkelmann (2014) derived a new approach for the 

modelling of zero-inflated count data, called dynamic hurdle model and giving new 

justifications to excessive zeros and discussed its properties. They assumed that the 

counts are produced from the non-stationary stochastic process. 

But all of these models failed to capture the latent dynamics present in the data 

despite of giving better fit to data with excess number of zeros. Therefore Artificial 
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Neural Networks (ANN) can be used as an alternative since it captures such 

phenomena and provides accurate prediction of future claim counts as the sample size 

increases. Earlier Sarle (1994) established the interconnection among ANN and 

traditional statistical modeling techniques such as GLM, cluster analysis, maximum 

redundancy analysis etc. Also they made clear that when evaluating the data, statistics 

and neural networks are not contenting methods and there is substantial intersection 

between both fields. Brocket, et. al (1994) introduced an artificial neural network  

with back propagation (BP) algorithm for predicting the insurer insolvency and 

highlighted the effectiveness of this method compared to discriminant analysis. 

Warner and Misra (1996) examined superiority of ANN over regression models and 

also discussed the difficulties of implementing the ANN. According to Zhang, 

Patuwo, & Hu, (1998) performance of ANN is comparatively better and adaptable 

than other forecasting methods. Dalkilic, et. al (2009) pointed out the reasons for 

using neural network (NN) approach with fuzzy rules instead of least square method, 

when there is at least one outlier exist in the claim payments. And he developed an 

algorithm using adaptive network for the determination of regression parameters. 

Bahia (2013) showed that ANN provides results for estimating and forecasting 

insurance premium revenue. Bapat, et. al (2010) formulated an effective ANN with 

BP algorithm for predicting the motor insurance claims for forthcoming years based 

on the past years information. Recently Soni, et.al (2015) suggested an ANN with 

resilient BP algorithm for assessing credit applications and demonstrated that this 

model assisting loan determinations in a well manner in commercial banks. In 2016 

Yunos, et. al suggested that neural network with BP algorithm can be used as a 

technique for handling the insurance data which has vast information, dubiousness 

and incomplete information. Recently Sakthivel and Rajitha (2017) developed a 

procedure for predicting the future claim frequency of an insurance portfolio in 

general insurance using ANN. 

 

In this paper, zero-inflated insurance claim count data is modeled using artificial 

neural network, ZIP regression and hurdle models. And we compared the efficiency 

of these models using mean square error (MSE). The arrangement of the paper is as 

follows: section 2 provides detailed description about ZIP regression models and 

section 3 highlights about hurdle Poisson regression models. Section 4 provides 

details of neural network computation and different types of neural networks. Section 

5 provides empirical study on claim count data. Section 6 &7 provides results and 

conclusions about this study. 

 

2. ZERO‐INFLATED MODELS 

The claim count data in general insurance do not follow the classical Poisson 

regression model because it exhibits excess number of zero counts called zero 

inflation in most of the cases. And the Poisson regression model is not appropriate in 

the case of zero-inflated data due to the destruction of the equidispersion (i.e., mean = 

variance) property. To overcome this difficulty, Lambert (1992) introduced an 
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alternative model called zero-inflated Poisson regression model. The design of this 

model is of two fold. First one is the modeling of zero counts by admitting the excess 

zero ratio   and the proportion ))(1(   e  for zeros coming from the Poisson 

distribution and the next model for positive counts using a zero-truncated Poisson 

model. The specification of the ZIP regression model is as follows 













 



0
!

)1(

0)1(

),/( ywhen
y

e
ywhene

yYP y




 



 

 is the mean of the Poisson distribution and   is the probability  value of the  extra 

zero counts. The first two moments of the ZIP regression model are 
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3. HURDLE MODELS 

Mullahy (1986) developed hurdle models to take care of the excess zero counts when 

the data generating process give more number of zeros than expected by the 

distributional assumptions of  standard count distributions. Hurdle model evaluated 

zero and non-zero counts independently for modeling the zero-inflated counts and all 

zero counts are considered as true zeros. The hurdle models begin by means of the 

binomial practice, which find out whether the count (response) variable obtains the 

value zero or a positive value. The major advantage of using a hurdle model is that it 

allows the statistical procedure for an organized distinction to manage observations 

under the hurdle with a zero count model and over the hurdle with a zero-truncated 

count model. Therefore the hurdle models are also called two part models (Heilbron, 

1994). Usually the second part of the model is in the zero truncated structure of 

traditional standard distributions like Poisson or negative binomial. Therefore in the 

literature commonly used types of specifications for hurdle models are Poisson hurdle 

specification and negative binomial hurdle specification. In this paper, we considered 

the hurdle Poisson model specification. The hurdle Poisson regression model with 

count variable y has the distribution 
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If 0y  means the hurdle is crossed then the conditional distribution of the non-zero 

values is managed by a zero truncated count model. is the mean of the Poisson 

distribution and 0  is the probability value of the zero counts. For estimating the 

parameter values, maximum likelihood method (MLE) is used. This model is nothing 
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but a reparameterization of the ZIP regression model. Although for both models the 

parameters are modeled in the regression framework, hurdle Poisson regression model 

is not as same as the ZIP regression model. 

 

4. NEURAL NETWORK 

In the modeling of insurance claim count data the neural network has an excellent 

potential because it perform linear and nonlinear mapping without any preliminary 

information exists in the data. Therefore ANN provides flexible, consistent and 

reliable appraisals compared to other statistical methods used for modeling the claim 

count data. The key difference between ANN and traditional methods is that 

traditional methods consider mathematical logic for modeling whereas NN learns 

inductively or empirically thereby training the network. Also it learns the logic 

underlying between the input and the observed output by the training process and 

develops a mathematical linear / nonlinear network. NN does not require a priori 

model for clarifying the correlation between input variables and target variables, but 

the fundamental statistical models have need of this information. And also it surely 

gives permission to the network to adapt to new situations due to its dynamic learning 

process. Unlike other methods, the entire network will be stable even during 

uncertain/ extreme behavior of data. Studies relating to the network show that 

predictions are rather insensible to deviations involved in the network pattern (Neti, 

Schneider, and Young, 1992). 

 

4.1 Network Architecture 

ANNs are one of the most popular machines learning method which are able to do 

classification and prediction tasks in an exact and more reliable manner. According to 

Simon S. Haykin (2009), ANN form a directed graph by connecting the artificial 

neurons, the basic processing components of the network. The three basic elements of 

a neural network are the basic computing elements, known as neurons or nodes, the 

network architecture which describes the association between computing units or 

neurons and the training algorithm used to find the weights which modifies the 

strength of the input for performing a particular task. Architecture of the network 

refers to the arrangement of the units and the types of connections permitted. In the 

multilayer feed forward network, units are ordered in a series of layers, this is one of 

the network type used most often in statistical applications. The movement of 

information is from lower layers to the higher layers of the network. The weights are 

usually obtained by optimizing the performance output of the network on a set of 

training examples with respect to some loss or error function. The standard structure 

of the network is given in the Figure 1. 
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Figure 1 

 

4.2 Multilayer Feed Forward Networks  

The multilayer feed forward NNs, which are used most often in statistical applications 

consist of several layers usually three or four layers of computing units. Network 

receives information only from computing units in the first layer. Hence the first layer 

serves as the input layer. The model solution is produced by the last layer known as 

the output layer. Intermediate layers are the hidden layers and they are critical for NN 

to identify the complex pattern in the data. The units in the hidden layers are called 

hidden units since they are not visible to the user in the sense that input units and 

output units are visible. In a theoretical manner, multilayered feed forward NNs are 

universal approximators, and with respect to its inherent nature, it has a tremendous 

capacity of constructing any nonlinear mapping to any extent of accuracy (Hornik et. 

al, 1989). They do not need a priori model to be assumed or a priori assumptions to be 

made on the properties of data (C. M. Bishop, 1995). They have been widely 

employed for modeling, prediction, classification, optimization, and control purposes 

(M. Azlan Hussain, 1999; J. G. De Gooijer and R. J. Hyndman, 2006; B. K. Bose, 

2007). 

 

5.  DATA ANALYSIS 

In this paper, the modeling of claim count is based on the simulated car insurance data 

set taken from the package InsuranceData in R software. The data set consists of a 

claim file with 1,20,000 records (total records for three years) with 40,000 policies 

each year. The outcome of interest is the number of claims based on three categorical 

(independent) variables, driver’s age category, vehicle value and the period. At first 

we decided to model the claim count data using three different methods, ZIP 

regression model, hurdle Poisson regression model and BPNN. Figure 2 represents 

the frequency plot of the count variable from the simulated car insurance data set and 

it shows that large proportion of zeros exist in the data. Table 1 shows the claim 

frequencies of the data and observed that the data contains 85.73% of the values are 

zero. 
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Table 1: Counts of claim frequencies 

Claim 

Frequency 

Count 

 

Percentage Claim 

Frequency 

Count Percentage Claim 

Frequency 

Count Percentage 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

102870 

11872 

2995 

1029 

457 

260 

140 

96 

63 

51 

35 

25 

85.725 

9.8933 

2.496 

0.8575 

0.38 

0.2167 

0.1167 

0.08 

0.053 

0.04 

0.03 

0.021 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

19 

20 

8 

6 

8 

6 

4 

3 

6 

4 

3 

5 

0.016 

0.017 

0.007 

0.005 

0.007 

0.005 

0.0033 

0.0025 

0.005 

0.0033 

0.0025 

0.0042 

25 

26 

27 

29 

30 

32 

33 

36 

37 

38 

43 

4 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

0.0033 

0.00083 

0.0017 

0.00083 

0.00083 

0.00083 

0.00083 

0.00083 

0.00083 

0.00083 

0.00083 

 

 

Figure 2. Frequency distribution of the number of claims 

For modeling the claim counts needed to select the input variables or rating factors. 

Table 2 shows the descriptions of the input variables and output variable for modeling 

the claim count data. Then the data is partition as training set and testing set. There is 

no rule available so far in the literature for optimum number of observations in 

training and test set. However Zhang, et.al (1998) recommended some ratios for 

partitioning the data set, which are 70 : 30, 80 : 20 and 90 : 10. In this paper, we used 

80 : 20  ratio for dividing the data set. Data partition is given in the table 3. 

Table 2: Type of variables 

Input variables Output variable 

1) Driver’s age category 

2) Vehicle value 

3) Period 

1 ) Number of claims 

 

0 2 4 6 8 11 14 17 20 23 27 32 37

claim frequency

co
un

t

0e
+0

0
2e

+0
4

4e
+0

4
6e

+0
4

8e
+0
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1e

+0
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Table 3: Ratio of partition of data  

Classification %  of partition 

of data 

Number of 

observations 

Training 

Testing 

Total 

 80% 

 20% 

100% 

 96,000 

 24,000 

120,000 

 

5.1 Estimation of claim count using ZIP regression and hurdle models 

From the above data, we observed around 86% of the data having values zero. Hence 

for modeling this claim count data, zero-inflated models are more appropriate. 

Further, the number of claims is considered as the response variable and drivers age 

category, vehicle value and period (3 years) are considered as the independent 

variables. And for estimation of claim frequency, we applied ZIP regression and 

hurdle Poisson regression model. The measure used for efficiency of estimates, we 

have obtained the MSE for both models.  

5.2 Estimation of the claim count using ANN 

Back propagation learning algorithm is long been used in the neural network for its 

reliability of fast convergence. The BPNN encompasses an input layer, an output 

layer and a hidden layer. Here, the input layer consisted of information from the 

simulated car insurance data set, they are driver’s age category, vehicle value and 

period and the number of claims is considered as the output layer. By modifying the 

weights of the BPNN by using a trial and error method, the output can be improved. 

Here we considered single hidden layer BPNN and double hidden layer BPNN with 

different number of neurons in each hidden layer and evaluate the accuracy of 

estimate by using actual claim counts and estimated claim counts interms of MSE. 

Table 4 represents the network structures used in this study. Figure 3 and Figure 4 

shows the network structures with different number of hidden layers and different 

number of neurons in each hidden layer. 

Table 4: Structure of Neural Networks  

Two hidden layers Single hidden layer 

3-2-1-1 

3-3-1-1 

3-3-1 

3-5-1 
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3-3-1                           3-5-1 

Figure 3 : Structure of single hidden layer neural network 

 

 

3-2-1-1         3-3-1-1 

Figure 4 : Structure of two hidden layer neural network 

 

6. MODEL PERFORMANCE ANALYSIS FOR CLAIM COUNT DATA 

Modeling of claim frequency is done by using three methods namely ZIP regression 

model, hurdle Poisson regression model and ANN for simulated car insurance data. 

The estimation of claim frequency using ZIP regression and hurdle Poisson regression 

model is performed using R software. Further for BPNN, four networks have been 

identified based on our experience and applied feed forward network with back 

propagation algorithm. Mean square error is calculated for comparing the efficiency 

of these models. Table 5 shows the MSE of estimates of claim frequencies for ZIP 

regression and hurdle Poisson regression model and Table 6 shows the MSE of 

estimates of claim frequency for ANN for different structure of networks. From the 

Table 5 and Table 6, we concluded that ANN performs better than the conventional 

ZIP regression and hurdle Poisson regression model for estimation of claim frequency 
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since MSE of all the four selected structure of ANN is smaller or equal compared to 

ZIP regression and hurdle Poisson regression model.  

 

Table 5: Performance of ZIP regression and hurdle Poisson regression model 

Model MSE 

ZIP 0.73195 

hurdle Poisson 0.8478 

 

Table 6: Performance of ANN  

Number of 

hidden layers 

Number of 

Neurons 
MSE 

One h = 5 0.73193 

One h = 3 0.73000 

Two h = c(2,1) 0.15797 

Two h = c(3,1) 0.73195 

 

7. CONCLUSION 

In this paper, we compared three different models for estimation of the claim count 

data with excess number of zeros namely ZIP regression model, hurdle Poisson 

regression model and ANN. We observed that the ANN performs better for estimation 

of claim frequency compared to the specially made probability models such as ZIP 

regression and hurdle Poisson regression for zero-inflated claim count data due to its 

flexibility and adaptive learning properties. Hence the results of ANN can be further 

improved by modifying the network structure and fine tuning the ratio of training and 

testing data. Though ANN suffers by black box syndrome, recent research showed 

that ANN has invincible place as its role in classification and prediction in modern 

day computation.  
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