Abstract—The reaction dynamics of heavy ion induced reactions is strongly influenced by the structure of interacting nuclei. The neck between two interacting nuclei plays a significant role in the reaction dynamics. Gupta and collaborators have successfully presented the interaction barrier modification characteristics within Dynamical Cluster Decay model (DCM) through the neck length parameter (ΔR). Recently the total fusion cross section (σ_{\text{fus}}) in the reactions induced by loosely bound projectiles \(^{7}\text{Li}, \ ^{7,9}\text{Be}\) on different targets were studied by employing unique neck length parameter AR within DCM approach. However, the study was confined to only total fusion process. In the present work has been employed to study complete fusion (CF). CF has been observed experimentally in \(^{9}\text{Be} + \ ^{144}\text{Sm}\) and \(^{9}\text{Be} + \ ^{208}\text{Pb}\) reactions. Here we calculate the CF cross section for \(^{9}\text{Be} + \ ^{144}\text{Sm}\) reaction by using particular value of empirically fixed ΔRCF at given incident energy \(E_{\text{lab}}=37\) MeV. The same value of ΔRCF is used to calculate the CF cross section of \(^{9}\text{Be} + \ ^{208}\text{Pb}\) at same incident energy, which are in good comparison with experimental data.

I. INTRODUCTION

The heavy ion induced reactions are strongly influenced by the structure of interacting/decaying fragments and the associated reaction dynamics. The neck of two interacting/decaying nuclei plays a significant role in the reaction. In low energy reactions when two nuclei come close to each other, there is interplay between, electrostatic force of repulsion and attractive nuclear force. Once this strong nuclear interaction overcomes the Coulomb repulsion, there is a formation of neck between the nuclei which held them together and is referred as neck length parameter AR. Similar kind of dynamics comes into picture for the binary decay process, where the neck formation takes place between outgoing fragments, Gupta and collaborators successfully presented the Dynamical Cluster Decay Model (DCM) which based on two step process [1].

In DCM, collective mass motion of clusters (with certain preformation probability (P_0)) which lead to neck formation between the outgoing fragments, and their further penetration through the potential barrier (evaluated as penetration probability (P)), are treated quantum mechanically. Interestingly, it has been worked out that the empirically fitted ΔR^{emp} simply results in the corresponding barrier lowering ΔV_a for a given reaction, which is inbuilt property of DCM [2]. The study of nuclear reactions induced by weakly bound projectiles around the coulomb barrier is of great interest since last decade, experimentally as well theoretically. Such studies play an important role for the formation of exotic nuclei. The DCM has been applied to number of nuclear reactions induced by stable as well as weakly bound projectiles. Recently, the major role of neck length parameter is found in the predictability of DCM [3-5]. The number of reaction induced through loosely bound projectiles \(^{7}\text{Li}\) and \(^{7,9}\text{Be}\) has been investigated to study the fusion cross section (σ_{\text{fus}}). The σ_{\text{fus}} induced by the same loosely bound projectile, with same incident energy has been studied, while fixing ΔR^{emp} empirically. The σ_{\text{fus}} for all other reactions, having same projectile and same incident energy on different targets, has been calculated or predicted by using the same value of ΔR^{emp} [3]. We extended this study further for stable projectile \(^{32}\text{S}\) also at fixed \(E_{\text{lab}}=142\) MeV on different targets and have successfully fitted the experimental data of σ_{\text{fus}} for all the reactions at same value of ΔR^{emp} [4]. We have also studied the isospin (N/Z) effects for compound nuclei (CN) having A=60, within the DCM. The experimental data for CN \(^{60}\text{Fe}^*, \ ^{60}\text{Ni}^*\) and \(^{60}\text{Zn}^*\) is not available. However, following the above mentioned characteristic of DCM we have fixed ΔR^{emp} for the reactions for which experimental data is available, having same projectile and the incident energy. The σ_{\text{fus}} for CN \(^{60}\text{Fe}^*, \ ^{60}\text{Ni}^*\) and \(^{60}\text{Zn}^*\) is then calculated with the fitted ΔR^{emp}, which enabled us to investigate the decay of CN \(^{60}\text{Fe}^*, \ ^{60}\text{Ni}^*\) and \(^{60}\text{Zn}^*\) [5].

In present work, we further attempt to study CF process in \(^{9}\text{Be} + \ ^{144}\text{Sm}\) and \(^{9}\text{Be} + \ ^{208}\text{Pb}\) reactions. Here we calculate the CF cross section for \(^{9}\text{Be} + \ ^{144}\text{Sm}\) reaction by using particular value of empirically fixed ΔRCF at given incident energy \(E_{\text{lab}}=37\) MeV. The same value of ΔRCF is used to calculate

1Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, India (email: randhawamandeep97@gmail.com and email: birbikram.singh@gmail.com)

2School of Physics and Material Sciences, Thapar University, Patiala-147004, India (email: m Sharma@thapar.edu)
the CF cross section of $^9\text{Be} + ^{208}\text{Pb}$ at same incident energy and in good comparison with the experimental data [6,7].

II. Dynamical Cluster Decay Model (DCM)

The DCM, QMFT based cluster model is different from another statistical model as it treats the evaporation residues (ERs), intermediate mass fragments (IMFs) and fusion fission (ff) on equal footings. The missing nuclear structure information of compound nucleus in statistical model enters in the nucleon mass and angular momentum dependent liquid and light particle cross-section σ_{fus}. The total fusion cross-section within this model is given by

$$\sigma = \frac{\pi}{k^2} \sum_{l=0}^{l_{max}} (2l+1)P_lP^k = \sqrt{\frac{2\mu E_{c.m.}}{\hbar^2}}$$

where $\mu = [A_1 A_2/(A_1 + A_2)]m$, is the reduced mass, with m as the nucleon mass and l_{max} is the maximum angular momentum. The angular momentum l_{max} is fixed for vanishing the fusion barrier of incoming channel η_i or light particles cross-section σ_{LP}. The total fusion cross-section within this model is given by

$$\sigma_{fus} = \sigma_{ER} + \sigma_{IMF} + \sigma_{ff} + \sigma_{CN}$$

Where σ_{ER}, σ_{ff} and σ_{CN} are respectively evaporation residue/LPs, IMFs, ff and non-compound nucleus cross sections which For the sum up to give fusion cross section σ_{fus}.

In Eq. (1), the preformation probability P_0 is obtained by solving the stationary Schrodinger equation in η_i at a fixed $R = R_a$, and is given by

$$P_0 = \sqrt{B_{\eta_i}} \left[\eta_i(A_i) \right] (2/A)$$

The structure information of the compound nucleus enters the preformation probability P_0 through the fragmentation potential $V (R, \eta_i, \beta_{\eta}, \gamma, T)$, defined as

$$V_f(\eta, T) = \sum_{i=1}^2 [V_{\eta_i}(A_i, Z_i, T)] + \sum_{i=1}^2 \left[\delta U_i \right] \exp(-T^2/T_0^2) + V_c(R, A, \beta_{\eta}, \gamma, T) + V_p(R, A, \beta_{\eta}, \gamma, T)$$

Here V_{η_i} and δU are, respectively, the T-dependent liquid drop and shell correction energies, V_c is the coulomb potential, V_p indicates the proximity potential and V_t denotes the angular momentum dependent potential.

The penetrability calculated as the WKB tunneling probability

$$P = \exp\left[-\frac{2}{\hbar} \int_{R_a}^{R_b} \left(2\mu[V(R) - V(R_\eta)] \right)^{1/2} dR \right]$$

R_a, defined above, is the first turning point of the penetration path used for calculating the WKB penetrability P. Apparently, in the

Fig 1: The variation of fragmentation potential V (MeV) with fragment mass A for $^{153}\text{Dy}^*$ and $^{217}\text{Rn}^*$ formed through ^9Be induced reactions on different targets at same incident energy E_{cm}=37 MeV for two extreme l-values at best fitted ΔR=1.655 fm.
decay of hot CN, the first turning point of the penetration path, used for calculating the penetrability \(P \), is postulated by Gupta et al. as

\[
R_a(T, \eta, \alpha) = R_0(T, \eta, \alpha) + \Delta R(T)
\]

(6)

Where \(R_0 = R_0(T, \eta, \alpha_1) + R_2(T, \eta, \alpha_2) \) and \(\Delta R \) is the neck length parameter that assimilates the deformation and neck formation effects between two nuclei. \(\Delta R \) allows us to define equivalently, the barrier lowering parameter \(\Delta V_B \), which simply relates \(V(R_a, \ell) \) and top of the barrier position \(V_B(\ell) \), for each \(\ell \) shown in Fig. 2:

\[
\Delta V_B = V(R_a, \ell) - V_B(\ell)
\]

(7)

Here \(V(R_a, \ell) \) represents the actual barrier used for the penetration. Note that \(\Delta V_B \) appears as a negative quantity, \(V(R_a, \ell) \) being always smaller than \(V_B(\ell) \), implying that the barrier actually used is effectively lowered.

III. Calculations and Discussions

In reference to our previous studies [3-5], we extend our present work to see the role of \(\Delta R \) in CF for the reactions induced by same projectile (\(^{9}\)Be) at same incident energy (\(E_{\text{lab}} = 37 \text{ MeV} \)) on two different targets \(^{144}\)Sm and \(^{208}\)Pb. \(^{9}\)Be fuses with the target \(^{144}\)Sm and there is a formation of \(^{153}\)Dy\(^*\), which enables us complete fusion cross section by fitting same \(\Delta V_{\text{CF}} \) for the decay of \(^{153}\)Dy\(^*\). Secondly, similar kind of dynamics of CF comes into picture for another target \(^{208}\)Pb. When \(^{9}\)Be fuses with \(^{208}\)Pb, there is formation of \(^{217}\)Rn\(^*\). The nuclear properties via fragmentation potential and barrier modification are also study for the decay of \(^{153}\)Dy\(^*\) and \(^{217}\)Rn\(^*\).

Fig. 1 gives the fragmentation potential \(V \) (MeV) with fragment mass (A) for CN \(^{13}\)Dy\(^*\) and \(^{217}\)Rn\(^*\) formed through \(^{9}\)Be induced reactions at same incident energy \(E_{\text{lab}} = 37 \text{ MeV} \) for two extreme \(\ell \)-values. We observe that light particles (LPs) having \(A \leq 4 \) are more favorable (lower fragmentation potential) at lower the \(\ell \)-values. In both cases \(^{153}\)Dy\(^*\) and \(^{217}\)Rn\(^*\), LPs have lower fragmentation potential comparison to another competing fragments (IMFs, HMFs and FF fragments), but at higher \(\ell \)-values they are in strong competition with LPs. The fragments which have least fragmentation potential are highly favored. As we observe the observed LPs (1n, 2n, 3n, 4n) for \(^{153}\)Dy\(^*\) have least fragmentation potential than the neighboring fragments at \(\ell_{\text{min}} \), but they are in competition with neighboring fragments at higher \(\ell \)-values. But 1n, 2n, 3n, 4n for \(^{217}\)Rn\(^*\) are minimized in the fragmentation potential are highly stable for both \(\ell \)-values. We may say that LPs are more prominent for both the reactions at given \(E_{\text{lab}} \). One more observation is that

![Fig 2](image-url)

Fig 2: The scattering potentials \(V \) (MeV) for the compound systems (a) \(^{153}\)Dy\(^*\) (b) \(^{217}\)Rn\(^*\) decay through 2n exit channel at two extreme \(\ell \)-values. The barrier lowering parameter \(\Delta V_B \) is also shown at both \(\ell \)-values.
symmetric fragments are not highly favored for both the reactions, so asymmetric decay is possible for both the cases.

Fig. 2 shows the Scattering potential for the decay of (a) 153Dy* and (b) 217Rn* through 2n exit channel is shown at two extreme ℓ-values. The area under the curve decreases as the value of ℓ increases, it means that penetrability increases with increase in the value of ℓ due to the higher rotational energy. The barrier modification parameter ΔV_B, which is an inbuilt property of DCM, is also shown in Fig. 2. As we observed in our previous studies, ΔV_B is almost similar for the reaction induced by same projectile at same incident energy. Here we observed that ΔV_B is almost similar for the decay of both CN 153Dy* and 217Rn* through 2n exit channel at two extreme ℓ-values. As discussed in methodology the ΔR allows us to define the barrier lowering, which is an inbuilt property of DCM.

So, if the barrier modification is similar for the decay of both CN, then ΔR would be same for both the reaction to fit very well. The observation from Fig. 1 emission of LPs for both the reactions is much similar to the given experimental data [6,7]. For 153Dy* the observed fragments are 1n, 2n, 3n and 4n which contributes for σ_{CF} but in the experimental data the contribution of σ_{CF} is from 1n, 2n, 3n, 4n, pn and p2n. To compare σ_{CF} with experimental data, within DCM approach we fit the data for 1n-4n by using the free parameter of DCM $\Delta R_C=1.655$ fm. The σ_{CF} for pn and p2n is also taken through replacement of 2n and 3n by pn and p2n in the minimization process by using same value of ΔR_C. Here we are able to compare calculated σ_{CF} within DCM with experimental data. By using this fixed value of ΔR_C, we have fitted σ_{CF} for 217Rn* and nicely compared with the experimental data [6,7] as shown in Table I.

Table I

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$E_{c.m.}$ (MeV)</th>
<th>E'^{CN} (MeV)</th>
<th>T (MeV)</th>
<th>ℓ_{max} (CF) (h)</th>
<th>ΔR_C (fm)</th>
<th>σ_{CF} (DCM) (mb)</th>
<th>σ_{CF} (Expt.) (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Be + 144Sm $\rightarrow ^{153}$Dy*</td>
<td>34.62</td>
<td>33.35</td>
<td>1.431</td>
<td>92</td>
<td>1.655</td>
<td>293.3</td>
<td>295±21</td>
</tr>
<tr>
<td>9Be + 208Pb $\rightarrow ^{217}$Rn*</td>
<td>35.46</td>
<td>20.95</td>
<td>0.953</td>
<td>120</td>
<td>1.655</td>
<td>2.25</td>
<td>2.79±0.43</td>
</tr>
</tbody>
</table>

Table I: The CF calculated cross section using DCM for 9Be induced reactions at $E_{lab}=37$ MeV respectively.

IV. Conclusion

The dynamics of loosely bound projectile 9Be has been studied within dynamical cluster decay model (DCM). There is the formation of 153Dy* and 217Rn* are formed when 9Be fuses with 144Sm and 208Pb at same incident energy $E_{lab}=37$ MeV. The comparative study of fragmentation potential and barrier modification parameter is also done. In fragmentation profile of both the CN 153Dy* and 217Rn* the LPs are more prominent and contribute to complete fusion cross section (σ_{CF}) for both the cases. We have fitted ΔR_C for 153Dy* to calculate σ_{CF} and compare with the experimental data. Same value of ΔR_C is used to calculate σ_{CF} for 217Rn*. The barrier modification parameter ΔV_B is also calculated for the decay of both 153Dy* and 217Rn* through 2n exit channel. ΔV_B is almost similar for the decay of both CN at both ℓ-values, which is an inbuilt property of DCM depend upon the value of ΔR. The calculated σ_{CF} are in good comparison with the experimental data for both reactions.

References