On the impact parameter dependence of the peak mass production

Sukhjit Kaur*
SGGS College Sector-26 Chandigarh-160 019 INDIA
sukhjitkaur.pu@gmail.com

Abstract—We study the effect of colliding geometry on the peak center-of-mass energy (E_{c.m.}^{\text{max}}) and peak multiplicity of intermediate mass fragments \(<N_{\text{IMF}}^{\text{max}}\) for symmetric neutron-rich colliding pairs. We find that with increase in the impact parameter, both \(<N_{\text{IMF}}^{\text{max}}\) and E_{c.m.}^{\text{max}} show a rise and fall. In order to explain this behavior, we study the rapidity distribution of the intermediate mass fragments at their respective E_{c.m.}^{\text{max}} and also at energies below and above E_{c.m.}^{\text{max}} for the reaction of \(^{40}\text{Ca}+^{40}\text{Ca}\). We also check the role of neutron content on E_{c.m.}^{\text{max}} and \(<N_{\text{IMF}}^{\text{max}}\) for isotopic as well as isobaric colliding pairs.

Index Terms—Peak center-of-mass energy; peak multiplicity of intermediate mass fragments; IQMD model; impact parameter

I. INTRODUCTION

An excited nuclear system formed in energetic nucleus-nucleus collisions, depending on the excitation energy deposited in the system, decays via emission of fragments of various sizes such as free-nucleons, light charged particles (LCPs), intermediate mass fragments (IMFs) etc. It is now well known that bombarding energy and collision geometry of a reaction play an important role in deciding the fate of the reaction [1–6]. In nucleus-nucleus collisions, the density achieved in the overlapping region is well above the normal nuclear matter density. The nucleons which are located in the geometrical overlap of the projectile and target constitute the participant matter whereas nucleons from non-overlapping region constitute the spectator matter. The spectator matter has a little excitation energy and they continue with nearly the original velocity. In central heavy-ion collisions, most of the nucleons constitute the participant matter and excitation energy is very high that results in a fast explosion of nuclei into light fragments and a very few medium size fragments are formed. With an increase in the impact parameter, interaction volume goes on decreasing and spectator matter increases. As a result, the formation of light fragments diminishes and intermediate and heavy fragment formation dominates.

In the literature, several attempts have been made to study the role of collision geometry in multifragmentation [2,3,5–7], flow [8] and nuclear stopping [9]. Ogilvie et al. [5] studied the asymmetric nuclear collisions at a bombarding energy of 600 MeV/nucleon. They found that with increase in the violence of

the collisions, average multiplicity of IMFs first increases to a maximum and then decreases again. Later on, Tsang et al. [6] investigated the impact of collision geometry on the fragment production for reaction of \(^{197}\text{Au}+^{197}\text{Au}\) at \(E = 100, 250\) and 400 MeV/nucleon. They found that at \(E = 100\) MeV/nucleon, average number of IMFs decreases with the increase in the impact parameter, whereas for energies of 250 and 400 MeV/nucleon, a “rise and fall” in the production of IMFs is observed with change in impact parameter. Also with increase in the incident energy, the peak IMF multiplicity gets shifted to higher impact parameters. Also INDRA and ALADIN Collaborations [7] studied peripheral collisions of \(^{197}\text{Au}+^{197}\text{Au}\) at incident energies between 40 and 150 MeV/nucleon using 4\(\pi\) multideictor. They observed that the maximum of fragment production is located near the mid rapidity region for lower incident energies that moves gradually towards projectile and target rapidities with increase in the incident energy. Puri and Kumar [3] carried out a systematic study of the fragment production in the reaction of \(^{40}\text{Ca}+^{40}\text{Ca}\) at incident energies between 20 and 1000 MeV/nucleon and over full impact parameter range (i.e., from \(b = 0\) to \(b_{\text{max}}\)). They found that IMF multiplicity attains a maximum at central collisions and it gradually decreases with increase in the impact parameter at lower incident energies whereas an explicit rise and fall is observed at energies above 150 MeV/nucleon. Vermiani and Puri [2] also studied the rise and fall of IMFs for reaction of \(^{197}\text{Au}+^{197}\text{Au}\) at \(E = 400, 600\) and 1000 MeV/nucleon with change in collision geometry. For a particular collision geometry, IMF multiplicity is found to increase with beam energy at low energies. As the energy increases, excess energy makes the IMFs to break up into smaller fragments [10]. The latter phenomenon dominates at higher incident energies and the production of IMFs should decrease due to the transition into the gas phase of nuclear matter [6]. Thus, the energy at which maximal production of IMFs occurs may be considered as the energy at which the phase transition occurs. For central collisions, a “rise and fall” in the production of IMFs is observed with change in the incident energy. In Refs. [10,11], it is found that both the peak multiplicity of IMFs \((<N_{\text{IMF}}^{\text{max}}>)\) and energy at which the maximum number of IMFs are emitted \((E_{c.m.}^{\text{max}}\)) scale with the composite system mass. But no study is made to check the role of collision geometry on \(E_{c.m.}^{\text{max}}\) and \(<N_{\text{IMF}}^{\text{max}}\>.

All the above mentioned studies have been carried out for systems lying close to the line of stability. The availability of radioactive-ion beam (RIB) facilities [12] has opened up a new dimensions to study the collisions of neutron-rich nuclei.
Recently, the production cross sections for new exotic isotopes 47P, 51,53,55,57Cl, 52,54Ar, 56,58,60Ca, 59,61,63Sc, and 62,64,66Ti are predicted to be larger than 0.1 pb [13]. Thus, there is a possibility for these nuclei to be synthesized and detected at present experimental possibilities. The predicted cross sections seem to be optimistic, especially for the isotopes of Ca, Sc, and Ti. In Ref. [14], the production cross sections for neutron-rich nuclei from fragmentation of 76Ge beam has been studied. They observed neutron-rich nuclides of the elements with charge number in the range of 17 to 25 (50Cl, 34Ar, 55,56K, 57,58Ca, 59,60,62Sc, 62,63Ti, 65,66V, 68Cr, and 59Mn). The neutron content of a colliding pair is found to affect the fragment production [15,16]. Recently, Puri and co-workers [17] studied the effect of isospin degree of freedom on $(N/IMF)_{\text{max}}$ and $E_{\text{c.m.}}^{\text{max}}$. This study was limited for semi-central collisions only. It would be interesting to see the role colliding geometry on $E_{\text{c.m.}}^{\text{max}}$ and $(N/IMF)_{\text{max}}$. Here we extend this study over entire colliding geometry from central to peripheral one and would like to analyze whether there is any difference in the outcome for peripheral collisions.

II. THE MODEL

The present study is carried out within the framework of isospin-dependent quantum molecular dynamics (IQMD) model [18] which treats different charge states of nucleons, Δ's, and pions explicitly. In addition to the use of explicit charge states of all baryons and mesons, a symmetry potential between protons and neutrons corresponding to the Bethe–Weizsäcker mass formula has been included. Isospin effects come into the picture due to the interplay between the Coulomb potential, isospin-dependent cross section, and symmetry potential. Two nucleons undergo a scattering if they are closer than a certain minimum distance. The cross section for neutron–neutron collisions is taken to be equal to the proton–proton cross section and cross section for neutron–proton is taken to be three times the neutron–neutron (proton–proton) cross section. This scattering is further subjected to the fulfillment of Pauli principle. In IQMD model, explicit Pauli blocking is included i.e., Pauli blockings of the neutrons and of the protons are treated separately. Any scattering that violates the Pauli principle is neglected. Whenever an attempted collision is blocked, the scattering partners maintain the original momenta prior to scattering. The phase space generated is analyzed using the minimum spanning tree (MST) method [19].

III. RESULTS AND DISCUSSION

We simulated several thousands of events for Ne+Ne, Al+Al, Cl+Cl, and Ca+Ca reactions at incident beam energies between 30 and 150 MeV/nucleon. In particular, we simulated the reactions of 34Cl+34Cl (N/Z = 1.0), 34Al+34Al (N/Z = 1.6), 34Ne+34Ne (N/Z = 2.4), 40Ca+40Ca (N/Z = 1.0) and 60Ca+40Ca (N/Z = 2.0) over the whole impact parameter range (from b/b_{max} = 0.0 to 0.8). Here, we have chosen symmetric colliding pairs because in symmetric collisions, even at low incident energies, system has enough excitation energy to undergo multifragmentation compared to asymmetric collisions. We, here, use a soft equation of state (EOS) along with standard isospin- and energy-dependent cross section and reactions are followed till 300 fm/c. The results with the above choice of EOS, cross section and clusterization algorithm were in good agreement with the experimental data [17]. This choice of soft EOS is also supported by several studies where kaon probe [20] and flow [8, 21] were used to pin down the soft nature of the matter.

In Fig. 1, we display the average multiplicity of intermediate mass fragments (IMFs, $5 \leq A \leq A_{\text{tot}}/6$, where A_{tot} is composite system mass) as a function of incident energy in the center-of-mass frame for the reaction of 40Ca+40Ca at different collision geometries. The solid circles represent our theoretical calculations and lines represent the quadratic fits to the theoretical points. It is clear from fig. that multiplicity of the IMFs shows a universal "rise and fall" of fragment production with an increase in the incident beam energy for all collision geometries. At low incident beam energies, the larger fraction of the initial energy is carried away by the pre-equilibrium nucleonic emission and the system does not have sufficient energy to break a colliding pair into a large number of IMFs and heavier fragments. Thus, very small number of IMFs are emitted. As beam energy is increased, system will have more and more energy to break colliding nuclei into a large number of IMFs. With further increase in the beam energy, even more compressional energy will be available that leads to break up of the nuclear system into free nucleons and lighter fragments. The number of IMFs first increases with increase in the incident energy, attains a maxima at a particular value of the incident energy ($E_{\text{c.m.}}^{\text{max}}$) and then decreases with further increase in the incident energy.
In Fig. 2, we display the impact parameter dependence of \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) (upper panel) and \(E_{\text{c.m.}} \) (lower panel) for reactions of \(^{40}\text{Ca} + ^{40}\text{Ca}\) and \(^{60}\text{Ca} + ^{40}\text{Ca}\). \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) and corresponding \(E_{\text{c.m.}} \) are obtained by making quadratic fit to the model calculations for \(\langle \text{N}_{\text{IMF}} \rangle \) as a function of \(E_{\text{c.m.}} \) (see Fig. 1). From Fig. 2(a), we find that \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) first increases with increase in the impact parameter, attains a maximum value and then decreases at peripheral geometries. In case of central geometries, the excitation energy is very high. The nuclear matter breaks into much smaller pieces and IMFs or heavy-mass fragments are formed rarely. In Ref. [4], it has been discussed that free-nucleons and LCPs are emitted from the mid-rapidity whereas IMFs and heavy fragments are the remnants of spectator matter. With increase in the impact parameter, the degree of spectator matter increases, as a result number of IMFs increases. With further increase in the impact parameter i.e., for peripheral geometries, system do not possess sufficient energy to excite the nuclear matter and therefore heavier residual fragments survive and few IMFs, LCPs or free-nucleons are formed. Thus, the maximum number of IMFs are seen only between semi-central and semi-peripheral impact parameters. Also \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) increases with the increase in system mass as we move from \(^{40}\text{Ca} + ^{40}\text{Ca}\) to \(^{60}\text{Ca} + ^{40}\text{Ca}\). Here, the range of IMFs for \(^{40}\text{Ca} + ^{40}\text{Ca}\) is from \(A = 5 \) to 13 whereas in case of \(^{60}\text{Ca} + ^{40}\text{Ca}\), it is from \(A = 5 \) to 20. The increase in \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) with increase in system mass could be due to difference in mass range of IMFs. To make this point clear, we checked \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) by taking same definition of IMFs for both systems and found that trend remains unaltered though difference in \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) for both systems decreases. This has also been supported by Ref. [11] where mass range for IMFs was considered to be same for all systems.

From Fig. 2(b), we see that \(E_{\text{c.m.}} \) first increases with increase in the impact parameter, attains a maxima and then decreases at peripheral geometries. With increase in impact parameter, system will need more and more energy to form a sufficient number of IMFs. At peripheral geometries, IMFs mainly come from spectator region and are obtained at lower energies. With increase in incident energy, interaction time will decrease and hence momentum will not get transferred among nucleons and only heavy residual fragments will survive along with few lighter fragments and free-nucleons.

To shed light on the contribution of participant/spectator matter towards IMFs, in Fig. 3, we plot the rapidity distribution of IMFs for reaction of \(^{40}\text{Ca} + ^{40}\text{Ca}\) for all collision geometries at their respective \(E_{\text{c.m.}} \) and at below and above \(E_{\text{c.m.}} \). From Fig. 3, we find that in case of central geometries, there is a single Gaussian. It implies that IMFs are mainly coming from mid-rapidity region. As we move towards peripheral collisions, the Gaussian gets broader and with further increase in the impact parameter, distribution splits into two Gaussians (at target and projectile rapidities), which indicates that IMFs are coming from both participant as well as spectator matter. As the impact parameter increases, more and more energy is needed to break the colliding pair into a large number of IMFs. At peripheral geometries, the formation of heavy fragments dominates and very few number of IMFs are emitted and that IMFs are coming from spectator zone and already cooled down. We also see from fig. that due to violent nature of the reaction at higher incident energy, lighter fragments will come

Fig. 2. (Color Online) \(\langle \text{N}_{\text{IMF}} \rangle_{\text{max}} \) (upper panel) and \(E_{\text{c.m.}} \) (lower panel) as a function of impact parameter.

Fig. 3. (Color Online) The rapidity distribution, \(dN/dY \), as a function of reduced rapidity, \(Y_{\text{c.m.}}/Y_{\text{beam}} \), for the reaction of \(^{40}\text{Ca} + ^{40}\text{Ca}\) for all collision geometries at their respective \(E_{\text{c.m.}} \) and at below and above \(E_{\text{c.m.}} \).
from participant zone and the contribution of participant (spectator) matter towards IMFs decreases (increases).

As a next step, we extend the same studies for isobaric pairs having composite system mass equal to 68 units. In Fig. 4, we display the impact parameter dependence of \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) (upper panel) and \(E_{\text{c.m.}} \), (lower panel) for isobaric pairs. From Fig. 4(a), we find that \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) shows a “rise and fall” with an increase in the impact parameter except for the reaction of \(^{34}\text{Ne}^+^{34}\text{Ne} \). This may be due to large neutron content (N/Z = 2.4) in the reaction of \(^{34}\text{Ne}^+^{34}\text{Ne} \). At peripheral geometries, the formation of heavy fragments dominates, as a result multiplicity of IMFs should decrease. On the other hand, symmetry energy, being repulsive for neutrons, will make neutron-rich systems to boil off faster compared to neutron-poor systems and will make the neutrons to escape from the interaction zone in the primary phase of the reaction. Thereby, the multiplicity of fragments formed will fall in the range of IMFs. Also \(E_{\text{c.m.}} \) shows the same behavior with increase in the impact parameter as already explained in the case of isotopic pairs. In our earlier communication [17], we studied the isospin effects on \(E_{\text{c.m.}} \) and \(\langle N_{\text{IMF}} \rangle_{\text{max}} \). We found that when we replace some protons into neutrons, \(E_{\text{c.m.}} \) decreases. From Fig. 4(b), we find that this behavior of \(E_{\text{c.m.}} \) remains preserved throughout the range of impact parameter except for \(b/b_{\text{max}} = 0.8 \). Due to the extreme low density owing to a small overlap in lighter colliding nuclei (\(A_{\text{coll}} = 34 \)), IQMD model may not yield proper results for peripheral collisions. It is known that molecular dynamics models do not yield proper physics for very low density situations. This situation is further deteriorated when extreme neutron-rich nuclei are considered. As neutron content increases, the proton content will decrease which will lead to lesser number of collisions.

IV. SUMMARY

In summary, we studied the role of colliding geometry on the peak multiplicity of intermediate mass fragments, \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) and peak center-of-mass energy, \(E_{\text{c.m.}} \), for symmetric neutron-rich colliding pairs. We found that with increase in the impact parameter, both \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) and \(E_{\text{c.m.}} \) first increase, attains a maxima and then decreases. We also checked the role of neutron content on \(E_{\text{c.m.}} \) and \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) by taking isotopic and isobaric colliding pairs. We found that when we replace protons into neutrons (by keeping the total system mass fixed), \(E_{\text{c.m.}} \) decreases whereas \(\langle N_{\text{IMF}} \rangle_{\text{max}} \) remains unaltered. This behavior of \(E_{\text{c.m.}} \) is found to remain preserved throughout the range of impact parameter. We have also studied the rapidity distribution of the intermediate mass fragments at their respective \(E_{\text{c.m.}} \) and also at energies below and above \(E_{\text{c.m.}} \) to shed light on the contribution of participant/spectator matter towards IMFs. Since \(E_{\text{c.m.}} \) represents the energy required to make the system boil off and it can also be associated with the energy at which liquid to gas phase transition occurs. Thus, present study gives the idea how the energy required for liquid-gas phase transition varies as a function of collision geometry. This can also be verified experimentally.

REFERENCES

