Assessment of Annual Effective Dose Due to Inhalation and Ingestion of Radon in Water Samples from Some Regions of Punjab, India

Manpreet Kaur¹,², Pooja Tripathi², Indu Choudary², Rohit Mehra¹ & Ajay Kumar²*

¹Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144001, Jalandhar, Punjab, India

²Department of Physics, DAV College, Amritsar 143001, Punjab, India

*Corresponding Author

Abstract

The radon concentration has been assessed in drinking water samples collected from three regions of Punjab (Amritsar, Batala and Gurdaspur) and one adjoining area of Punjab (Kathua) by using RAD7, an electronic solid state radon monitor. The sources of collected water samples were hand pumps and submersible pumps. The overall mean values of studied areas were within the recommended limit proposed by European Commission (2001) and the range suggested by UNSCEAR (2008). The total annual effective dose was also calculated and ranged from 10-177 μSv·y⁻¹. These values lie well within the safe limit prescribed by the WHO (2003) and European council (2005). The purpose of this study was to assess the radiological risk, if any, to human health due to consumption of drinking water that is available at studied areas.

Keywords: Inhalation dose, Ingestion dose, Radiological risk, Radon concentration

1. INTRODUCTION

Environmental radiation originates from a number of naturally occurring and human-made sources. Radiation exposure can occur by ingesting, inhaling, injecting, or absorbing radioactive materials. Radiological hazards may be possible due to the presence of large content of radioactive substances in drinking water. The most common radio-nuclides in drinking water are uranium, radium and radon. Radon is a radioactive, inert gas having highest density 9.37 g·l⁻¹ among all noble gases. Radon
gas and its radioactive isotopes have special attention among all other naturally occurring radioactive minerals, because it has the largest amount of total annual effective dose to human [1]. Inhalation of radon gases is the second most important cause of lung cancer after smoking and the majority of radon-induced lung cancers are caused by low and moderate radon concentrations rather than by high radon concentrations because in general, less people are exposed to high indoor radon concentrations [2]. It has been measured in water in many parts of the world, mostly for the risk assessments due to consumption of drinking water [3-6]. People who are exposed to proportionally high levels of radio-nuclides in drinking water for long periods may germinate serious health problems such as stomach and gastrointestinal cancer [7], lung cancer, anaemia, osteoporosis, cataracts, bone growths, kidney diseases, liver disease and impaired immune system.

In the present study, the water samples were taken from three regions of Punjab i.e. Amritsar, Batala and Gurdaspur and adjoining area of Punjab i.e. Kathua to see the variation of the radon concentration in water samples taken from Punjab plains to Siwalik Himalayas. The objective of the study is to calculate inhalation and ingestion doses in the drinking water samples used by inhabitants of the study area for health hazards point of view.

2. GEOLOGY

The area of present study is Amritsar, Batala and Gurdaspur regions of Punjab and Kathua district of Jammu & Kashmir, India as shown in fig 1.

Figure 1. Geological map of surveyed areas of Punjab state and Kathua district of Jammu & Kashmir, India.
The Punjab is situated in northwest India. The Indian state borders the Pakistani province of Punjab to the west, Jammu and Kashmir to the north, Himachal Pradesh to the northeast, Chandigarh to the east, Haryana to the south and southeast and Rajasthan to the southwest. Kathua is one of the prominent districts of Jammu province and is often referred as the “Gateway of J&K”. It lies at the southernmost end of the State and is located between 34°16'00'' to 32°55'00'' North Latitude and between 75°06'00'' to 75°54'00'' East Longitude. It is bounded by Gurdaspur district of Punjab in the South-East, Chamba district of Himachal Pradesh in North-East, District Doda and Udhampur in North and North-West, Jammu in the West and in South-West by international border with Pakistan. The southern and south-western parts of the district are covered by gentle terrain called as Outer Plains whereas the northern and north-eastern parts are hilly and mountainous with intermountain valleys called as Dun belt.

3. METHODOLOGY AND THEORETICAL CALCULATION

Radon concentrations in the collected samples were analysed by RAD7 (Durridge Company) (fig 2.)

![Figure 2. Schematic diagram of RAD H20 assembly.](https://via.placeholder.com/150)

which is an online radon monitor. RAD7 is a continuous radon gas monitor. It is based on Solid State Silicon Detector. It contains a hemisphere dome in the middle of device, called internal cell [8]. The detailed procedure of RAD7 has been explained elsewhere [3, 4]. The dose due to radon can be divided into two parts, first is dose from ingestion and second is dose from inhalation. The annual mean effective dose
for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR report [1] as below:

\[
E_{\text{ing}} \text{ (µSv y}^{-1}) = Rn^{222} \text{ conc. (Bq l}^{-1}) \times W_{\text{in}} \times DCF_{\text{ing}} \tag{1}
\]

\[
E_{\text{inh}} \text{ (µSv y}^{-1}) = Rn^{222} \text{ conc. (Bq l}^{-1}) \times R_{\text{aw}} \times F \times O \times DCF_{\text{inh}} \tag{2}
\]

Where \(E_{\text{ing}}\) is the effective dose of ingestion (µSv y\(^{-1}\)), \(W_{\text{in}}\) is the ingestion intake rate (730 ly\(^{-1}\)), \(DCF_{\text{ing}}\) is the ingestion dose conversion factor \((3.5 \times 10^{-9} \text{ Sv Bq}^{-1})\), \(E_{\text{inh}}\) is the effective dose of inhalation (µSv y\(^{-1}\)), \(R_{\text{aw}}\) is the ratio of Rn in air to Rn in water \((10^{-4})\), \(F\) is the equilibrium factor between Rn and its decay products \((0.4)\), \(O\) is the average indoor occupancy time per person \((7000\text{hy}^{-1})\) and \(DCF_{\text{inh}}\) is the inhalation dose conversion factor \((9\text{nSv h}^{-1} \text{(Bq/m}^3)\text{)}^{-1}\). The annual doses to lung and stomach was calculated by multiply the ingestion and inhalation doses with tissue weighting factor for lungs and stomach i.e. 12. [9].

4. RESULTS AND DISCUSSION

The range of radon concentration in water samples from Amritsar region has been varied from 4-16 Bq l\(^{-1}\) with an average value of 10±5 Bq l\(^{-1}\) as shown in Table 1.

<table>
<thead>
<tr>
<th>Regions</th>
<th>No. of Villages</th>
<th>Statistical factor</th>
<th>Rn conc. (Bq l(^{-1}))</th>
<th>Annual effective dose equivalent (µSv y(^{-1}))</th>
<th>Doses to organs of body (µSv y(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingestion</td>
<td>Inhalation</td>
</tr>
<tr>
<td>Amritsar</td>
<td>5</td>
<td>Range</td>
<td>4-16</td>
<td>10-41</td>
<td>10-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average ± S.D.</td>
<td>10±5</td>
<td>25±11</td>
<td>25±11</td>
</tr>
<tr>
<td>Batala</td>
<td>5</td>
<td>Range</td>
<td>2-17</td>
<td>5-43</td>
<td>5-42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average ± S.D.</td>
<td>10±6</td>
<td>26±14</td>
<td>25±14</td>
</tr>
<tr>
<td>Gurdaspur</td>
<td>5</td>
<td>Range</td>
<td>10-14</td>
<td>26-36</td>
<td>25-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average ± S.D.</td>
<td>12±1</td>
<td>30±4</td>
<td>30±4</td>
</tr>
<tr>
<td>Kathua</td>
<td>5</td>
<td>Range</td>
<td>11-35</td>
<td>28-89</td>
<td>27-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average ± S.D.</td>
<td>21±10</td>
<td>55±25</td>
<td>54±24</td>
</tr>
</tbody>
</table>

S.D. = Standard deviation

The annual effective dose due to ingestion of radon in water samples of Amritsar region is varied from 10-41 µSvy\(^{-1}\) with an average value of 25±11 µSvy\(^{-1}\) and due to inhalation of radon in water samples is varied from 10-40 µSvy\(^{-1}\) with an average value of 25±11 µSvy\(^{-1}\), respectively. The total annual effective dose of radon concentration in water samples is 50 µSvy\(^{-1}\). The average value of annual dose to
Assessment of Annual Effective Dose Due to Inhalation and Ingestion of Radon...

The range of radon concentration in water samples from Batala and Gurdaspur regions have been varied from 2-17 Bq/l with an average value of 10±6 Bq/l and 10-14 Bq/l with an average value of 12±1 Bq/l, respectively as shown in Table 1. The total annual effective dose of radon concentration in water samples is 51µSv/y for Batala and 60 µSv/y for Gurdaspur, respectively. The average value of annual dose to stomach and lungs is 313±171 µSv/y and 308±168 µSv/y for water samples of Batala region and the average value of annual dose to stomach and lungs is 362±45 µSv/y and 357±44 µSv/y for Gurdaspur region, respectively as shown in fig 3.

The range of radon concentration in water samples from Kathua region has been varied from 11-35 Bq/l with an average value of 21±10 Bq/l as shown in Table 1. The annual effective dose due to ingestion of radon in water samples of Kathua region is varied from 28-89 µSv/y with an average value of 55±25 µSv/y and due to inhalation of radon in water samples is varied from 27-88 µSv/y with an average value of 54±24 µSv/y, respectively. The total annual effective dose of radon concentration in water samples is 109 µSv/y. The average value of annual dose to stomach and lungs is 656±296 µSv/y and 647±293 µSv/y, respectively as shown in fig 3.

All the values of radon concentration in water samples for Amritsar, Batala, Gurdaspur and Kathua region is found to be well within the range suggested by UNSCEAR [1] and limit suggested by European Commission [10]. The minimum value of radon concentration is 10 Bq/l for Amritsar and Batala and the maximum value of radon concentration is 21 Bq/l for Kathua region as shown in fig 4.
The values of radon concentration in water samples increases as one move from Punjab plains to Shiwalik Himalayas [4] due to the presence of uranium mineralisation in shiwalik himalayas as reported earlier by Kaul et al.1993 [11].

Moreover, the total annual effective dose of all regions is found well within the recommended limit of 100 µSv y⁻¹ suggested by the WHO [12] and European council [13]. However, the value of total annual effective dose in Kathua region is higher as compared to other regions which may be due to the occurrence of radon in groundwater is reasonably related to the uranium content of the bedrocks and it can easily enter into the interacting groundwater by the effect of lithostatic pressure. Since the values of annual effective dose in all regions are found below the recommended limit, hence it can be concluded that the areas are safe for health hazard point of view.

5. CONCLUSIONS

The values of radon concentration from water samples in all four regions were well below the range prescribed by the UNSCEAR [1] and the limit recommended by European Commission [10]. The total annual effective dose due to inhalation and ingestion of radon from drinking water samples were below then 100 µSv y⁻¹ suggested by the WHO [12] and European council [13]. Hence the drinking water of the studied areas is not dangerous for the inhabitants of those areas.

6. ACKNOWLEDGMENTS

The authors highly acknowledge the residents of study areas for their kind co-operation during the field work and support in collecting the water samples.
REFERENCES

