Hyers-Ulam Stability of Certain Class of Nonlinear Second Order Differential Equations

Fakunle, I.
Department of Mathematics,
Adeyemi College of Education, Ondo, Ondo State, NIGERIA.

Arawomo, P. O.
Department of Mathematics,
University of Ibadan, Ibadan, Oyo State, NIGERIA.

Abstract
We investigate the Hyers-Ulam stability of certain classes of nonlinear second order differential equations using a nonlinear generalisation of Gronwall-Bellman integral inequality known as Bihari integral inequality.

AMS subject classification: 26D15, 34K20, 39B82.
Keywords: Hyers-Ulam stability, Bihari integral inequality, Nonlinear second order differential equations.

1. Introduction
In 1940, Ulam [30] gave a wide-range talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among these was the question concerning the stability of homomorphisms. Hyers [10] solved the problem of Ulam for additive functions defined on Banach spaces thus: If X and Y are real Banach spaces and $\epsilon > 0$. Then for every function $f : X \rightarrow Y$ satisfying $||f(x + y) - f(x) - f(y)|| \leq \epsilon$, for all $x, y, \in X$, there exists a unique additive function $A : X \rightarrow Y$ with the property $||f(x) - A(x)|| \leq \epsilon$ for all $x \in X$. Since then, the stability problems of functional equations have been extensively investigated by several mathematicians [8, 9, 11, 16, 22].
Obloza [20, 21] investigated the Hyers-Ulam stability of linear differential equation and connections between Hyers and Lyapunov stability of the ordinary differential equation. Alsina and Ger [1] continued and investigated the Hyers-Ulam stability of the differential equation \(g' = g \). They proved that if a differentiable function \(y : I \to \mathbb{R} \) satisfies \(|y' - y| \leq \epsilon \) for all \(t \in I \), then there exists a differentiable function \(g : I \to \mathbb{R} \) satisfying \(g'(t) = g(t) \) for any \(t \in I \) such that \(|g(t) - y(t)| \leq 3\epsilon \) for all \(t \in I \). The result by Alsina and Ger has been generalised by others including: Miura [17, 18], Takhasi [29, 30] and Jung [11, 12, 13, 14, 15] who proved the Hyers-Ulam stability of linear differential equations. Rus [25, 26] investigated the Hyers-Ulam stability of differential and integral equations using the Gronwall lemma [7] and the technique of weakly Picard operators. Recently, Quusuay [24] applied the Gronwall lemma to investigate the Hyers-Ulam stability of the form \(u''(t) + f(t, u(t)) = 0 \) and Emden-Fowler nonlinear differential equation of second order \(u''(t) + h(t)u(t)\alpha = 0 \) for the case where \(\alpha \) is a positive odd integer. Quusuay did not consider the case when \(\alpha \) is even integers and the function \(f \) is of the form \(f(t, u(t), u'(t)) \). These are the problems we consider in this paper using nonlinear generalisation of Gronwall-Bellman [2, 3] called Bihari inequality [4, 5].

The result obtained in this paper generalises the works of Quusuay [23] and Qarawani [24] on nonlinear second order differential equations. In this paper, we focus on the investigation of the Hyers-Ulam stability of the nonlinear second order differential equations given below.

\[
\begin{align*}
\tag{1.1} u''(t) + f(t, u(t)) &= 0 \\
\tag{1.2} u''(t) + f(t, u(t), u'(t)) &= 0
\end{align*}
\]

2. Preliminaries

In this section, we shall state the Bihari lemma and other useful results and definitions.

Lemma 2.1. [4, 5] Let \(u(t), f(t) \) be positive continuous functions defined on \(a \leq t \leq b, (\leq \infty) \) and \(K > 0, M \geq 0 \), further let \(\omega(u) \) be a nonnegative nondecreasing continuous function for \(u \geq 0 \), then the inequality

\[
u(t) \leq K + M \int_a^t f(s)\omega(u(s))ds, \quad a \leq t < b
\]

implies the inequality

\[
u(t) \leq \Omega^{-1}\left(\Omega(k) + M \int_a^{t'} f(s)ds\right), \quad a \leq t \leq b' \leq b
\]

where

\[
\Omega(u) = \int_{u_0}^u \frac{dt}{\omega(t)}, \quad 0 < u_0 < u
\]
In the case \(\omega(0) > 0 \) or \(\Omega(0 +) \) is finite, one may take \(u_0 = 0 \) and \(\Omega^{-1} \) is the inverse function of \(\Omega \) and \(t \) must be in the subinterval \([a, b']\) of \([a, b]\) such that

\[
\Omega(k) + M \int_a^t f(s)ds \in \text{Dom}(\Omega^{-1})
\]

Theorem 2.2. (Generalised First Mean Value Theorem) [19, 27] If \(f(t) \) and \(g(t) \) are continuous in \([t_0, t] \subseteq I\) and \(f(t) \) does not change sign in the interval, then there is a point \(\xi \in [t_0, t] \) such that

\[
\int_{t_0}^t g(s)f(s)ds = g(\xi)\int_{t_0}^t f(s)ds
\]

Definition 2.3. [6] A function \(\omega \) is said to belong to a class \(H \) if it satisfies the following conditions

i. \(\omega(u) > 0 \) is nondecreasing and \(\omega \in C^0 \) for \(u > 0 \)

ii. \(\frac{1}{v}\omega(v) \leq \omega(u) \) for all \(u \) and \(v \geq 1 \) when \(\omega \) is a positive, nondecreasing function defined and continuous on \(I \).

Definition 2.4. The equation (1.1) with the initial condition \(u(t_0) = u'(t_0) = 0 \) has Hyers-Ulam stability if there exists a positive constant \(K > 0 \) with following property. For every \(\epsilon > 0 \) \(u \in C^2(I) \), if

\[
|u''(t) + f(t, u(t))| \leq \epsilon
\]

(2.1)

then, there exist a solution \(u_0(t) \in C^2(I) \) of the equation (1.1), such that

\[
|u(t) - u_0(t)| \leq K \epsilon.
\]

Definition 2.5. Equation (1.2) with the initial condition \(u(t_0) = u'(t_0) = 0 \) has Hyers-Ulam stability if there exists a positive constant \(K > 0 \) with following property. For every \(\epsilon > 0 \) \(u \in C^2(I) \), if

\[
|u''(t) + f(t, u(t), u'(t))| \leq \epsilon
\]

(2.2)

then, there exist a solution \(u_0(t) \in C^2(I) \) of the equation (1.2), such that

\[
|u(t) - u_0(t)| \leq K \epsilon.
\]

3. Main Result

As earlier stated, we first investigate the Hyers-Ulam stability of the second order non-linear differential equation of the form (1.1) where the function \(f(t, u(t)) \) satisfies the condition

\[
|f(t, u(t))| \leq \phi(t)\omega(|u(t)|)
\]

(3.1)
Where $\phi(t)$ is a continuous, nonnegative function for $t \geq t_0$ and $\omega(u)$ is a continuous, nondecreasing, nonnegative function for $u > 0$. Besides, the function $f(t,u(t))$ is continuous on $D := \{ t, u : t \in [t_0, \infty), u \in I \}$.

Theorem 3.1. Let $\int_{t_0}^{\infty} |u'(s)|ds \leq L$ for $L > 0$ be assumed and let the function $f(t,u(t))$ satisfies the following conditions:

1. c_1 $u(t) \leq f(t,u(t))u(t)$, where $f(t,u(t)) > 1$ for all $t \geq t_0$.
2. c_2 $\frac{f'(t,u(t))u(t)}{f(t,u(t))} = g(t,u(t)) $ g a positive, continuous function.
3. c_3 $|f(t,u(t))| \leq \phi(t)\omega(|u(t)|)$, where $\omega(t)$ belongs to the class H
4. c_4 $\Omega(r) = \int_{r_0}^{r} \frac{ds}{\omega(s)}$ $r_0 \geq 0, r \geq r_0$

If $u : I \to I$ satisfying $u \in C^2(I)$ and the inequality

$$|u''(t) + f(t,u(t))| \leq \epsilon \text{ for all } t \geq t_0 \text{ and for some } \epsilon > 0,$$

then there exist a solution $u_0(t) \in C^2(I)$ of the differential equation (1.1) such that $|u(t) - u_0(t)| \leq K\epsilon$ for any $t \geq 0$, provided

$$\int_{t_0}^{\infty} \phi(s) < M < \infty \text{ and } K = L\Omega^{-1} (\Omega(1) + |g(\xi, u(\xi))|M).$$

Therefore, equation (1.1) has Hyers-Ulam stability with initial condition $u(t_0) = u'(t_0) = 0$.

Proof. Multiplying (2.1) by $|u'(t)|$ to get

$$-\epsilon |u'(t)| \leq u'(t)u''(t) + f(t,u(t))u'(t) \leq \epsilon |u'(t)|$$

(3.2)

for all $t \geq t_0$. Integrating each term from t_0 to t, then,

$$-\epsilon \int_{t_0}^{t} |u'(s)|ds \leq \frac{1}{2}u'(t)^2 + \int_{t_0}^{t} f(s,u(s))u'(s)ds \leq \epsilon \int_{t_0}^{t} |u'(s)|ds$$

for any $t \geq t_0$. Integrating by part, let $\int_{t_0}^{\infty} |u'(s)|ds \leq L$ for $L > 0$ and $f_u(t,u(t)) \leq 0$.

$$-\epsilon L \leq \frac{1}{2}u'(t)^2 + f(t,u(t))u(t) - \int_{t_0}^{t} f'(s,u(s))u(s)ds \leq \epsilon L$$

for all $t \geq t_0$. Then, it follows that

$$f(t,u(t))u(t) \leq \epsilon L + \int_{t_0}^{t} f'(s,u(s))u(s)ds$$

(3.3)
Applying \(c_1 \) to (3.3),

\[
 u(t) \leq \epsilon L + \int_{t_0}^t f'(s, u(s))u(s)ds \quad \text{for} \quad t \geq t_0 \tag{3.4}
\]

We write (3.4) as,

\[
 u(t) \leq \epsilon L + \int_{t_0}^t f'(s, u(s))u(s)\frac{f(s, u(s))}{f(s, u(s))}f(s, u(s))ds \quad \text{for} \quad t \geq t_0 \tag{3.5}
\]

Applying \(c_2 \) and using generalised Mean value theorem in a closed region \(D \).

\[
 u(t) \leq \epsilon L + g(\xi, u(\xi)) \int_{t_0}^t f(s, u(s))ds \quad \text{for} \quad t \leq t_0
\]

\[
 \leq \epsilon L + |g(\xi, u(\xi))| \int_{t_0}^t |f(s, u(s))|ds \quad \text{for} \quad t \leq t_0
\]

\[
 \leq \epsilon L + |g(\xi, u(\xi))| \int_{t_0}^t |f(s, u(s))|ds \quad \text{for} \quad t \leq t_0
\]

Since \(\epsilon L > 0 \), we have

\[
 \frac{|u(t)|}{\epsilon L} \leq 1 + |g(\xi, u(\xi))| \int_{t_0}^t \phi(s)\omega \left(\frac{|u(s)|}{\epsilon L} \right) ds \quad t \leq t_0 \tag{3.6}
\]

Setting \(v(t) = R \cdot \text{H.S (3.6)} \)

since \(\omega \) is nondecreasing we have

\[
 0 < \omega \left(\frac{|u(t)|}{\epsilon L} \right) \leq \omega(v(t))
\]

\[
 v'(t) = |g(\xi, u(\xi))|\phi(t)\omega \left(\frac{|u(t)|}{\epsilon L} \right)
\]

\[
 \leq |g(\xi, u(\xi))|\phi(t)\omega(v(t))
\]

then,

\[
 \frac{v'(t)}{\omega(v(t))} \leq |g(\xi, u(\xi))|\phi(t)
\]

By the definition of \(\Omega \), this gives

\[
 \frac{d\Omega(v(t))}{dt} \leq |g(\xi, u(\xi))|\phi(t)
\]

Integrating from \(t_0 \) to \(t \) gives

\[
 \Omega(v(t)) - \Omega(v(t_0)) \leq |g(\xi, u(\xi))| \int_{t_0}^t \phi(s)ds
\]
since \(v(t_0) = 1 \) and \(\Omega^{-1}(u) \) being increasing. Also we have

\[
v(t) \leq \Omega^{-1}\left(\Omega(1) + |g(\xi, u(\xi))| \int_{t_0}^{t} \phi(s)ds \right)
\]

and finally from (3.6) we obtain

\[
\frac{|u(t)|}{\epsilon L} \leq \Omega^{-1}\left(\Omega(1) + |g(\xi, u(\xi))| \int_{t_0}^{t} \phi(s)ds \right), \quad t \geq t_0
\]

As \(t \to \infty \) then,

\[
\frac{|u(t)|}{\epsilon L} \leq \Omega^{-1}\left(\Omega(1) + |g(\xi, u(\xi))| \int_{t_0}^{t} \phi(s)ds \right), \quad t \geq t_0
\]

provided \(\lim_{t \to \infty} \int_{t_0}^{t} \phi(s)ds \leq M < \infty \)

Hence,

\[
|u(t)| \leq \epsilon L \left(\Omega^{-1}\left(\Omega(1) + |g(\xi, u(\xi))| \int_{t_0}^{t} \phi(s)ds \right) \right) \quad \text{for all} \quad t \geq t_0.
\]

\[
|u(t) - u_0(t)| \leq K \epsilon
\]

Where \(K = \epsilon L \left(\Omega^{-1}\left(\Omega(1) + |g(\xi, u(\xi))| M) \right) \right) \).

Hence, the equation (1.1) has Hyers-Ulam stability.

Example 3.2. Consider Hyers-Ulam stability of the nonlinear differential equation of the form

\[
u''(t) + t^{-4} u^2 \exp\left(u(t)\right) = 0.
\]

(3.7)

taking

\[
f(t, u(t)) = t^{-4} u^2(t) \exp\left(u(t)\right)
\]

and allow

\[
\omega(u) = u^2 \exp\left(u(t)\right), \quad \phi(t) = t^{-4}
\]

Where \(u(t_0) = u'(t_0) = 0 \) and \(u_0(t) = 0 \).

Therefore, the equation (3.7) is Hyers-Ulam stable.

In our next result we consider the Hyers-Ulam stability of the nonlinear differential equation (1.2), Where the function \(f(t, u(t), u'(t)) \) is continuous on \(D = \{t, u, u' : t \in [t_0, \infty), u, u' \in I\} \) and satisfies some conditions to be prescribed later.

Theorem 3.3. Let \(\int_{t_0}^{\infty} |u'(s)|ds \leq L \) for \(L > 0 \) be assumed and let function \(f(t, u(t), u'(t)) \) satisfies the following conditions:

\(H_1 \) \(u(t) \leq f(t, u(t), u'(t))u(t) \), where \(f(t, u(t), u'(t)) > 1 \) for all \(t \geq t_0 \).

\(H_2 \) \[
\frac{f(t, u(t), u'(t))u(t)}{f(t, u(t), u(t))} = g(t, u(t), u'(t)), \quad g \text{ a positive, continuous function.}
\]
We can write (3.9) as

$$H_3 \quad |f(t, u(t), u(t))| \leq h(t)\omega(|u(t)|)|u'(t)|$$

where \(\omega(t)\) belongs to the class \(H\), for \(s > 0\) the function \(\omega(s)\) is nondecreasing. Where \(h, \omega : I \rightarrow I\) are nonnegative, continuous functions.

$$H_4 \quad \Omega(r) = \int_{r_0}^{r} \frac{ds}{s\omega(s)} r_0 \geq 0, r \geq r_0$$

If \(u \in C^2(I), |u'(t)| \leq \frac{|u(t)|}{\epsilon L}\) and the inequality

$$|u''(t) + f(t, u(t), u'(t))| \leq \epsilon$$

for all \(t \geq t_0\) and for some \(\epsilon > 0\), then there exist a solution \(u_0(t) \in C^2(I)\) of the differential equation (1.2) such that

$$|u(t) - u_0(t)| \leq K\epsilon$$

for any \(t \geq 0\), provided

$$\int_{t_0}^{t} h(s)ds < M < \infty \text{ and } \Omega^{-1}(\Omega(1) + |g(\xi, u(\xi), u'((\xi)))|M) < \infty,$$

where \(K = L\Omega^{-1}(\Omega(1) + |g(\xi, u(\xi), u'((\xi)))|M)\).

Therefore, equation (1.2) has Hyers-Ulam stability with initial condition \(u(t_0) = u'(t_0) = 0\).

Proof. Multiplying (2.2) by \(|u'(t)|\) to get

$$-\epsilon|u'(t)| \leq u'(t)|u''(t)| + f(t, u(t), u'(t))\leq \epsilon|u'(t)|$$

for all \(t \geq t_0\). Integrating each term from \(t_0\) to \(t\), then,

$$-\epsilon \int_{t_0}^{t} |u(s)|ds \leq \frac{1}{2}u'(t)^2 + \int_{t_0}^{t} f(s, u(s), u'(s))u'(s)ds \leq \epsilon \int_{t_0}^{t} |u'(s)|ds$$

for any \(t \geq t_0\).

Integrating by part, let \(f_u(t, u(t), u'(t)) + f'_u(t, u(t), u'(t)) \leq 0\) and using hypothesis in the theorem, we have

$$-\epsilon L \leq \frac{1}{2}u'(t)^2 + f(t, u(t), u'(t))u(t) - \int_{t_0}^{t} f'(s, u(s), u'(s))u(s)ds \leq \epsilon L$$

for all \(t \geq t_0\). Then,

$$f(t, u(t), u'(t))u(t) \leq \epsilon L + \int_{t_0}^{t} f'(s, u(s), u'(s))u(s)ds$$

Using \(H_1\)

$$u(t) \leq \epsilon L + \int_{t_0}^{t} f'(s, u(s), u'(s))u(s)ds \text{ for } t \geq t_0$$

(3.9)

We can write (3.9) as

$$u(t) \leq \epsilon L + \int_{t_0}^{t} \frac{f'(s, u(s), u'(s))u(s)}{f(s, u(s), u'(s))} f(s, u(s), u'(s))ds \text{ for } t \geq t_0$$
Applying H_2

$$u(t) \leq \epsilon L + \int_{t_0}^{t} g(s, u(s), u'(s)) f(s, u(s), u'(s)) ds \quad \text{for} \quad t \geq t_0$$

By application of generalised Mean value theorem of integral in the closed region D,

$$u(t) \leq \epsilon L + g(\xi, u(\xi), u'(\xi)) \int_{t_0}^{t} f(s, u(s), u'(s)) ds \quad \text{for} \quad t \geq t_0$$

$$|u(t)| \leq \epsilon L + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} |f(s, u(s), u'(s))| ds \quad \text{for} \quad t \geq t_0$$

$$|u(t)| \leq \epsilon L + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s) \omega(|u(s)|) |u'(s)| ds \quad \text{by} \quad H_3$$

$$\frac{|u(t)|}{\epsilon L} \leq 1 + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s) \omega(\frac{|u(s)|}{\epsilon L}) |u'(s)| ds \quad (3.10)$$

Setting $z(t) = \text{R.H.S of (3.10)}$

Hence,

$$z(t) \leq 1 + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s) \omega(z(s)) z(s) ds \quad (3.11)$$

Setting $v(\tau) = \text{R.H.S of (3.11)}$ since ω is nondecreasing we have

$$0 < \omega(z(t)) \leq \omega(v(t))$$

$$v'(t) = |g(\xi, u(\xi), u'(\xi))| h(t) \omega(z(t)) z(t) \leq |g(\xi, u(\xi), u'(\xi))| h(t) \omega(v(t)) v(t)$$

$$\frac{v'(t)}{\omega(v(t)) v(t)} \leq |g(\xi, u(\xi), u'(\xi))| h(t)$$

Application of H_4, this gives,

$$\frac{d\Omega(v(t))}{dt} \leq |g(\xi, u(\xi), u'(\xi))| h(t)$$

Integrating from t_0 to t gives

$$\Omega(v(t)) - \Omega(v(t_0)) \leq |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s) ds$$

since $v(t_0) = 1$ and $\Omega^{-1}(u)$ being increasing also we have

$$z(t) \leq v(t) \leq \Omega^{-1} \left(\Omega(1) + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s) ds \right)$$
Finally from (3.11) we obtain
\[
\frac{|u(t)|}{\epsilon L} \leq \Omega^{-1} \left(\Omega(1) + |g(\xi, u(\xi), u'(\xi))| \int_{t_0}^{t} h(s)ds \right) \quad \text{for } t \geq t_0
\]
As \(t \to \infty \), then,
\[
\frac{|u(t)|}{\epsilon L} \leq \Omega^{-1} \left(\Omega(1) + |g(\xi, u(\xi), u'(\xi))| M \right)
\]
provided \(\lim_{t_0} \int_{t_0}^{t} h(s)ds \leq M < \infty \)

Hence,
\[
|u(t)| \leq \epsilon L \left(\Omega^{-1} \left(\Omega(1) + |g(\xi, u(\xi), u'(\xi))| M \right) \right) \quad \text{for all } t \geq t_0.
\]

Where,
\[
K = L \left(\Omega^{-1} \left(\Omega(1) + |g(\xi, u(\xi), u'(\xi))| M \right) \right) \quad \text{for all } t \geq t_0.
\]

Hence, it holds that \(|u(t)| \leq K \epsilon \) for any \(t \geq t_0 \), with initial condition \(u_0(t) = u'(t) = 0 \) satisfies (1.2) and \(u_0 \in C^2(I) \) such that \(|u(t) - u_0(t)\) \(\leq K \epsilon \).

\[\square\]

Example 3.4. To investigate Hyers-Ulam stability of the second order nonlinear differential equation of the form
\[
u''(t) + (2t)^{-4}u^2 \exp (u'(t))u'(t) = 0 \quad (3.12).
\]

We take
\[
f(t, u(t), u'(t)) = (2t)^{-4}u^2 \exp (u'(t))u'(t)
\]
and allow \(\omega (u) = u^2 \), \(h(t) = (2t)^{-4} \),
Where \(u(t_0) = u'(t_0) = 0 \) and \(u_0(t) = 0 \). Therefore, the equation(3.12) is Hyers-Ulam stable.

References

