Properties of \(k \) - CentroSymmetric and \(k \) – Skew CentroSymmetric Matrices

1Dr. N. Elumalai and 2Mrs. B. Arthi

1Associate Professor, 2Assistant Professor

1 Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, TamilNadu, India.
2 Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, TamilNadu, India.

Abstract

The basic concepts and theorems of \(k \) - Centrosymmetric, \(k \) – Skew Centrosymmetric matrices are introduced with examples.

Keywords: Symmetric matrix, Centrosymmetric , \(k \)- Centrosymmetric matrix, Skewsymmetric matrix Skew Centrosymmetric matrix and \(k \)-Skew centrosymmetric matrix.

AMS CLASSIFICATIONS: 15B05, 15A09

I. INTRODUCTION

The concept of \(k \)-symmetric matrices and was introduced in [1], [2] and [3] Some properties of symmetric matrices given in [5],[6] ,[7]. In this paper, our intention is to define \(k \)- Centrosymmetric matrix, \(k \)-Skew Centrosymmetric matrix and also we discussed some results on Centrosymmetric matrices.

II. PRELIMINARIES AND NOTATIONS

\(C \) is centrosymmetric matrix, \(C^T \) is called Transpose of \(C \). Let \(k \) be a fixed product of disjoint transposition in \(S_n \) and \(K \) be the permutation matrix associated with \(K \). Clearly \(K \) satisfies the following properties. \(K^2 = I \), \(K^T = K \).
III. DEFINITIONS AND THEOREMS

DEFINITION: 1
A Square matrix $A = [a_{ij}]_{n \times n}$ is said to be symmetric if $A = A^T$ (i.e.) $a_{ij} = a_{ji}$ \forall i, j

DEFINITION: 2
A Square matrix which is symmetric about the centre of its array of elements is called centrosymmetric thus $C = [a_{ij}]_{n \times n}$ centrosymmetric if $a_{ij} = a_{n-i+1,n-j+1}$.

DEFINITION: 3
A centrosymmetric matrix $C \in \mathbb{R}^{n \times n}$ is called a k-centrosymmetric matrix if $C = K C^T K$.

THEOREM: 1
Let $C \in \mathbb{R}^{n \times n}$ be k-centrosymmetric matrix then $C^T = K C K$.
Proof:

\[
K C K = K C^T K \quad \text{where } C = C^T \\
= C^T K K \quad \text{where } K C^T = C^T K \\
= C^T K^2 = C^T
\]

THEOREM: 2
If C_1 and C_2 are k-centrosymmetric matrices then $C_1 C_2$ is also k-centrosymmetric matrix
Proof:
Let C_1 and C_2 are k-centrosymmetric matrices if $C_1 = K C_1^T K$ and $C_2 = K C_2^T K$.
Since C_1^T and C_2^T are also k-centrosymmetric matrices then $C_1^T = K C_1 K$ and $C_2^T = K C_2 K$.
To prove $C_1 C_2$ is k-centrosymmetric matrix

We will show that $C_1 C_2 = K (C_1 C_2)^T K$
Now $K (C_1 C_2)^T K = K C_2^T C_1^T K$
\[
= K [(K C_2 K)(K C_1 K)]K \quad \text{where } C_1^T = K C_1 K \text{ and } C_2^T = K C_2 K.
\]
\[
= K^2 C_2 K^2 C_1 K^2
\]
\[
= C_2 C_1
\]
\[
= C_1 C_2
\]

where \(C_2 C_1 = C_1 C_2 \)

THEOREM : 3

If \(C \) is \(k \)-centro symmetric matrices and \(K \) is the permutation matrix, \(k = (1 \ 2) \) then \(KC \) is also \(k \)-centro symmetric matrix.

Proof :

A matrix \(C \in \mathbb{R}^{n \times n} \) is said to be \(k \)-centrosymmetric matrix if \(C = K C^T K \)

Since \(C^T \) is also \(k \)-centrosymmetric matrices then \(C^T = K C K \)

To prove \(K C \) is \(k \)-centrosymmetric matrix

We will show that, \(KC = (KC)^T K \)

Now \(K (KC)^T K = K (C^T K^T) K \) where \((KC)^T = C^T K^T \)

\[
= KC^T
\]

where \(K^T K = I \)

\[
= KC
\]

where \(KC^T = KC \)

THEOREM: 4

If \(C \in \mathbb{R}^{n \times n} \) is \(k \)-centrosymmetric matrix then \(C C^T \) is also \(k \)-centrosymmetric matrix

Proof :

A matrix \(C \in \mathbb{R}^{n \times n} \) is said to be \(k \)-centrosymmetric matrix if \(C = K C^T K \)

Since \(C^T \) is also \(k \)-centrosymmetric matrices then \(C^T = K CK \)

We will show that, \(C C^T = K (C C^T)^T K \)

For that, \(K (C C^T)^T K = K [(C^T)^T C^T] K \) where \((KC)^T = C^T K^T \)

\[
= K (C C^T) K \quad \text{where} \quad (C^T)^T = C
\]

\[
= (C C^T) KK \quad \text{where} \quad KC = CK
\]

\[
= (C C^T) K^2 \quad \text{where} \quad KK = K^2
\]

\[
= (C C^T)
\]

THEOREM: 5

If \(C \in \mathbb{R}^{n \times n} \) is \(k \)-centrosymmetric matrix then \(C \pm C^T \) is also \(k \)-centrosymmetric matrix
Proof:
A matrix $C \in \mathbb{R}^{n \times n}$ is said to be k-centrosymmetric matrix if $C = K C^T K$

Since C^T is also k-centrosymmetric matrices then $C^T = K CK$

We will show that, $C + C^T = K (C + C^T)^T K$

For that, $K (C + C^T)^T K = K [(C^T)^T + C^T] K$ where $(C_1 + C_2)^T = (C_1^T + C_2^T)$

$= K (C + C^T) K$ where $(C^T)^T = C$

$= (C + C^T) K K$ where $KC = CK$

$= (C + C^T) K^2$

$= (C + C^T)$

THEOREM:6

If C_1 and C_2 are k-centrosymmetric matrices then $C_1 \pm C_2$ is also k-centrosymmetric matrix

Proof:

Let C_1, and C_2 are k-centrosymmetric matrices if $C_1 = K C_1^T K$ and $C_2 = K C_2^T K$.

Since C_1^T and C_2^T are also k-centrosymmetric matrices then $C_1^T = K C_1 K$ and $C_2^T = K C_2 K$.

To prove $C_1 + C_2$ is k-centrosymmetric matrix

We will show that $C_1 + C_2 = K (C_1 + C_2)^T K$

Now $K (C_1 + C_2)^T K = K (C_1^T + C_2^T) K$

$= K C_1 K + K C_2 K$ where $C_1^T = K C_1 K$ and $C_2^T = K C_2 K$.

$= C_1 + C_2$

RESULT:

Let C_1 and C_2 are k-centrosymmetric matrices for the following conditions are holds

[i] $C_1 C_2 = C_2 C_1$

[ii] $(C_1^TC_2 C_1)$ and $(C_2^TC_1 C_2)$ are also k-centrosymmetric matrices.

[iii] $\text{Adj} C_1$ also k-centrosymmetric matrix.

[iv] $C_1(\text{Adj} C_1)$ is also k-centrosymmetric matrix.
EXAMPLE: 1

Let \(\mathbf{C}_1 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \) and \(\mathbf{C}_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \); \(\mathbf{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

(i) \(\mathbf{K} (\mathbf{C}_1 \mathbf{C}_2)^T \mathbf{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 7 \\ 7 & 8 \end{pmatrix} = \mathbf{C}_1 \mathbf{C}_2 \)

(ii) \(\mathbf{K} (\mathbf{C}_1^T \mathbf{C}_2 \mathbf{C}_1)^T \mathbf{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 37 & 38 \\ 38 & 37 \end{pmatrix} = \mathbf{C}_1^T \mathbf{C}_2 \mathbf{C}_1 \)

DEFINITION: 4

A Square matrix \(\mathbf{A} = [a_{ij}]_{n \times n} \) is said to be skew symmetric matrix if \(\mathbf{A} = -\mathbf{A}^T \) (ie) \(a_{ij} = -a_{ji} \) \(\forall \ i, j \)

DEFINITION: 5

A Square matrix \(\mathbf{C} = [a_{ij}]_{n \times n} \) is called skew centrosymmetric matrix if \(\mathbf{C} = -\mathbf{C}^T \)

DEFINITION: 6

A skew centrosymmetric matrix \(\mathbf{C} \in \mathbb{R}^{n \times n} \) is called k-skew centrosymmetric matrix if

\[\mathbf{K} \mathbf{C} \mathbf{K} = -\mathbf{C}^T. \]

THEOREM: 7

Let \(\mathbf{C} \in \mathbb{R}^{n \times n} \) is k-skew centrosymmetric matrix then \(\mathbf{K} \mathbf{C}^T \mathbf{K} = -\mathbf{C} \)

Proof:

\[\mathbf{K} \mathbf{C}^T \mathbf{K} = \mathbf{K} (-\mathbf{C}) \mathbf{K} = \text{where } \mathbf{C}^T = -\mathbf{C} \]

\[= -\mathbf{C} \mathbf{K} \mathbf{K} \]

\[= -\mathbf{C} \]

THEOREM: 8

If \(\mathbf{C}_1 \) and \(\mathbf{C}_2 \) are k-skew centrosymmetric matrices then \(\mathbf{C}_1 \mathbf{C}_2 \) is also k-skew centrosymmetric matrix

Proof:
Let C_1, and C_2 are k-skew centrosymmetric matrices if $K C_1^T K = -C_1$ and $K C_2^T K = -C_2$.

Since C_1^T and C_2^T are also k- skew centrosymmetric matrices then $K C_1 K = - C_1^T$ and $K C_2 K = - C_2^T$.

To prove $C_1 C_2$ is k- skew centrosymmetric matrix

We will show that $C_1 C_2 = K (C_1 C_2)^T K$

Now $K (C_1 C_2)^T K = K C_2^T C_1^T K$

\[= K [(-K C_2 K)(-K C_1 K)] K \text{ where } K C_1 K = - C_1^T \text{ and } K C_2 K = - C_2^T. \]

\[= K^2 C_2 K^2 C_1 K^2 \]

\[= C_2 C_1 \text{ where } K^2 = I \]

\[= C_1 C_2 \text{ where } C_2 C_1 = C_1 C_2 \]

THEOREM : 9

If C is k-skew centrosymmetric matrix and K is the permutation matrix, $k = (1 \ 2)$ then KC is also k- skew centro symmetric matrix.

Proof :

A matrix $C \in \mathbb{R}^{n \times n}$ is said to be k- skew centrosymmetric matrix if $KC^T K = -C$

Since C^T is also k-skew centrosymmetric matrices then $K C K = - C^T$

To prove $-KC$ is K- skew centrosymmetric matrix

We will show that $-KC = K (KC)^T K$

Now $K (KC)^T K = K (C^T K^T) K$ where $(KC)^T = C^T K^T$

\[= KC^T \text{ where } K^T K = I \]

\[= - KC \text{ where } KC^T = - KC \]

THEOREM: 10

If $C \in \mathbb{R}^{n \times n}$ is k-skew centrosymmetric matrix then $C C^T$ is also k- skew centrosymmetric matrix.

Proof :

A matrix $C \in \mathbb{R}^{n \times n}$ is said to be k-skew centrosymmetric matrix if $KC^T K = -C$
Since C^T is also k- skew centro-symmetric matrices then $K CK = - C^T$

We will show that , $C C^T = K (C C^T)^T K$

For that, $K (C C^T)^T K = K [(C^T)^T C^T] K$ where $(KC)^T = C^T K^T$

$= K (C C^T) K$ where $(C^T)^T = C$

$= (C C^T) KK$ where $KC = CK$

$= (C C^T) K^2$ where $KK = K^2$

$= (C C^T)$

RESULT:

1. If $C \in \mathbb{R}^{n \times n}$ is k-skew centro-symmetric matrix then $C - C^T$ is also k- skew centro-symmetric matrix.

2. Let C_1 and C_2 are k- skewcentrosymmetric matrices for the following conditions are holds

 [i] $C_1 C_2 = C_2 C_1$

 [ii] $(C_1^T C_2 C_1)$ and $(C_2^T C_1 C_2)$ are also k- skew centro-symmetric matrices

 [iii] $\text{Adj} C_1$ also k- skew centro symmetric matrix

 [iv] $C_1 (\text{Adj} C_1)$ is also k- skew centro-symmetric matrix .

REFERENCES

