Unicity theorems on difference polynomials of meromorphic functions sharing one value

Renukadevi S. Dyavanal and Ashwini M. Hattikal

Department of Mathematics, Karnatak University, Dharwad-580003, India
e-mail: renukadyavanal@gmail.com and ashwinimhmaths@gmail.com

Abstract

In this paper, we investigate the uniqueness of meromorphic functions f and g concerning polynomials with shift operator sharing one value with counting multiplicity. We extend and improved the results of K.Liu, X.L.Liu, T.B.Cao and many others.

Keywords: Meromorphic functions, Difference polynomials, Sharing value, Uniqueness, etc.

Subject Classification: 30D35, 39A05

1. Introduction and Main Results

Let $f(z)$ be a non-constant meromorphic function in the whole complex plane. We shall use the following standard notations of Nevanlinna theory, for instance $T(r,f), m(r,f), N(r,f), \mathcal{N}(r,f)$ see [11], [5] and [9]. We denote by $S(r,f)$ any quantity satisfying $S(r,f) = o(T(r,f))$ as $r \to +\infty$, possibly outside of a set of linear measure.

Definition 1.1. Let $f(z)$ and $g(z)$ be meromorphic functions. If $f(z) - a$ and $g(z) - a$ assume the same zeros with the same multiplicities, then we say that $f(z)$ and $g(z)$ share the value 'a' CM, where 'a' is any constant.

Definition 1.2. Let k be a positive integer. We denote by $N_{(k)}(r, a, f)$ the counting function for zeros of $f - a$ with multiplicities at least k, and by $\mathcal{N}_{(k)}(r, a, f)$ the corresponding one for which multiplicity is not counted. Similarly, we denote by $N_{(k)}(r, a, f)$ the counting function for zeros of $f - a$ with multiplicities at most k, and by $\mathcal{N}_{(k)}(r, a, f)$ the corresponding one for which multiplicity is not counted. Then
Recently the topic of difference polynomial in the complex plane has attracted by many mathematicians. A number of papers have focused on value distribution and uniqueness of difference polynomials, which are analogues results of Nevanlinna theory. For a meromorphic function $f(z)$ and a constant $'c'$, $f(z + c)$ is called the shift of f, where $f(z)$ is not periodic function with period c.

In 2008, X.Y.Zhang, J.F.Chen and W.C.Lin \[12\] proved the results on uniqueness theorem of two polynomials sharing a common value.

Theorem A. Let f and g be two non-constant meromorphic functions, let n and m be two positive integers with $n > \max\{m + 10, 3m + 3\}$, and let $P(z) = a_mz^n + a_{m-1}z^{n-1} + \ldots + a_2z^2 + a_1z + a_0$, where $a_0(\neq 0), a_1, a_2, a_3, \ldots a_{m-1}, a_m(\neq 0)$ are complex constants. If $f^nP(f)f'$ and $g^nP(g)g'$ share 1 CM, then either $f = g$ or $g = \alpha f$, where $\alpha = \frac{m-1}{m}$.

In 2011, K.Liu, X.L.Liu and T.B.Cao \[6\] proved the following unicity theorem corresponding to difference polynomials.

Theorem B. Let f and g be two transcendental meromorphic functions with finite order. Suppose that c is a non-zero constant and $n \in N$. If $n \geq 14$, $f^n(z)f(z + c)$ and $g^n(z)g(z + c)$ share 1 CM, then $f \equiv tg$ or $fg = t$, where $t^{n+1} = 1$.

In 2015, we \[1\] have proved the following theorem on value distribution of meromorphic function f concerning polynomials with shift operator.

Theorem C. Let f be a transcendental meromorphic function with finite order, $\rho_2(f) < 1$ and c be a non-zero complex constant. Let $P(z) = a_mz^m + a_{m-1}z^{m-1} + \ldots + a_1z + a_0$, where $a_0(\neq 0), a_1, a_2, a_3, \ldots a_{m-1}, a_m(\neq 0)$ are complex constants and $\alpha(z)$ be a small function of f. If $n \geq m + 6 (m, n \in N)$, then $f^n(z)P(f)f(z + c) - \alpha(z)$ has infinitely many zeros.

In this paper, we have proved the unicity theorem of \[1\], a result to prove the uniqueness for the meromorphic functions sharing the value 1 with counting multiplicity. Further it extends the Theorem A by replacing f' by $f(z + c)$.
Unicity theorems on difference polynomials of meromorphic functions

Theorem 1.1. Let f and g be two non-constant meromorphic functions of finite order. Let n and m be two positive integers with $n > m + 11$. Let c be a non-zero complex constant and $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$, where $a_0(\neq 0), a_1, a_2, \ldots, a_{m-1}$, $a_m(\neq 0)$ are complex constants. If $f^n(z)P(f)(z+c)$ and $g^n(z)P(g)(z+c)$ share 1 CM, then $f \equiv tg$ for a constant t such that $t^d = 1$, where $d = \text{GCD}\{n + m + 1, \ldots, n + m + 1 - i, \ldots, n + 1\}$ for $a_{m-i} \neq 0$ for some $i = 0, 1, 2, \ldots, m$, or f and g satisfy the algebraic equation $R(\omega_1, \omega_2) \equiv 0$ where $R(\omega_1, \omega_2) = \omega_1^n(z)P(\omega_1)\omega_1(z + c) - \omega_2^n(z)P(\omega_2)\omega_2(z + c)$.

Remark 1.1. If $P(f) = 1$ in Theorem 1.1, then Theorem 1.1 reduces to Theorem B.

2. Some Lemmas

We need following Lemmas to prove our results.

Lemma 2.1. ([2]) Let $f(z)$ be a transcendental meromorphic function of finite order and c is a non-zero complex constant, then

$$T(r, f(z + c)) = T(r, f) + S(r, f)$$

Lemma 2.2. ([3]) Let f be a transcendental meromorphic function of finite order and c is a non-zero complex constant. Then

$$m\left(r, \frac{f(z + c)}{f(z)}\right) = S(r, f)$$

Lemma 2.3. ([2],[4]) Let $f(z)$ be a meromorphic function of finite order and c is a non-zero complex constant. Then

$$m\left(r, \frac{f(z + c)}{f(z)}\right) + m\left(r, \frac{f(z)}{f(z + c)}\right) = S(r, f)$$

Lemma 2.4. (Lemma 3 in [10]) Let F and G be non-constant meromorphic functions. If F and G share 1 CM, then one of the following three cases holds

1. $\max\{T(r, F), T(r, G)\} \leq N_2\left(r, \frac{1}{F}\right) + N_2(r, F) + N_2\left(r, \frac{1}{G}\right) + N_2(r, G) + S(r, F) + S(r, G)$
2. $F \equiv G$,
3. $FG \equiv 1$.

Lemma 2.5. ([11]) Let $f(z)$ be a non-constant meromorphic function, and $a_n(\neq 0), a_{n-1}, \ldots, a_0$ be small functions with respect to f. Then

$$T(r, a_n f^n + a_{n-1} f^{n-1} + \cdots + a_1 f + a_0) = nT(r, f) + S(r, f)$$

Lemma 2.6. ([8]) Let $f(z)$ be a transcendental meromorphic function of finite order. Then

$$N(r, f(z + c)) = N(r, f) + S(r, f)$$
Lemma 2.7. Let $f(z)$ be a transcendental meromorphic function of finite order and let $F^* = f(z)^n P(f) f(z + c)$. Then

$$(n + m - 1)T(r, f) + S(r, f) \leq T(r, F^*) \leq (n + m + 1)T(r, f) + S(r, f)$$

Proof: Since f is a transcendental meromorphic function and also from Lemma 2.3, Lemma 2.5 and Lemma 2.6, we obtain

$$N\left(r, \frac{1}{f(z + c)}\right) = N\left(r, \frac{1}{f}\right) + S(r, f)$$

$$\left(\frac{1}{f(z + c)}\right)$$

$$\frac{1}{f(z + c)}$$

Now we consider

$$N_2\left(r, \frac{1}{F}\right) = N_2\left(r, \frac{1}{f^n(z)P(f) f(z + c)}\right) \leq 2N\left(r, \frac{1}{P}\right) + N\left(r, \frac{1}{f}\right) + S(r, f)$$

Then by Lemma 2.1, we obtain
Unicity theorems on difference polynomials of meromorphic functions

\[N_2\left(r, \frac{1}{F}\right) = \frac{2}{n} \left[nN\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{P(f)}\right) + \frac{1}{f(z+c)} N\left(r, \frac{1}{f}\right) \right] \\
+ \left(1 - \frac{2}{n}\right) \left[N\left(r, \frac{1}{P(f)}\right) + \frac{1}{f(z+c)} N\left(r, \frac{1}{f}\right) \right] + S(r, f) \\
\leq \frac{2}{n} N\left(r, \frac{1}{f^n(z)P(f)^n(z+c)}\right) + \left(1 - \frac{2}{n}\right) \left[N\left(r, \frac{1}{P(f)}\right) + \frac{1}{f(z+c)} N\left(r, \frac{1}{f}\right) \right] \\
+ \left(1 - \frac{2}{n}\right) \left(\frac{n}{n+1} \right) N\left(r, \frac{1}{P(f)}\right) + S(r, f) \\
\leq \left(\frac{3}{n + 1}\right) N\left(r, \frac{1}{f}\right) + \left(\frac{n - 2}{n + 1}\right) m[2m + N(r, f)] + S(r, f) \tag{3.3} \]

Now consider
\[N\left(r, \frac{1}{P(f)}\right) \leq T\left(r, \frac{1}{P(f)}\right) \leq mT\left(r, \frac{1}{f}\right) \leq mT(r, f) + S(r, f) \]
\[= m[m(r, f) + N(r, f)] + S(r, f) \]

From (3.3), we have
\[N_2\left(r, \frac{1}{F}\right) \leq \left(\frac{3}{n + 1}\right) N\left(r, \frac{1}{f}\right) + \left(\frac{n - 2}{n + 1}\right) m[m(r, f) + N(r, f)] + S(r, f) \tag{3.4} \]

Now consider
\[N_2(r, F) = N_1(r, f^n(z)P(f) f(z+c)) + 2N_2(r, f^n(z)P(f) f(z+c)) \]
\[= N_1(r, f(z+c)) + 2N_2(r, f(z+c)) + S(r, f) \]
\[\leq N(r, f(z+c)) + 2N(r, f) + S(r, f) \leq 3N(r, f) + S(r, f) \tag{3.5} \]

From (3.4) and (3.5), we have
\[N_2(r, F) + N_2\left(r, \frac{1}{F}\right) \leq \left(\frac{3}{n + 1}\right) N\left(r, \frac{1}{f}\right) + \left(\frac{n - 2}{n + 1}\right) m[m(r, f) \]
\[+ N(r, f)] + 3N(r, f) + S(r, f) \]
\[\leq \left(\frac{3}{n + 1}\right) N\left(r, \frac{1}{f}\right) + \left(\frac{mn - 2m + 3n + 3}{n + 1}\right) m(r, f) \]
\[+ \left(\frac{mn - 2m + 3n + 3}{n + 1}\right) N(r, f) - 3m(r, f) + S(r, f) \tag{3.6} \]
\[
\begin{align*}
&\leq \left(\frac{3}{n+1} \right)N \left(r, \frac{1}{F} \right) + \left(\frac{mn - 2m + 3n + 3}{n+1} \right)m(r,f) \\
&\quad + \left(\frac{mn - 2m + 3n + 3}{n+1} \right)N(r,f) + S(r,f) \\
&\leq \left(\frac{3}{n+1} \right)T \left(r, \frac{1}{F} \right) + \left(\frac{mn - 2m + 3n + 3}{n+1} \right)T(r,f) + S(r,f) \\
\end{align*}
\] (3.7)

W.k.t
\[
T(r, F) = T(r, f^n(z) P(f)f(z + c)) + S(r, f) \\
\leq (n + m + 1)T(r, f) + \log r + S(r, f)
\] (3.8)

From (3.7) and (3.8), we get
\[
N_2(r, F) + N_2 \left(r, \frac{1}{F} \right) \leq \left(\frac{3}{n+1} \right)T \left(r, \frac{1}{F} \right) + \left(\frac{mn - 2m + 3n + 3}{(n+1)(n+m+1)} \right)T(r, F) + \log r + S(r, f)
\]
\[
\leq \left(\frac{3(n + m + 1) + mn - 2m + 3n + 3}{(n+1)(n+m+1)} \right)T(r, F) + \log r + S(r, f)
\]
\[
\leq \left(\frac{m+6}{n+m+1} \right)T(r, F) + \log r + S(r, f)
\] (3.9)

Similarly, we have
\[
N_2(r, G) + N_2 \left(r, \frac{1}{G} \right) \leq \left(\frac{m+6}{n+m+1} \right)T(r, F) + \log r + S(r, g)
\] (3.10)

From (3.1), (3.9) and (3.10) we have
\[
T(r, F) + T(r, G) \leq 2 \left\{ N_2(r, F) + N_2 \left(r, \frac{1}{F} \right) + N_2(r, G) + N_2 \left(r, \frac{1}{G} \right) \right\} + S(r, f) + S(r, g)
\]
\[
\leq 2 \left\{ \left(\frac{m+6}{n+m+1} \right)T(r, F) + \left(\frac{m+6}{n+m+1} \right)T(r, G) \right\}
\]
\[
\quad + 4 \log r + S(r, f) + S(r, g)
\]
\[
\leq 2 \left(\frac{m+6}{n+m+1} \right) \left[T(r, F) + T(r, G) \right] + 4 \log r
\]
\[
+ S(r, f) + S(r, g)
\]
\[
(n + m - 11)\{ T(r, F) + T(r, G) \} \leq 4(n + m + 1) \log r + S(r, f) + S(r, g)
\]
\[
\therefore T(r, F) + T(r, G) \leq (n + m + 1) \log r + S(r, f) + S(r, g)
\]

By the assumption that \(F \) and \(G \) share \(1 \) CM and statement of the theorem 1.1, w.k.t either \(f \) and \(g \) are transcendental meromorphic functions or \(f \) and \(g \) are rational functions.
If both f and g are transcendental meromorphic functions, then by (3.11) we get a contradiction. If both f and g are rational functions, then $S(r, f) = O(1)$ and $S(r, g) = O(1)$.

Let $f(z) = \frac{p_2(z)}{p_1(z)}$ and $g(z) = \frac{q_2(z)}{q_1(z)}$, where both $p_1(z), p_2(z)$ and $q_1(z), q_2(z)$ are co-prime polynomials.

(i) If $\max \{ \deg p_1, \deg p_2 \} \geq 3$, then by $f^n(z)P(f)f(z + c)$ and $g^n(z)P(g)g(z + c)$ share 1 CM, we have $\max \{ \deg q_1, \deg q_2 \} \geq 2$.

Thus by simple computing, we get

$$T(r, F) + T(r, G) = T(r, f^n(z)P(f)f(z + c)) + T(r, g^n(z)P(g)g(z + c)) \geq 5(n + m + 1) \log r + O(1)$$

By (3.11) and (3.12), we deduce a contradiction.

If $\max \{ \deg q_1, \deg q_2 \} \geq 3$ then

$$T(r, F) + T(r, G) = T(r, f^n(z)P(f)f(z + c)) + T(r, g^n(z)P(g)g(z + c)) \geq 6(n + m + 1) \log r + O(1)$$

By (3.11) and (3.13), we deduce a contradiction.

Next we consider the case when $\max \{ \deg p_1, \deg p_2 \} \leq 2$ and $\max \{ \deg q_1, \deg q_2 \} \leq 2$.

By simple calculation, we have

$$f(z) = a \frac{(z - b_1)(z - b_2)}{(z - a_1)(z - a_2)}$$

(3.14)

where a_1, a_2, b_1, b_2 are four distinct non-zero constants. By the condition $n > m + 11$ and (3.14), we have

$$T(r, F) \geq 2(n + m + 1) \log r + O(1) \geq 30 \log r + O(1)$$

(3.15)

We know that $N_2(r, F) = N_2(r, f^n(z)P(f)f(z + c))$

$$= N_2(r, f^n) + N_2(r, P(f)) + N_2(r, f(z + c))$$

$$= 2N_2(r, f^n) + 2N_2(r, P(f)) + 2N_2(r, f(z + c))$$

$$+ \bar{N}(r, f(z + c))$$

$$\leq 7N(r, f) \leq 7T(r, f) \leq 7 \log r + S(r, f)$$

Now consider $N_2 \left(r, \frac{1}{F} \right) \leq N_2 \left(r, \frac{1}{f^n(z)P(f)f(z + c)} \right)$

$$\leq N_2 \left(r, \frac{1}{f^n} \right) + N_2 \left(r, \frac{1}{P(f)} \right) + N_2 \left(r, \frac{1}{f(z + c)} \right) + S(r, f)$$

$$\leq 2N_2 \left(r, \frac{1}{f^n} \right) + mN \left(r, \frac{1}{f} \right) + 2N_2 \left(r, \frac{1}{f(z + c)} \right)$$

$$+ \bar{N}(r, f(z + c)) + S(r, f)$$

$$\leq 2N \left(r, \frac{1}{f} \right) + mN \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{f(z + c)} \right) + S(r, f)$$

$$\leq (m + 3) \log r + S(r, f)$$
From (3.15), we have
\[2 \left\{ N_2(r, F) + N_2 \left(\frac{1}{F} \right) \right\} = 2(m + 10) \log r + S(r, f) \leq 2(n + m + 1) \log r + S(r, f) \leq T(r, F) \]
\[2 \left\{ N_2(r, F) + N_2 \left(\frac{1}{F} \right) \right\} \leq T(r, F) \]
(3.16)

Moreover, in the same manner as above, we have the similar results for the zeros of \(g^n(z)P(g)g(z + c) \).

By (3.16) and (3.17), we obtain
\[2 \left\{ N_2(r, F) + N_2 \left(\frac{1}{F} \right) + N_2(r, G) + N_2 \left(\frac{1}{G} \right) \right\} \leq T(r, F) + T(r, G) \]
Which is contradiction to case (1) of Lemma 2.4. Suppose that \(FG \equiv 1 \).

i.e \(f^n(z)P(f)g^n(z)P(g)g(z + c) \equiv 1 \)

(3.18)

Now we rewrite \(P(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots + a_1 z + a_0 \) as \(P(z) = a_m (z - d_1)_1 (z - d_2)_2 \ldots (z - d_s)_s \) where \(l_1 + l_2 + \ldots + l_i + \ldots + l_s = m, 1 \leq s \leq m; d_i \neq d_j; i \neq j, 1 \leq i, j \leq s; d_1, d_2, \ldots, d_s \) are non-zero constants and \(l_1, l_2, \ldots, l_s \) are positive integers.

Let \(z_0 \) be a zero of order \(p_0 \), then from (3.18), \(z_0 \) is pole of \(g \) of order \(q_0 \). Again by (3.18), we obtain \(np_0 = nq_0 + mq_0 + q_0 \), that is, \(n(p_0 - q_0) = mq_0 + q_0 \), which implies that \(p_0 \geq q_0 + 1 \) and \((m + 1)q_0 \geq n \). Hence \(p_0 \geq \frac{n + m + 1}{m} \).

Let \(z_1 \) be a zero of \(P(f) \) of order \(p_1 \) and be a zero of \(f - d_i \) of order \(m_i \), for \(i = 1, 2, \ldots, s \). Then \(p_1 = m_i \) for \(i = 1, 2, \ldots, s \). Suppose that \(z_1 \) is a pole of \(g \) of order \(q_1 \). Again by (3.18) we can obtain \(p_1 \leq m_i = \frac{n + m + 1}{m} \) for \(i = 1, 2, \ldots, s \).

Let \(z_2 \) be a zero of \(f \) \((z + c) \) of order \(p_2 \) and then \(z_2 \) is pole of \(g(z) \) of order \(q_2 \), we get \(p_2 \geq n + m + 1 \).

Moreover, in the same manner as above, we have the similar results for the zeros of \(g^n(z)P(g)g(z + c) \). On the other hand, suppose that a pole of \(f \). Then from (3.18), we get that \(z_3 \) is the zero of \(g^n(z)P(g)g(z + c) \). So by using Lemma 2.1, we have
\[
N(r, f) \leq N \left(\frac{1}{f} \right) + N \left(\frac{1}{g - d_1} \right) + N \left(\frac{1}{g - d_2} \right) + \ldots + N \left(\frac{1}{g(z + c)} \right) + S(r, g)
\]
\[
\leq \left(\frac{m + 1}{n + m + 1} + \frac{m}{n + m + 1} + \frac{1}{n + m + 1} \right) N \left(\frac{1}{g} \right) + S(r, g)
\]
\[
\leq \left(\frac{2m + 2}{n + m + 1} \right) T(r, g) + S(r, g)
\]
(3.19)

By second fundamental theorem and (3.19) we have
\[
sT(r, f) \leq N \left(\frac{1}{f} \right) + N \left(\frac{1}{f - d_1} \right) + N \left(\frac{1}{f - d_2} \right) + \ldots + N \left(\frac{1}{f - d_s} \right)
\]
If $1 \neq \eta$, then $\eta^m (r, f(z + c)) + N_0 (r, f') + s(r, f) \leq \left(\frac{m}{n + m + 1} + \frac{1}{n + m + 1} \right) \left(\frac{1}{r} \right) + \left(\frac{2m + 2}{n + m + 1} \right) T(r, g) + S(r, f) + S(r, g)$

Similarly, we have

$sT(r, g) \leq \left(\frac{2m + 2}{n + m + 1} \right) [T(r, f) + T(r, g)] + S(r, f) + S(r, g)$

By (3.20) and (3.21), we have

$s[T(r, f) + T(r, g)] \leq \left(\frac{2m + 2}{n + m + 1} \right) [T(r, f) + T(r, g)] + S(r, f) + S(r, g)$

Which is contradiction to $n > m + 1$.

Hence $F \equiv G$.

i.e. $f^{n}(z) (a_m f^m + a_{m-1} f^{m-1} + \cdots + a_0) f(z + c) \equiv g^n(z) (a_m g^m + a_{m-1} g^{m-1} + \cdots + a_0) g(z + c)$

(3.23)

Let $h = \frac{f}{g}$, and then substituting $f = gh$ and $f(z + c) = g(z + c) h(z + c)$ in (3.23) we deduce

$\Rightarrow (gh)^n [a_m (gh)^m + a_{m-1} (gh)^{m-1} + \cdots + a_0] g(z + c) h(z + c) = g^n (a_m g^m + \cdots + a_0) g(z + c)$

$g^m [a_m (h^{m+n} (z) h(z + c) - 1)] + g^{m-1} [a_{m-1} (h^{m+n-1} (z) h(z + c) - 1)] \ldots + [a_0 (h^n (z) h(z + c) - 1)] = 0$

If h is a constant, which implies $h^d = 1$ where $d = \text{GCD}(n + m + 1 \ldots n + m + 1 - i \ldots n + 1)$ for some $i = 0, 1, 2, \ldots, m$.

If h is not constant, then f and g satisfy the algebraic equation $R(\omega_1, \omega_2) = 0$ where $R(\omega_1, \omega_2) = \omega_1^n (z) P(\omega_1) \omega_1 (z + c) - \omega_2^n (z) P(\omega_2) \omega_2 (z + c)$.

Hence proof of theorem 1.1.

References

