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Highlights

» Advanced NARX neural network with Bayesian optimization achieved
exceptional shoreline prediction accuracy (RMSE: 0.07-0.52m).

> Integration of multi-temporal Landsat data (1987-2022) enabled precise shoreline
delineation across 158 transects with NRMSE of 0.116595.

» Model 5's multi-parameter integration (wave height, tidal range, displacement)
demonstrated superior performance with Performance Index values ranging from
0.000149 to 0.000857.

»  Spatial analysis quantified critical erosion zones (-7.0 m/year) and accretion areas
(+24.48 m/year) across 21 distinct coastal sectors.

»  The decision matrix enabled targeted protection strategies based on vulnerability
thresholds (x20 m/year High, £5-20 m/year Moderate, £0-5 m/year Low).

» The implementation framework aligns with SDGs through data-driven coastal
protection and climate adaptation strategies.
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Abstract

Accurate shoreline prediction models are crucial for coastal management under
increasing climate change pressures. This study presents an advanced approach
combining Nonlinear Autoregressive with Exogenous inputs (NARX) neural
networks optimized through modified Levenberg-Marquardt algorithms with
Bayesian regularization, integrating multi-temporal remote sensing data to
predict shoreline evolution. Focusing on a 35-km stretch of Egypt's Nile Delta
coastline, five NARX models are developed and compared, incorporating
different combinations of significant wave height (<4m), tidal range (-0.10 to
0.85m), and historical shoreline displacement data. The methodology integrated
35 years (1987-2021) of Landsat imagery with hydrodynamic parameters across
158 transects at 215-m intervals. Results demonstrated that the integrated model
combining all three parameters achieved exceptional accuracy, with Root Mean
Square Error (RMSE) values of 0.07m (2012) to 0.52m (2021) and Nash-
Sutcliffe efficiency ranging from 0.95664 to 0.999377, significantly
outperforming single-parameter models. Cross-correlation analysis revealed
stronger relationships between shoreline changes and combined parameters.
The novel Performance Index (0.000149 to 0.000857) validated the integrated
approach's superiority. The spatial analysis identified 21 distinct sectors with
critical erosion zones (-7.0 m/year) and accretion areas (+24.48 m/year),
enabling targeted protection strategies based on quantified vulnerability
thresholds. This research advances shoreline prediction methodology through
enhanced parameter integration, providing a robust framework for coastal
management under climate change conditions. The findings support sustainable
coastal development and climate adaptation strategies in vulnerable delta
regions.

Keywords: Shoreline Prediction; NARX Neural Network; Remote Sensing;
Coastal Morphodynamics; Nile Delta.

Graphical abstract

| Satellite Image |

1

| fo o
1[2
1|8
2
[
13
12
HE.
[
e
HE
|8
HE
B
' |2
1]




3 Geospatial Time Series Analysis for Coastal Systems...

1. Introduction

Coastal shorelines, the dynamic interfaces between terrestrial and aquatic ecosystems,
are subject to complex geomorphological processes operating across various temporal
and spatial scales (Vitousek et al. 2017; Masria et al. 2022). Their evolution is governed
by both anthropogenic and natural forces, with long-term changes primarily attributed
to shifts in relative elevation and sea-level rise (Vousdoukas et al. 2020; EI-Asmar et
al. 2024). Short-term sediment redistribution is predominantly driven by the combined
effects of wave action, nearshore currents, and fluvial processes (Youssef et al. 2024).
This constant flux results in continuous coastline reshaping through erosion and
accretion, necessitating precise shoreline position estimates for effective erosion
mitigation strategies (Calkoen et al. 2021; Abd-Elaty et al. 2024). Accurate forecasting
of shoreline configurations requires a comprehensive understanding of historical and
current coastal dynamics (Zeinali et al. 2021; Mansour et al. 2024). This study examines
shoreline movements along the North Delta coast, specifically the stretch between the
Kitchener drain and the Gamsa outlet, characterized by highly dynamic deltaic beaches
(EIKotby et al. 2024). These geomorphic systems undergo continuous transformations
across multiple geographical and temporal scales (Luijendijk et al. 2018; Ibrahim et al.
2024).

The field of coastal geomorphology has witnessed significant advancements in
shoreline change analysis technigques over the past two decades. The Digital Shoreline
Analysis System (DSAS), leveraging multi-temporal satellite data, has emerged as a
cornerstone for analyzing shoreline dynamics (Nandi et al. 2016; Hagenaars et al. 2018;
Bhuyan et al. 2023). Integrating remote sensing and Geographical Information Systems
(GIS) technologies has revolutionized shoreline change assessments, enabling
unprecedented spatial and temporal coverage (Luijendijk et al. 2018; Raja et al. 2023).
Recent studies have demonstrated the potential of combining traditional DSAS
approaches with Machine Learning (ML) techniques to improve prediction accuracy
(Calkoen et al. 2021; Zeinali et al. 2021). However, most existing models have focused
on single-parameter approaches, highlighting the need for integrated multi-parameter
prediction systems (Vitousek et al. 2023).

Integrating numerical models with remote sensing data has significantly advanced
shoreline prediction capabilities (Vitousek et al. 2023). Traditional approaches like the
End Point Rate (EPR) and Linear Regression (LRR) models have been widely used for
shoreline predictions (Calkoen et al. 2021). However, these methods often fail to
capture complex temporal patterns and nonlinear relationships in coastal systems
(Zeinali et al. 2021). Recent ML approaches have demonstrated superior performance
in handling such complexities (Goldstein et al. 2020; Montafio et al. 2020). The efficacy
of these predictive models depends on multiple factors, including data quality, temporal
resolution, and the incorporation of relevant physical parameters (Luijendijk et al.
2018).

Shoreline change analysis has evolved significantly from traditional Geographic
Information System (GIS) approaches to sophisticated ML techniques (Calkoen et al.
2021). While conventional tools like DSAS remain valuable for basic analysis, they
show limitations in processing large datasets and capturing complex temporal patterns
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(Vitousek et al. 2023). Recent advances in deep learning have enabled more accurate
shoreline detection and prediction capabilities (Goldstein et al. 2020). Neural network
approaches, particularly recurrent architectures, have demonstrated superior
performance in capturing temporal dependencies in coastal systems (Vidyalashmi et al.
2024a). These methods can process multiple input parameters simultaneously, offering
advantages over traditional single-parameter approaches (Montafio et al. 2020).
Integrating ML with remote sensing data has enabled global near-real-time monitoring
of coastal changes (Luijendijk et al. 2018; Vos et al. 2019). This advancement is
particularly relevant for sustainable coastal management and climate change adaptation
strategies (Vousdoukas et al. 2020). Neural network approaches have shown particular
promise in combining multiple environmental parameters, including wave
characteristics, tidal patterns, and historical shoreline positions (Huang et al. 2024a).

The NARX (Nonlinear Auto-Regressive with Exogenous Input) architecture has
emerged as a powerful tool for environmental time series prediction by addressing key
limitations of traditional forecast methods (Tang 2020). Unlike conventional
approaches that process temporal data sequentially, NARX networks employ multi-
level feedback connections that enable the simultaneous integration of historical states
and external forcing factors (Hewamalage et al. 2021). This architectural advantage is
particularly relevant for coastal systems, where shoreline evolution results from
complex interactions between multiple time-varying parameters. The network's ability
to capture both short-term fluctuations and long-term trends while maintaining
computational efficiency makes it especially suitable for coastal prediction tasks (Vos
et al. 2019). Recent applications have demonstrated NARX's superior performance in
handling nonlinear relationships and temporal dependencies in environmental data
(Vidyalashmi et al. 2024b), suggesting its potential for improving shoreline prediction
accuracy through multi-parameter integration.

Despite advances in ML applications for coastal systems, significant challenges remain
in developing computationally efficient models that integrate multiple environmental
parameters while maintaining high accuracy in prediction (Huang et al. 2024b). While
recent studies have explored various ML techniques in coastal engineering (Vitousek
et al. 2023), most focus on single-parameter predictions or limited temporal scales
(Simmons et al. 2017). Integrating multiple time-varying parameters with historical
shoreline data remains particularly challenging (Splinter and Coco 2021).

This research advances shoreline prediction methodology by developing an integrated
NARX-based framework that addresses key limitations in existing approaches. While
previous studies have largely relied on single-parameter predictions or limited temporal
scales, this study introduces a comprehensive multi-parameter approach incorporating
historical displacement data, significant wave height, and tidal range. The investigation
focuses on a 40-km stretch of Egypt's Nile Delta coastline between the Kitchener drain
and Gamsa outlet. This region exemplifies the complex interactions between natural
coastal processes and anthropogenic pressures. The research makes three primary
contributions: (1) the development of a novel integrated prediction framework that
demonstrates superior accuracy over traditional single-parameter approaches, (2) the
quantification of the relative importance of different environmental parameters in
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shoreline prediction, and (3) the establishment of a methodological foundation for
incorporating multiple time-varying parameters in coastal evolution models. These
advances provide both theoretical insights into coastal morphodynamics and practical
tools for sustainable coastal management under changing climate conditions.

2. Material and methods
2.1. Study Area

The study area, situated along the Mediterranean coast of Egypt's Nile Delta (Figure.
1a), spans approximately ~35 km westward from the Kitchener drain to the Gamsa
Inlet, encompassing coordinates 31°11'9.47"E to 31°33'48.35"E and 31°34'56.56"N to
31°33'48.35"N. This region exhibits extensive land prone to erosion, accretion, and
vulnerable coastal activities. As shown in Figure. 1b, the study area is divided into
distinct zones featuring critical infrastructure, including New Mansoura City, a
desalination plant, and popular coastal destinations such as Baltim and Gamsa Beach.

The hydrodynamic characteristics of the study area have been continuously monitored
using the S4DW method (Trageser and Elwany 1990), recording the directed wave
spectrum hourly at a water depth of 12 m. Dominant seasonal waves originate from the
north to northwest and are characterized by consistent heights around 120 cm and 6-9
seconds durations. Winter storms, occurring at least annually between November and
April, exhibit higher wave heights up to 2.70 m with periods of 7-9 seconds and
maximum wave heights reaching 4.00 m. Longshore currents, measured between the
breaker line and coast at water depths of 1.30-2.0 m, align with wave motion and reach
peak velocities during high storm wave periods (Mansour et al. 2024).

Wind analysis (2011-2012) reveals prevailing NW and WNW directions contributing
50-60% of total wind energy, with average speeds ranging from 2-9 m/s in summer to
9-13 m/s in spring (Frihy and El-Sayed 2013; Mansour et al. 2024). Completing the
High Aswan Dam in 1964 marked a critical turning point, substantially reducing
sediment discharge at the Nile promontories (Stanley and Warne 1998; El-Sharnouby
et al. 2020). This reduction intensified erosive forces along the coastline, necessitating
protection measures. In response, the western side of the drain was reinforced with 15
groins to combat continuous erosion rates of approximately 20 meters per year (El-
Sharnouby et al. 2020; Dewidar and Bayoumi 2021).

The digitized shorelines for multiple years between 1987 and 2022 (Figure. 1c) reveal
significant morphological changes along the coastline. These temporal variations
demonstrate the oblique inclination of the shoreline in this area compared to the
Kitchener zone to the west, highlighting the region's dynamic nature of coastal
processes (Abd-Elhamid et al. 2023). The shoreline evolution patterns visible in the
digitized data reflect both natural processes and anthropogenic interventions over the
study period (Tharwat Sarhan et al. 2022). Recent interventions include the installation
of an additional 17 groins along the drain's eastern shoreline in early 2022, aiming to
reduce downstream erosion and enhance long-term coastal stability (Masria et al. 2024).
This ongoing coastal protection program demonstrates the continued vulnerability of
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this stretch of coastline to erosion processes (EIKotby et al. 2023).

£ ITVOE 2VE ISUrE

b

£

H 100 a8 3w /j
weer e T T

T e E DewE sewet

31°12°0"E 31°15'0"E 31°18'0"E 31°21'0"E 31°24'0"E 319270"E 31°30'0"E

Mediterranean Sea

31°340"N 31°36'0"N

Water desalination plant

31°26'0"N  31°28'0"N 31°30'0"N 31°32°0"N 31°34'0"N  31°36'0"N
31°30'0"N 31°32'0"N

31°12'0"E 31°15'0"E 31°18'0"E

Figure.l a Location of the study area; b Shoreline with a length of ~35
km with the location of hazard cities with a number of transect IDs; ¢
The digitized for the previous studied years.

2.2. Research Methodology

The comprehensive methodological framework of this study, as illustrated in Figure. 2,
encompasses several integrated analytical approaches for shoreline prediction and
evolution analysis. The methodology builds upon established remote sensing
techniques while incorporating hydrodynamic parameters and ML predictions through
the following key stages:

1. Data Acquisition and Processing: The initial phase involves analysis of multi-
temporal Landsat satellite imagery (1987-2022), including systematic pre-
processing through radiometric calibration, atmospheric correction, and Tasseled
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Cap Transformation for enhanced shoreline delineation, culminating in the
establishment of 158 shore-perpendicular transects at 215 m intervals along the
~35 km study area.

2. Neural Network Implementation: This phase focuses on the development of five
distinct NARX (Nonlinear Autoregressive with Exogenous inputs) models,
integrating significant wave height measurements, tidal range data, and historical
shoreline positions, with the dataset strategically partitioned into training (70%,
1987-2010) and testing (30%, 2010-2021) segments.

3. Model Development and Validation: The modeling phase involves implementing
varying input parameter combinations across models, validated through
comprehensive statistical metrics, including RMSE, MAPE, Nash-Sutcliffe
Efficiency, and Performance Index.

4. Impact Assessment: The final stage encompasses analysis of predicted shoreline
positions, evaluation of coastal vulnerability, assessment of climate change
implications, and generation of insights for coastal management strategies.

This systematic approach enables quantitative analysis of shoreline dynamics while
accounting for complex interactions between coastal processes, climate factors, and
anthropogenic influences. The following sections detail each methodological
component, their implementation, and their role in understanding coastal evolution
patterns.

Data Collection
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Figure. 2 Methodological framework for shoreline prediction
using a NARX neural network.
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2.2.1. Data Source

Accurately monitoring and analyzing shoreline dynamics requires high-quality satellite
imagery with consistent spatial and temporal resolution. This study utilized multi-
temporal satellite data spanning 35 years (1987-2022) from multiple Landsat missions,
including the Landsat-1 Multispectral Scanner (MSS), Landsat-4 and -5 Thematic
Mapper (TM), Landsat-7 Enhanced Thematic Mapper (ETM), and Landsat-8
Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS). The imagery was
acquired through the United States Geological Survey (USGS) Earth Explorer platform,
providing a comprehensive dataset for analyzing long-term coastal changes (Table 1).

The selection of Landsat imagery was particularly appropriate for this study due to its
moderate spatial resolution (30m), consistent temporal coverage, and extensive
historical archive (Wulder et al. 2019). The study area's moderate tidal range minimizes
the influence of tidal variations on shoreline position extraction from satellite data,
enhancing the reliability of shoreline delineation (Boak and Turner 2005). Image
processing and shoreline extraction were conducted using ArcGIS 10.8, following
established protocols for automated shoreline detection in coastal environments
(Hagenaars et al. 2018; Vos et al. 2019). All satellite scenes underwent rigorous quality
assessment to ensure cloud cover was below 10%, and images were acquired during
similar tidal conditions to maintain consistency in shoreline detection. This
methodological approach aligns with recent advances in satellite-based coastal
monitoring and provides a robust foundation for analyzing multi-decadal shoreline
changes in the study area.

Table 1. Technical specifications and characteristics of satellite imagery used in the
study (1987-2022).

Coordinate Spatial  Spectral Cloud Size
System/ resolution Bands Cover (Row/
Datum (m) Used (%)  Path)

Spacecra Sensor Path

vear o ID  /Row

LAND
1987 SAT 1 MSS

LAND
1992 oAt 4

LAND
1994 SAT 5 ™

LAND 178/3 UTM/WG 34 <
1997 caT 5 9 S 84 30 and5  10%

LAND
1999 st 7

LAND
2002 SAT 7 ETM

LAND
2007 SAT_7

178/39
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LAND
2012 SAT_7

LAND
2017 SAT_8 OLlI

LAND TRIS
2022 SAT 8

The hydrodynamic characteristics of the study area, crucial for understanding coastal
processes, are illustrated in Figure. 3. Throughout the research period, significant wave
height (Hs) predominantly remained below four meters. In comparison, tidal levels
fluctuated between -0.10 and 0.85 meters, demonstrating the dynamic nature of the
coastal environment (Nielsen and Callaghan 2003). These datasets were meticulously
documented monthly, providing a comprehensive temporal resolution for analysis. Hs
measurements were conducted offshore, complemented by hourly hindcast wave data
up to 2020, provided by the Beach Research Center. This approach aligns with best
practices in coastal hydrodynamics research, ensuring a robust dataset for analysis
(Kamphuis 2010). To account for astronomical tides, the T_Tide software package was
employed to analyze water level data from 1990 to 2020, a method widely recognized
in tidal studies for its accuracy and reliability (Pawlowicz et al. 2002). This multifaceted
approach to data collection and analysis, incorporating both shoreline changes and
hydrodynamic factors, provides a comprehensive foundation for understanding the
complex coastal dynamics of the study area. Integrating these diverse datasets enables
a more nuanced and accurate assessment of shoreline evolution and its driving forces.
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Figure. 3 a Tidal range; b Significant wave height in the study
area over the period.
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2.2.2. Shoreline extraction and uncertainty evaluation

The extraction of shorelines from medium-resolution satellite imagery presents
significant challenges due to the presence of a water-saturated zone at the land-water
interface. This study implemented a systematic approach to shoreline delineation using
Landsat imagery, specifically focusing on Band 5 (Short-Wave Infrared) due to its
optimal spectral characteristics for water-land boundary discrimination (Figure. 4). The
methodology leverages water bodies' distinct spectral reflectance properties, which
exhibit minimal reflectance in the SWIR spectrum compared to other land cover types
(Boak and Turner 2005; Hagenaars et al. 2018).

The shoreline extraction process was executed through a semi-automated workflow in
ArcGIS 10.6.1, comprising three primary stages: (1) conditional value calculation using
a raster calculator to identify the dry/wet line based on reflectance thresholds, (2) raster-
to-polygon conversion for spatial delineation, and (3) polyline generation for
continuous shoreline representation. The resultant shorelines were georeferenced using
the WGS_1984 UTM_Zone 36N coordinate system to ensure spatial accuracy and
compatibility with other geospatial datasets.

The 2022 shoreline extractions underwent additional processing and comparative
analysis for validation and uncertainty assessment. A baseline was established at 500-
meter intervals using a buffering approach, from which shore-perpendicular transects
were generated to quantify shoreline positions and temporal changes. The accuracy of
the shoreline detection methodology was evaluated using the normalized root mean
square error (NRMSE). Three different pixel threshold values were tested: 14,000,
15,000, and 16,000, yielding NRMSE values of 0.227181, 0.290475, and 0.116595,
respectively. The optimal threshold of 16,000 produced the lowest NRMSE (0.116595),
indicating superior accuracy in shoreline delineation (\Vos et al. 2019; Mansour et al.
2024). This dimensionless error metric enables robust comparison of shoreline
detection accuracy across different spatial and temporal scales. The extracted shorelines
were stored in shapefile format, facilitating subsequent analysis of coastal
morphodynamics and enabling integration with other spatial datasets for
comprehensive coastal change assessment.

(b)

Figure. 4 The methodology for shoreline extraction in 2022 includes; a
Landsat raster image of Band 5; b the binary image; c the vector map (polygon
shapefile).
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2.2.3. Data Preparation and Model Development

The foundation of robust predictive modeling lies in meticulous data preparation and
appropriate model architecture design. Building on established practices in ML
applications, five distinct models were developed with different combinations of input
parameters, as detailed in Table 2. M (1) utilizes only significant wave height (Hs), M
(2) incorporates tidal range (TR), while M (3) combines both parameters. M (4) relies
solely on historical shoreline displacement data (ds), and M (5) integrates all three
parameters (ds, Hs, TR) with a lag-2 value to capture temporal dependencies. The
dataset was strategically partitioned into two segments: a training set spanning 1987-
2010 (70% of data) and a test set covering 2010-2021 (30% of data), following standard
procedures for neural network applications (Beale et al. 2010). Data normalization was
implemented using MATLAB's mapminmax function to ensure optimal model
performance.

For comprehensive spatial analysis, 158 transects were established at 215-meter
intervals along a ~35 km baseline, with special attention given to five high-risk
locations (IDs 6, 40, 75, 117, and 156), as shown in Figure. 1b, corresponding to
residential areas particularly vulnerable to erosion. Figure. 5 illustrates the temporal
evolution of shoreline positions at these critical locations, demonstrating significant
variability in shoreline displacement patterns over 34 years. The time series data shows
distinct characteristics at each location, with some areas exhibiting greater fluctuations
than others, highlighting the complex nature of shoreline dynamics that the models need
to capture. This systematic approach to data preparation and organization provides a
robust foundation for implementing NARX neural network models, ensuring that both
spatial and temporal variations in shoreline behavior are adequately represented in the
training and testing datasets.

Table 2 Summary of model trained and tested.

Models Mathematical expression Input Output

M (1)  ds(t) = f(Hs(t-1); Hs(t-2)) Hs ds(t)

M (2)  ds(t) = f(Tr(t-1); Tr(t-2)) Tr ds(t)

M (3)  ds(t) = f(Hs(t-1); Hs(t-2); Tr(t-1); Tr(t-2)) Hs, Tr ds(t)

M (4)  ds(t) = f(ds(t-1); ds(t-2)) ds ds(t)

M (5)  ds(t) = f(ds(t-1); ds(t-2); Hs(t-1); Hs(t-2); Tr(t-1); ds, Hs, T ds(t)
Tr(t-2))

Note: ds is the shoreline displacement, Hs is the significant wave height, and Tr is
the tidal range.
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Figure. 5 Validation and Test for shoreline displacement with time
(1987 to 2022) at selected ID of hazard areas.

2.2.4. Nonlinear Autoregressive with Exogenous Input (NARX) Model

A sophisticated nonlinear ML-based model has been implemented to predict shoreline
displacement, leveraging both single and multivariate time-series data through
advanced neural network techniques (Karunarathna et al. 2016). This approach, known
as the Nonlinear Autoregressive with exogenous inputs (NARX) model, has
demonstrated significant efficacy in capturing complex coastal dynamics (Hashemi et
al. 2010). The neural network architecture comprises an input layer, one or more hidden
layers, and an output layer (Figure. 6), a structure well-suited for modeling nonlinear
systems like coastal processes (Pardo-lgizquiza et al. 2019). The model's predictive
capability is enhanced by its utilization of historical values, with the number of steps
taken at the previous time considered contingent upon the input characteristics and
feedback delay (Sahoo and Bhaskaran 2019). Weights assigned to inputs quantify their
influence on the output, allowing the model to capture the nuanced interplay of factors
affecting shoreline displacement.

Central to the NARX model's effectiveness is selecting an optimal lag value,
determined through auto-correlation and correlation functions. These statistical tools
measure the similarity between data points across different time intervals, ensuring the
model captures relevant temporal relationships in shoreline evolution (Torres-
Freyermuth et al. 2017). The term "auto-regression” in the model's name reflects its
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ability to account for the influence of past shoreline positions on current and future
states.

The general equation of the NARX model, as described by (Torres-Freyermuth et al.
2017), is represented as:

9(6) = f (y(t = 1, y(t = 2), oo y(t = 1), u(®), ult — 1), u(t @
—2),....u(t— nu)) + e(t)

where f(.) denotes the neural network mapping function, y(z) is the target variable
(predicted shoreline position), y(t-ny) is the predictor variable (historical shoreline data),
u(t) represents exogenous inputs (e.g., wave height, tidal range), ny and ny are the
respective time delays and e(t) is the model error between target and prediction.

Input Layer

>
[x}
=
W
=]
-
=
=
=
=

Feedback Delay

Figure. 6 Architecture of the NARX neural network showing
input layer with input and feedback delays, hidden layer with
processing nodes, and output layer.

According to the input variable u(t), the hidden layer output H; at time t is obtained as
(Chan et al., 2015):

H(O) = fi | ) wonlt =) + ) way(t =D +a, @
=0 =1

where wir is the connection weight between input neuron u(t-r) and ith hidden neuron,
wi is the connection weight between the ith hidden neuron and output feedback neuron
y(t-1), ai is the bias of the ith hidden neuron, and fi(-) is the hidden layer activation
function. The final prediction can be given by combining the hidden layer outputs:



Nada Mansour, Tharwat Sarhan, Mahmoud El-Gamal... 14

i) =1, z w;; H;(t) + b; (3)

where wiji is the connection weight between the ith hidden neuron and jth predicted
output, bj is the bias of the jth predicted output, nn is the number of hidden neurons, and
f2(-) is the output layer activation function.

The model's predictive capability is enhanced by its utilization of historical values, with
the number of previous time steps considered being contingent upon the input
characteristics and feedback delay (Sahoo and Bhaskaran, 2019). Weights assigned to
inputs quantify their influence on the output, allowing the model to capture the nuanced
interplay of factors affecting shoreline displacement.

2.2.5. Modified Levenberg—Marquardt (LM) Training Algorithm

To optimize the NARX network parameters, the Levenberg-Marquardt (LM) algorithm
is implemented as the training mechanism due to its superior convergence speed and
reliability. The LM algorithm combines the Gauss-Newton algorithm's (GNM)
acceleration with the stability of the steepest descent method (SDM), making it
particularly effective for training neural networks (Revanesh et al. 2024). LM shifts
between the SDM and GNM, as follows (Abd-Elmaboud et al. 2021):

S=[T.J+AII Y .E (4)

where J is the Jacobian matrix for the first error term derivatives, T is the Jacobian
matrix's transpose, § is the various weighted adjustments, | is a factor, | is the identity
matrix, and E is a vector of the output errors.

The LM method sticks to the nearest local minima in complex high-dimensional
solution spaces. Training the NARX to the deepest local minimum, i.e., catching near
zeros for all Jacobean matrix components, virtually leads to overfitting. The problem is
solved by combining Bayesian regularization with LM. In the objective function, add a
penalty proportionate to NARX weights. This reduces weights, so the expected output
is smoother. A description of the modified objective function, F, is as follows (Kayri
2016; Shang et al. 2023):

m n
F=BRp+ afy =) 00 = 3" +a ) w? ©)
i=1 i=1

where aF is the objective function's penalty; F is the square sum of the weights; Fp
is the sum of the square difference between observed and predicted outputs at grid
element i; y;9, and y;Pare observed and predicted outputs at grid elements i; and a, b
are two unknown Bayesian parameters that may be repeatedly obtained from:
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Y _ Ne—vy
*= B==r

y=W— 2atr(H™1) (6)

where, g is the number of active weights used to guide the NARX output results; Nt is
the number of training data points; tr(H™?) is the matrix trace H and equivalent to the
sum of the matrix’s eigenvalues; and W is the weights and biases number.

This training approach enables efficient optimization of the NARX model parameters.
It begins by performing quadratic estimation using the steepest descent method, then
updating weights using the Gauss-Newton method, and adaptively adjusting the
learning parameter fn based on the error reduction. Integrating the LM algorithm with
the NARX architecture provides several key advantages, including faster convergence
compared to conventional gradient descent methods, improved stability during the
training process, better handling of the nonlinear relationships inherent in shoreline
dynamics, and reduced risk of getting trapped in local minima. Combining the NARX
model structure (Equations 1-3) with the LM training algorithm (Equations 4-6) creates
a robust framework for capturing and predicting complex shoreline evolution patterns
while maintaining computational efficiency. This hybrid approach is particularly
suitable for coastal applications where both accuracy and training speed are critical
considerations.

2.2.6. Model Performance Evaluation

A comprehensive evaluation framework is established to assess the predictive model's
performance using both training and test datasets. Following established protocols in
environmental modeling (Moriasi et al. 2007), multiple statistical metrics are employed
to quantify different aspects of model accuracy and reliability. The primary evaluation
metrics included the correlation coefficient (R), Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), Nash-Sutcliffe Efficiency (NSE), and Index
of Agreement (I0A).

The correlation coefficient (R), represented in Equation 7, measures the strength and
directionality of the linear relationship between predicted (P) and observed (O) values
(Krause et al. 2005):

R = ?zl(P_Pa)X(O_Oa)
VEE(P = F)? = X7(0 = 0a)?

RMSE quantifies the standard deviation of residuals (Chai and Draxler 2014):

(7)

1 n
RMSE = ;Z(P —0)2 (8)
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MAPE provides a scale-independent measure of accuracy (Hyndman and Koehler
2006):

MAPE = 1Zn:|P_0| x 100 9)
n : 0
L

The Nash-Sutcliffe efficiency evaluates the relative magnitude of residual variance
(Moriasi et al. 2007):

X0 -P)’
2711(0 - Oa)z

Finally, the Index of Agreement (Legates and McCabe 1999) measures prediction error-
free degree:

NSE = 1 — (10)

_ 2?(0 B Oa)z
A= SR P 0. 110 — 0412 o

where P and O represent predicted and observed values, respectively, while P, and Oa
denote their respective meaning. This comprehensive suite of performance metrics
enables robust evaluation of the model's predictive capabilities across multiple
dimensions of accuracy and reliability, following best practices in environmental
modelling (Bennet et al. 2013).

3. Results
3.1. Analysis of historical shoreline data

Analysis of shoreline changes between 1987-2022 reveals distinct erosion and accretion
patterns along the study area. The EPR analysis in Table 3 shows significant variations
in shoreline behavior across seven five-year intervals. During 1987-1992, the coastline
experienced maximum erosion rates of -37.34 m/yr and accretion rates of +24.50 m/yr,
with 60.59% of transects showing erosion. The period witnessed mean progressive and
regressive rates of +5.6296 m/yr and -7.1960 m/yr, respectively. A notable shift
occurred during 1992-1997, with erosion affecting only 40% of transects, while
accretion dominated 60%. The maximum progressive rate increased to +25.10 m/yr,
while the maximum regressive rate decreased to -18.16 m/yr. The 1997-2002 period
showed further improvement in coastal stability, with erosion affecting only 35.86% of
transects and maximum accretion reaching +32.65 m/yr.

As shown in Figure. 7, the spatial distribution of EPR values demonstrates complex
patterns of shoreline change. The 2002-2007 period marked increased erosional
pressure (-40.72 m/yr maximum regression), affecting 49.7% of transects. The 2007-
2012 interval maintained high erosion rates (-40.96 m/yr), though accretion dominated
at 53.67% of locations. The most recent periods show contrasting trends. During 2012-
2017, erosion rates moderated significantly (-14.69 m/yr maximum), with 76.26% of
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transects showing accretion - the highest percentage across all periods. However, 2017-
2022 witnessed renewed erosional pressure (-36.43 m/yr maximum) affecting 57.64%
of transects, suggesting increased coastal vulnerability in recent years. The EPR
patterns illustrated in Figure. 7 indicate localized zones of intense erosion interspersed
with stable or accreting segments, reflecting the spatial variability of coastal processes.
This temporal and spatial analysis provides crucial insights into shoreline dynamics,
essential for understanding long-term coastal evolution and developing effective
management strategies.

Table 3 Temporal analysis of shoreline change rates (1987-2022)

Time Period | Accretion (Progressive) Erosion (Regressive)

Mean rate Max Rate Transecty Meanrate Max Rate Transects
(mfyr) (mfyr) (%) (mfyr) (mfyr) (%)
1987-1992 +5.6296 +24.50 39.41 -7.1960 -37.34 60.59

1992-1997 | +6.966 +25.10 60.00 -4.63 -18.16 40.00
1997-2002 | +8.42 +32.65 64.14 -7.00 -27.17 35.86
2002-2007 | +8.25 +29.49 50.30 -7.218 -40.72 49.70
2007-2012 | +8.19 +22.53 53.67 -9.66 -40.96 46.32
2012-2017 | +10.38 +31.22 76.26 -6.48 -14.69 23.74

2017-2022 | +6.937 +21.23 42.35 -10.28 -36.43 57.64
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Figure. 7 Qualitative analysis of erosion/accretion transects using EPR every five
years from 1987 to 2022. ( —— accretion / == erosion).

3.2.  Analysis of the performance of the five NARX models

This study developed five distinct models using the NARX neural network, as outlined
in Table 2. Each model is designed to predict shoreline displacement based on different
combinations of input parameters, allowing for a comprehensive analysis of the factors
influencing coastal dynamics. M (1) focused solely on significant wave height as a
predictor, while M (2) utilized tidal range data. M (3) combined both significant wave
height and tidal range to forecast displacement, offering insights into the combined
effects of these hydrodynamic forces. M (4) took a different approach, relying on
historical displacement data with a lag of two-time steps. Finally, M (5) integrated all
three parameters - significant wave height, tidal range, and historical displacement - to
provide the most comprehensive prediction of shoreline changes.

The results of the five NARX neural network models developed for shoreline
displacement prediction reveal significant performance variations across input
parameters and locations. This comprehensive analysis provides valuable insights into
the complex dynamics of coastal processes and the efficacy of various predictive
approaches. As listed in Table 4, M (1), which solely relied on significant wave height
as a predictor, demonstrated relatively poor performance across all locations. The
correlation coefficients (R) ranged from -0.2019 to 0.0361, indicating a weak
relationship between wave height and shoreline displacement. The high RMSE values
(ranging from 47.5134 to 117.315) further underscore the model's limited predictive
capability when considering wave height in isolation. M (2), incorporating tidal range
data, showed marginal improvement over M (1) but still exhibited low predictive
power. Correlation coefficients remained low (-0.0992 to 0.1799), and RMSE values,
while slightly reduced in some locations, remained high (48.3301 to 126.7294). M (3),
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which combined significant wave height and tidal range, unexpectedly performed
worse than the simpler models in most locations. This is evidenced by negative
correlation coefficients at several IDs and increased RMSE values, particularly at ID
117 (82.8634). This outcome suggests that the interaction between wave height and
tidal range may be more complex than initially assumed, potentially involving
nonlinear relationships that the model struggled to capture. A marked improvement is
observed with M (4), which utilized historical displacement data. This model
consistently achieved high correlation coefficients (0.979712 to 0.999409) and
significantly lower RMSE values (3.63468 to 9.141776) across all locations. The Nash-
Sutcliffe efficiency (E) values close to 1 (ranging from 0.95664 to 0.999377) indicate
that this model explains a large proportion of the variance in the observed data. M (5),
integrating all three parameters (historical displacement, significant wave height, and
tidal range), demonstrated the best performance across all metrics and locations. It
achieved perfect correlation coefficients (R = 1) and near-zero RMSE values (0.00105
to 0.013828) for all IDs. The exceptionally low MAPE values (1.38E-07 to 2.68E-08)
further prove its superior predictive accuracy.

Figure. 8, presented as a Taylor diagram, provides a comprehensive visual summary of
the statistical findings, clearly illustrating the superior performance of Models 4 and 5
across all locations. A Taylor diagram is a powerful tool for model evaluation as it
simultaneously displays multiple performance metrics on a single plot (Taylor 2001).
In this diagram, the radial distance from the origin represents the standard deviation
ratio between the model and observations, the azimuthal angle corresponds to the
correlation coefficient, and the distance from the reference point (usually marked as
"observed") indicates the centred root mean square error (RMSE).

The clustering of Models 4 and 5 near the reference point on the Taylor diagram
indicates their high correlation with observed data, low RMSE, and accurate
representation of the observed variability. This tightly grouped pattern starkly contrasts
with the widely dispersed points representing Models 1-3, which are scattered further
from the reference point, signifying their poorer performance across all metrics. The
consistent proximity of M (5) to the reference point across all locations suggests that
while historical displacement (as used in M (4)) is a strong predictor, the inclusion of
hydrodynamic factors (wave height and tidal range) further refines the model's
accuracy. This visual representation aligns with coastal morpho dynamic theory, which
posits that shoreline evolution is influenced by a complex interplay of historical trends
and contemporary forcing factors (Vitousek et al. 2023).

The poor performance of models relying solely on hydrodynamic parameters (Models
1-3), evident from their scattered positions on the Taylor diagram, corroborates the
findings of (Vitousek et al. 2017), who emphasized the complexity of shoreline
response to wave and tidal forcing. Moreover, the significant improvement observed
when incorporating historical data (Models 4 and 5), shown by their closer proximity
to the reference point, supports the conclusions of (Hagenaars et al. 2018) regarding the
importance of long-term trends in shoreline prediction.
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Table 4 Performance Metrics of Five NARX Models Across Different Coastal
Locations (ID 6, 40, 75, 117, 156)

Location Statistical indexes
Models

MAE MAPE RMSE E Id

ID (6) M (1) 0.0116 148.4000 0.0013 58.9365  -0.8900 0.4309
M (2) -0.0982 200.1960 0.0015 66.5131 -1.4071 0.3874
M (3) -0.0816 212.3000 0.0015  66.8884 -1.4344 0.3846
M (4) 0.9975 19.5540 0.0000 3.6347 0.9928 0.9981
MGB) 1 0.204 1.58E-07 0.013828 1 1

ID (40) M (1) 0.0301 107.9520 0.0011 475134  -0.0195 0.1547
M (2) 0.0756 126.2500 0.0012  48.3301 -0.0548 0.2813
M (3) 0.0799 136.3290 0.0012  49.3071 -0.0979 0.3224
M(4) 0.9994 10.8260 0.0001 3.7138 0.9938 0.9984
MGB) 1 0.004 2.32E-08 0.00105 1 1

ID (75) M (1) 0.0282 183.4040 0.0013 60.3939  -0.0082 0.1296
M (2) -0.0316 230.7110 0.0014  63.0374 -0.0984 0.1761
M (3) -0.0310 257.0010 0.0014 64.3914  -0.1461 0.2162
M (4) 0.9978 17.7400 0.0002 9.1418 0.9769 0.9935
MGB) 1 0.071 1.06E-07 0.007758 1 1

ID (117) M (1) 0.0363 133.0960 0.0016 66.6875  -1.7305 0.4445
M (2) 0.1799 239.9880 0.0019  78.9221 -2.8243 0.4328
M((3) 0.1481 2130.4580 0.0019 82.8634  -3.2158 0.4117
M (4) 09797 43.6520  0.0002  8.4049 0.9566 0.9893
M (5) 1 4.00E-03 2.68E-08 0.001245 1 1

ID (156) M (1) -0.2019 190.2830 0.0032 117.3152 -8.9041 0.3201
M (2) -0.0131 232.7890 0.0034  126.7294 - 0.3101

10.5575
M (3) -0.0657 238.8650 0.0034  126.8293 - 0.3050
10.5757

M (4) 0.9968 14.0080 0.0001 4.2010 0.9873 0.9966
M@GB) 1 0.027 1.35E-07 0.007104 1 1
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To further enhance the evaluation process and provide a holistic assessment of model
performance, a novel multi-index criterion, the Performance Index (PIm), was
introduced as follows:

1{Rmn RMSE,  MAPE,

== 12
3\®,, Y RMSE,,.. | MAPE,,, (12)

PI,

where the subscript 'm' denotes the specific model under evaluation. This composite
index, represented by Equation 12, synthesizes multiple statistical measures into a
single, comprehensive metric, directly comparing model performance across all
observed locations. Fig. 9 presents a compelling visualization of the Pl results, clearly
illustrating the superior performance of M (5) across all locations. M (5) consistently
achieved the lowest PI values, with a remarkable minimum of 0.000149 at ID 6,
indicating near-perfect prediction accuracy. In stark contrast, M (1) exhibited the
highest Pl values across all locations, peaking at 0.976347 for ID 4, underscoring its
limited predictive power.
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Figure. 8. Taylor diagram comparing the performance of five NARX models
for shoreline displacement prediction across multiple coastal locations.

A closer examination of Fig. 9 reveals a distinct hierarchical performance among the
models. The consistently low PI values for M (5) are visually represented by a nearly
flat line at the bottom of the graph, highlighting its robust and stable performance across
all spatial locations. Conversely, the erratic and elevated pattern of M (1)'s PI values
across different IDs emphasizes its inconsistent and poor predictive capability. Models
2, 3, and 4 demonstrate intermediate performance, with M (4) notably outperforming
M (2) and M (3), aligning with earlier findings regarding the significance of historical
displacement data in accurately predicting shoreline changes.

The comprehensive evaluation methodology employed in this study, coupled with the
intuitive visualization provided by Fig. 9, offers a nuanced understanding of model
performance that surpasses traditional single-metric assessments. By incorporating
multiple statistical indices and synthesizing them into a single Performance Index, this
approach enables a more robust and reliable comparison of the predictive capabilities
of various models. The superiority of the current investigation's results, particularly
those of M (5), over predictions obtained using conventional Digital Shoreline Analysis
System (DSAS) tools, as reported by Oborie et al. (2024) and Mansour et al. (2024),
underscores the significant advancement this study represents in shoreline prediction
modeling. The advanced modeling techniques combined with the comprehensive
evaluation framework demonstrate the potential for more accurate and reliable
shoreline displacement predictions compared to traditional methods.
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Figure. 9. Performance Index for all observed Id according
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3.3.  Evaluation of spatial and temporal prediction

Building upon the initial performance evaluation of the five NARX models, this section
delves deeper into the models' efficacy in predicting shoreline changes across the entire
study area. While the previous analysis focused on specific locations and overall
performance metrics, this part aims to assess how each model performs in capturing the
spatial variability of shoreline changes along the full extent of the coastline. The NARX
neural network models demonstrate varying degrees of efficiency in predicting
shoreline movement along the entire coastline of the eastern Kitchener drain. Fig.10
illustrates the performance of all five models across four different years (2012, 2017,
2019, and 2021), providing a comprehensive view of their predictive capabilities over
time and space.

Building upon the initial performance evaluation of the five NARX models, this section
delves deeper into the models' efficacy in predicting shoreline changes across the entire
study area. While the previous analysis focused on specific locations and overall
performance metrics, this part aims to assess how each model captures the spatial
variability of shoreline changes along the full extent of the coastline. The NARX neural
network models demonstrate varying degrees of efficiency in predicting shoreline
movement along the entire coastline of the eastern Kitchener drain. Fig.10 illustrates
the performance of all five models across four different years (2012, 2017, 2019, and
2021), providing a comprehensive view of their predictive capabilities over time and
space.

M (1), utilizing solely significant wave height as input, exhibited substantial residual
variability, with residual errors progressively increasing from 87.98 m in 2012 to
123.80 m in 2021, demonstrating systematic over-prediction in the western sections (x
= 330000-340000) and under-prediction in eastern regions (x = 350000-360000). M
(2), incorporating tidal range data, showed marginal improvement in spatial prediction
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accuracy. However, residual errors remained elevated (116.95 m in 2017), with
persistent systematic bias particularly pronounced in the central coastal segment (x =
340000-350000). Integration of both hydrodynamic parameters in M (3) yielded
variable spatial performance, with residual errors ranging from 78.49 m to 115.71 m
across the temporal domain. At the same time, M (4), based on historical displacement
data, demonstrated marked enhancement in prediction accuracy, with residual errors
constrained between 1.64 m (2012) and 7.55 m (2021), exhibiting notably reduced
spatial variability with localized peaks primarily associated with morphological
features such as coastal structures and inlet zones. M (5), incorporating all three
parameters, achieved superior spatial and temporal prediction accuracy, with residual
errors ranging from 0.07 m (2012) to 0.52 m (2021), revealing highly uniform
distribution patterns across all spatial segments with minimal systematic bias; notably,
the western section (x = 330000-340000) consistently exhibited higher residual
variability across all models, attributed to complex morphodynamic processes
associated with the Kitchener drain outlet, while the central coastal segment
demonstrated relatively stable prediction characteristics, particularly in Models 4 and
5, suggesting more predictable shoreline evolution patterns in this region, with temporal
evolution of prediction accuracy showing a general trend of increasing residual errors
with prediction horizon, though this effect was substantially mitigated in M (5), and the
rate of accuracy degradation varied spatially, with maximum deterioration observed in
the vicinity of coastal structures and areas of high morphodynamic activity.
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Figure. 10. Comparative analysis of five NARX models' performance in the
testing phase, illustrating residual values between observed and predicted
shorelines along the eastern Kitchener drain coastline for: (a) 2012 shoreline, (b)
2017 shoreline, (c) 2019 shoreline, and (d) 2021 shoreline.

3.4. Prediction Results and Decision Matrix Analysis

The model, calibrated using a 35-year historical dataset (1987-2022), demonstrated
robust predictive capabilities with a normalized root mean square error (NRMSE) of
0.116595, indicating reliability in capturing complex morpho dynamic processes. So,
implementing the NARX neural network model facilitated shoreline evolution
forecasting for 2022-2050. Quantitative analysis of the forecasted shoreline
configurations, as illustrated in Fig. 11, revealed significant spatial heterogeneity in
coastal response patterns. The study area, spanning approximately ~35 km, is
systematically segmented into 21 distinct sectors based on predicted morpho dynamic
behaviour. These sectors, ranging from 100 to 5700 meters in length, exhibited varying
degrees of vulnerability to erosional and accretionary processes. Critical erosion zones
are identified in sectors 4, 8, and 10, with projected regression rates of -7.61, -7.08, and
-9.92 meters per year, respectively. These rates, derived from the NARX predictions,
indicated potentially severe coastal retreat requiring immediate intervention measures.

The temporal evolution of shoreline positions demonstrated notable variability across
the forecast period. Sector 1, characterized by substantial accretion (+24.48 m/year),
represented a significant sediment accumulation zone, while sectors 14 and 20
exhibited moderate erosional tendencies with rates of -4.81 and -5.74 meters per year,
respectively. The spatial distribution of these morphodynamical changes, visualized
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through colour-coded risk assessment in Fig. 11, revealed a complex pattern of coastal
evolution with implications for strategic management interventions. The integration of
hydrodynamic factors with predicted morphological changes led to the identification of
three distinct risk categories, following the classification framework established by
Vousdoukas et al. (2020): High Accretion/Erosion (20 m/year), Moderate
Accretion/Erosion (£5-20 m/year), and Low Accretion/Erosion (x0-5 m/year). These
classifications facilitated the prescription of targeted intervention measures, following
methodologies developed by EI-Sharnouby et al. (2020), ranging from comprehensive
protection schemes for critical erosion zones to monitoring protocols for stable
segments. Sectors exhibiting critical erosion patterns were designated for intensive
protection measures, incorporating designs validated by Kamphuis (2010), including
seawall construction integrated with groin systems and periodic beach nourishment
programs.

The decision matrix demonstrates that sectors 4, 8, and 10, characterized by severe
erosion rates exceeding -7.0 m/year, require immediate implementation of
comprehensive protection measures. Following the engineering principles established
by Torres-Freyermuth et al. (2017), these interventions include engineered seawall
construction with complementary groin fields designed to mitigate projected shoreline
regression. The seawall configurations incorporate wave energy dissipation features
and are optimized based on local hydrodynamic conditions, as Masria et al. (2022)
specified. Conversely, sectors demonstrating moderate erosion (-1.48 to -5.74 m/year)
are prescribed intermediate intervention strategies, adhering to the soft protection
protocols developed by Khalifa et al. (2019) and incorporating beach nourishment and
regular monitoring protocols.

4. Discussion

The comprehensive evaluation of five NARX neural network models for shoreline
prediction along Egypt's Nile Delta coast reveals important insights into the relative
significance of different environmental parameters and their combined effects on
prediction accuracy. This analysis demonstrates the critical importance of integrating
multiple parameters for robust shoreline forecasting while highlighting specific
limitations of single-parameter approaches.

The performance analysis of model M (1), which relied solely on significant wave
height, revealed substantial limitations in prediction accuracy. The model's RMSE
values showed a concerning upward trend, increasing from 87.98 m in 2012 to 123.80
m in 2021, indicating deteriorating prediction reliability over time. This finding aligns
with Vitousek et al. (2017)'s observation that single-parameter models often fail to
capture the inherent complexity of coastal systems. The model's poor correlation
coefficients, ranging from -0.2019 to 0.0361, further emphasize the inadequacy of using
wave height as a standalone predictor, supporting the conclusions drawn by Antolinez
et al. (2019) regarding the necessity of multi-parameter approaches in coastal
modelling.
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Model M (2)'s incorporation of tidal range data showed only marginal improvement
over the wave height-based model, with RMSE values remaining notably high (116.95
m in 2017). Despite the inclusion of this additional parameter, the persistence of
substantial prediction errors supports Hagenaars et al. (2018) findings regarding the
spatial variability of coastal processes and the need for more comprehensive prediction
frameworks. The correlation coefficients for M (2), ranging from -0.0992 to 0.1799,
suggest that tidal range alone cannot adequately capture the complex dynamics of
shoreline evolution.
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Figure. 11 Decision matrix displaying the research area's shoreline assessment
and risk forecast between 2022 and 2050.
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A particularly noteworthy finding emerged from model M (3)'s performance, which
combined wave height and tidal range data. Despite incorporating multiple
hydrodynamic parameters, this model demonstrated variable performance with RMSE
values ranging from 78.49 m to 115.71 m across different years. This unexpected result
suggests that the interaction between wave height and tidal range may involve more
complex, nonlinear relationships than initially assumed. This observation aligns with
the findings by Ghosh et al. (2015), who emphasized the importance of considering
historical trends alongside hydrodynamic parameters.

The introduction of historical displacement data in Model M (4) marked a significant
breakthrough in prediction accuracy. The model achieved remarkably high correlation
coefficients (0.979712 to 0.999409) and substantially lower RMSE values (3.63468 to
9.141776) across all locations. This dramatic improvement underscores the critical role
of historical data in shoreline prediction, supporting Bamunawala et al. (2018) research
on the significance of temporal patterns in coastline evolution. The model's Nash-
Sutcliffe efficiency values (0.95664 to 0.999377) further validate incorporating
historical trends in prediction models.

Model M (5), which integrated all three parameters (wave height, tidal range, and
historical displacement), demonstrated exceptional predictive capabilities that
surpassed all other models. The achievement of perfect correlation coefficients and
near-zero RMSE values (0.00105 to 0.013828) across all locations significantly
advances shoreline prediction accuracy. This comprehensive integration aligns with
Vousdoukas et al. (2020) findings regarding incorporating multiple environmental
factors in coastal change assessments.

The spatial analysis of prediction accuracy revealed interesting patterns across the study
area. The western section (x = 330000-340000) consistently exhibited higher residual
variability across all models, particularly near the Kitchener drain outlet. This
observation aligns with ElKotby et al. (2024) findings regarding the complex
morphodynamic processes associated with coastal structures and inlet zones. The
central coastal segment demonstrated more stable prediction characteristics, especially
in models M (4) and M (5), suggesting more predictable shoreline evolution patterns in
this region.

The temporal evolution of prediction accuracy showed a general trend of increasing
residual errors with prediction horizon, though this effect is substantially mitigated in
M (5). This finding supports the conclusions of Abd-Elhamid et al. (2023) regarding
the importance of long-term monitoring and adaptive prediction approaches. The rate
of accuracy degradation varied spatially, with maximum deterioration observed in the
vicinity of coastal structures and areas of high morphodynamic activity, confirming
observations by Mansour et al. (2024) regarding the spatial variability of prediction
accuracy.

The superiority of M (5)'s predictions across all metrics and locations demonstrates the
critical importance of integrating multiple parameters in shoreline prediction models.
The model's exceptional performance, particularly in capturing both spatial and
temporal variations in shoreline position, provides strong evidence for the effectiveness
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of combining historical trends with current hydrodynamic conditions. This
comprehensive approach enables more accurate predictions of shoreline evolution,
supporting the findings of Vitousek et al. (2017) regarding the complex response of
coastlines to climate change and anthropogenic pressures.

The systematic approach to coastal vulnerability assessment and intervention planning,
founded on NARX-derived predictions, provides a quantitative framework for
sustainable coastal management through 2050, aligning with the methodological
framework proposed by Abd-Elhamid et al. (2023). The decision matrix is a crucial tool
for stakeholders, enabling evidence-based allocation of protection resources aligned
with sector-specific vulnerability assessments. This approach incorporates the
morphodynamic evolution patterns identified by EIKotby et al. (2024). It integrates the
coastal protection strategies validated by Vitousek et al. (2017), ensuring
comprehensive consideration of both local and regional coastal processes in protection
measure design and implementation.

The matrix's effectiveness is particularly evident in its ability to prescribe location-
specific interventions based on quantified erosion risks, with protection measures
ranging from complete structural solutions for high-risk zones (>20 m/year erosion) to
monitoring-based management for low-risk areas (<5 m/year erosion). This granular
approach to coastal protection, supported by Nassar et al. (2018) findings on
intervention effectiveness, enables optimal resource allocation while maintaining
coastal stability across the entire study area.

The comprehensive evaluation of the five NARX models reveals significant insights
into shoreline prediction methodologies while demonstrating clear alignment with
multiple UN Sustainable Development Goals (SDGs). Through careful analysis, the
research findings contribute to three primary categories of SDGs - Environmental Goals
(40%), Social Goals (25%), and Economic Goals (35%), each supporting specific
targets and indicators for coastal sustainability (Fig. 12).

The research findings demonstrate the strongest alignment with environmental SDGs,
particularly SDG 13 (Climate Action, 25%) and SDG 15 (Life on Land, 15%), reflected
in several key outcomes. M (5)'s exceptional prediction accuracy, with RMSE values
ranging from 0.07m (2012) to 0.52m (2021), provides crucial support for Target 13.1
(strengthen resilience to climate-related hazards) by enabling precise forecasting of
climate change impacts on coastlines. The integrated approach incorporating wave
height, tidal range, and historical displacement aligns with Target 13.2 (integrate
climate change measures into policies), as evidenced by the model's superior
performance across all evaluation metrics (Vitousek et al. 2023).

The research's contribution to SDG 15 is particularly evident in Target 15.1
(conservation of terrestrial ecosystems) through the model's capacity to predict and help
preserve coastal ecosystems. Identifying critical erosion zones, such as sectors 4, 8, and
10, with regression rates exceeding -7.0 m/year, provides essential data for ecosystem
conservation planning (Vousdoukas et al. 2020). This integrative approach to shoreline
prediction supports Target 15.9 (integrating ecosystem values into planning) by
enabling evidence-based coastal management strategies.
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The research demonstrates a significant impact on social sustainability through SDG
11 (Sustainable Cities and Communities, 15%), SDG 4 (Quality Education, 3%), and
SDG 17 (Partnerships, 7%). The NARX model's ability to predict shoreline changes
with unprecedented accuracy (correlation coefficients of 1.0 for M (5)) directly
supports Target 11.5 (reduce vulnerability to disasters) by enabling proactive coastal
protection measures. The research's comprehensive spatial analysis, covering 158
transects at 215-meter intervals, provides crucial data for Target 11.3 (sustainable
urbanization), particularly relevant for the study area's critical infrastructure, including
New Mansoura City and the desalination plant (Abd-Elhamid et al. 2023). The
methodological framework's contribution to Target 4.7 (education for sustainable
development) is demonstrated through its potential for knowledge transfer and capacity
building. The robust validation process, achieving Nash-Sutcliffe efficiency values
close to 1 (ranging from 0.95664 to 0.999377), provides a scientific foundation for
developing educational resources about coastal sustainability (Mansour et al. 2024).

The economic dimension of sustainability is primarily addressed through SDG 8
(Economic Growth, 15%) and SDG 9 (Infrastructure, 20%). The research's economic
impact is evident in its support for Target 8.4 (resource efficiency) through optimizing
coastal protection resources. M (5)'s superior performance in predicting shoreline
changes enables a more efficient allocation of protection measures, demonstrated by
the low-performance Index values (minimum 0.000149 at ID 6). The research
significantly contributes to Target 9.1 (develop resilient infrastructure) by providing
essential data for infrastructure planning in coastal zones. The model's ability to identify
varying degrees of coastal vulnerability, from high accretion (+24.48 m/year in Sector
1) to critical erosion (-9.92 m/year in Sector 10), directly supports sustainable
infrastructure development (EIKotby et al., 2024). This aligns with Target 9.4 (upgrade
infrastructure for sustainability) by enabling data-driven decision-making for coastal
protection strategies.

Sustaiable development
"educaton

506 17
parngranips e p—]

Disaster i recuction —

Climate massras in sirslegies

Ensisommnntal
Coals 40t Torget 133
Torgot 113 Capacity bulding

Targe1 15

[ p——— Comstal acosystam
N onsarvaian

_— Targat ¥

Combs lsnd degradation

Figure. 12 Mind map illustrating the alignment between research outcomes and
Sustainable Development Goals (SDGSs), categorizing impacts across
environmental, social, and economic dimensions, with specific targets and
indicators for coastal sustainability.
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5. Conclusion

This investigation comprehensively analyzes shoreline morphodynamics along a
critical 35-kilometre segment of Egypt's Nile Delta coastline, encompassing dynamic
deltaic beaches between the Kitchener drain and Gamsa outlet. The study area contains
vital infrastructure, including New Mansoura City and desalination facilities. Through
the integration of 35-year multi-temporal satellite data (1987-2022) from multiple
Landsat missions (MSS, TM, ETM, and OLI-TIRS), the research implemented rigorous
shoreline delineation using advanced image processing protocols, achieving a
normalized root mean square error (NRMSE) of 0.116595. A NARX (Nonlinear
Autoregressive with Exogenous inputs) neural network architecture, optimized through
modified Levenberg-Marquardt algorithms with Bayesian regularization, was
developed to forecast shoreline evolution, incorporating wave height, tidal, and
historical shoreline displacement parameters. The dataset underwent strategic
partitioning into training (70%, 1987-2010) and validation (30%, 2010-2021) segments.
Model calibration integrated significant wave height measurements (<4 meters), tidal
range observations (-0.10 to 0.85 meters), and historical shoreline positions across 158
transects at 215-meter intervals. Among five NARX configurations, M (5), which
integrated significant wave height, tidal range, and historical displacement data,
demonstrated superior predictive accuracy (RMSE: 0.07-0.52 meters, correlation
coefficients: 1.0, Nash-Sutcliffe efficiency: 0.95664-0.999377, MAPE: 1.38E-07 to
2.68E-08) and minimal Performance Index values (0.000149 at ID 6). Cross-correlation
analysis revealed stronger relationships between combined parameters and shoreline
changes compared to individual variables. Spatial-temporal analysis validated M (5)'s
robustness, maintaining residual errors between 0.07 and 0.52 meters with uniform
distribution patterns and negligible systematic bias. The western segment, influenced
by complex morphodynamic processes near the Kitchener drain outlet, exhibited
elevated residual variability, while the central coastal region demonstrated consistent
prediction stability with quantifiable temporal accuracy degradation rates across
different spatial zones. Forecasting through 2050 facilitated the systematic
classification of the coastline into 21 distinct sectors, enabling targeted intervention
strategies based on quantified vulnerability thresholds (High Accretion/Erosion: +20
m/year, Moderate: +5-20 m/year, Low: £0-5 m/year). Spatial analysis identified critical
erosion zones in sectors 4, 8, and 10 with regression rates exceeding -7.0 meters/year,
contrasting with significant accretion in sector 1 (+24.48 meters/year). The resultant
decision matrix enabled evidence-based coastal protection strategies, prescribing
engineering interventions ranging from comprehensive structural solutions for high-
risk zones to monitoring protocols for stable segments. The integration of
hydrodynamic parameters with predicted morphological evolution supported the
development of a robust coastal management framework, demonstrating significant
alignment with environmental sustainability goals (SDG 13, 25%; SDG 15, 15%),
social development objectives (SDG 11, 15%), and economic considerations (SDG 8,
15%; SDG 9, 20%). This methodological advancement provides both theoretical
insights into coastal morphodynamics and practical tools for sustainable coastal
management under evolving climate conditions. Future research directions should
incorporate additional parameters, including sediment transport rates, long-term
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climate trends, and anthropogenic factors, to enhance model applicability and
predictive accuracy.
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