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Highlights 

 Advanced NARX neural network with Bayesian optimization achieved 

exceptional shoreline prediction accuracy (RMSE: 0.07-0.52m). 

 Integration of multi-temporal Landsat data (1987-2022) enabled precise shoreline 

delineation across 158 transects with NRMSE of 0.116595. 

 Model 5's multi-parameter integration (wave height, tidal range, displacement) 

demonstrated superior performance with Performance Index values ranging from 

0.000149 to 0.000857. 

 Spatial analysis quantified critical erosion zones (-7.0 m/year) and accretion areas 

(+24.48 m/year) across 21 distinct coastal sectors. 

  The decision matrix enabled targeted protection strategies based on vulnerability 

thresholds (±20 m/year High, ±5-20 m/year Moderate, ±0-5 m/year Low). 

 The implementation framework aligns with SDGs through data-driven coastal 

protection and climate adaptation strategies.  
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Abstract 

Accurate shoreline prediction models are crucial for coastal management under 

increasing climate change pressures. This study presents an advanced approach 

combining Nonlinear Autoregressive with Exogenous inputs (NARX) neural 

networks optimized through modified Levenberg-Marquardt algorithms with 

Bayesian regularization, integrating multi-temporal remote sensing data to 

predict shoreline evolution. Focusing on a 35-km stretch of Egypt's Nile Delta 

coastline, five NARX models aer developed and compared, incorporating 

different combinations of significant wave height (<4m), tidal range (-0.10 to 

0.85m), and historical shoreline displacement data. The methodology integrated 

35 years (1987-2021) of Landsat imagery with hydrodynamic parameters across 

158 transects at 215-m intervals. Results demonstrated that the integrated model 

combining all three parameters achieved exceptional accuracy, with Root Mean 

Square Error (RMSE) values of 0.07m (2012) to 0.52m (2021) and Nash-

Sutcliffe efficiency ranging from 0.95664 to 0.999377, significantly 

outperforming single-parameter models. Cross-correlation analysis revealed 

stronger relationships between shoreline changes and combined parameters. 

The novel Performance Index (0.000149 to 0.000857) validated the integrated 

approach's superiority. The spatial analysis identified 21 distinct sectors with 

critical erosion zones (-7.0 m/year) and accretion areas (+24.48 m/year), 

enabling targeted protection strategies based on quantified vulnerability 

thresholds. This research advances shoreline prediction methodology through 

enhanced parameter integration, providing a robust framework for coastal 

management under climate change conditions. The findings support sustainable 

coastal development and climate adaptation strategies in vulnerable delta 

regions. 

Keywords: Shoreline Prediction; NARX Neural Network; Remote Sensing; 

Coastal Morphodynamics; Nile Delta. 
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1. Introduction 

Coastal shorelines, the dynamic interfaces between terrestrial and aquatic ecosystems, 

are subject to complex geomorphological processes operating across various temporal 

and spatial scales (Vitousek et al. 2017; Masria et al. 2022). Their evolution is governed 

by both anthropogenic and natural forces, with long-term changes primarily attributed 

to shifts in relative elevation and sea-level rise (Vousdoukas et al. 2020; El-Asmar et 

al. 2024). Short-term sediment redistribution is predominantly driven by the combined 

effects of wave action, nearshore currents, and fluvial processes (Youssef et al. 2024). 

This constant flux results in continuous coastline reshaping through erosion and 

accretion, necessitating precise shoreline position estimates for effective erosion 

mitigation strategies (Calkoen et al. 2021; Abd-Elaty et al. 2024). Accurate forecasting 

of shoreline configurations requires a comprehensive understanding of historical and 

current coastal dynamics (Zeinali et al. 2021; Mansour et al. 2024). This study examines 

shoreline movements along the North Delta coast, specifically the stretch between the 

Kitchener drain and the Gamsa outlet, characterized by highly dynamic deltaic beaches 

(ElKotby et al. 2024). These geomorphic systems undergo continuous transformations 

across multiple geographical and temporal scales (Luijendijk et al. 2018; Ibrahim et al. 

2024). 

The field of coastal geomorphology has witnessed significant advancements in 

shoreline change analysis techniques over the past two decades. The Digital Shoreline 

Analysis System (DSAS), leveraging multi-temporal satellite data, has emerged as a 

cornerstone for analyzing shoreline dynamics (Nandi et al. 2016; Hagenaars et al. 2018; 

Bhuyan et al. 2023). Integrating remote sensing and Geographical Information Systems 

(GIS) technologies has revolutionized shoreline change assessments, enabling 

unprecedented spatial and temporal coverage (Luijendijk et al. 2018; Raja et al. 2023). 

Recent studies have demonstrated the potential of combining traditional DSAS 

approaches with Machine Learning (ML) techniques to improve prediction accuracy 

(Calkoen et al. 2021; Zeinali et al. 2021). However, most existing models have focused 

on single-parameter approaches, highlighting the need for integrated multi-parameter 

prediction systems (Vitousek et al. 2023). 

Integrating numerical models with remote sensing data has significantly advanced 

shoreline prediction capabilities (Vitousek et al. 2023). Traditional approaches like the 

End Point Rate (EPR) and Linear Regression (LRR) models have been widely used for 

shoreline predictions (Calkoen et al. 2021). However, these methods often fail to 

capture complex temporal patterns and nonlinear relationships in coastal systems 

(Zeinali et al. 2021). Recent ML approaches have demonstrated superior performance 

in handling such complexities (Goldstein et al. 2020; Montaño et al. 2020). The efficacy 

of these predictive models depends on multiple factors, including data quality, temporal 

resolution, and the incorporation of relevant physical parameters (Luijendijk et al. 

2018). 

Shoreline change analysis has evolved significantly from traditional Geographic 

Information System (GIS) approaches to sophisticated ML techniques (Calkoen et al. 

2021). While conventional tools like DSAS remain valuable for basic analysis, they 

show limitations in processing large datasets and capturing complex temporal patterns 
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(Vitousek et al. 2023). Recent advances in deep learning have enabled more accurate 

shoreline detection and prediction capabilities (Goldstein et al. 2020). Neural network 

approaches, particularly recurrent architectures, have demonstrated superior 

performance in capturing temporal dependencies in coastal systems (Vidyalashmi et al. 

2024a). These methods can process multiple input parameters simultaneously, offering 

advantages over traditional single-parameter approaches (Montaño et al. 2020). 

Integrating ML with remote sensing data has enabled global near-real-time monitoring 

of coastal changes (Luijendijk et al. 2018; Vos et al. 2019). This advancement is 

particularly relevant for sustainable coastal management and climate change adaptation 

strategies (Vousdoukas et al. 2020). Neural network approaches have shown particular 

promise in combining multiple environmental parameters, including wave 

characteristics, tidal patterns, and historical shoreline positions (Huang et al. 2024a).  

The NARX (Nonlinear Auto-Regressive with Exogenous Input) architecture has 

emerged as a powerful tool for environmental time series prediction by addressing key 

limitations of traditional forecast methods (Tang 2020). Unlike conventional 

approaches that process temporal data sequentially, NARX networks employ multi-

level feedback connections that enable the simultaneous integration of historical states 

and external forcing factors (Hewamalage et al. 2021). This architectural advantage is 

particularly relevant for coastal systems, where shoreline evolution results from 

complex interactions between multiple time-varying parameters. The network's ability 

to capture both short-term fluctuations and long-term trends while maintaining 

computational efficiency makes it especially suitable for coastal prediction tasks (Vos 

et al. 2019). Recent applications have demonstrated NARX's superior performance in 

handling nonlinear relationships and temporal dependencies in environmental data 

(Vidyalashmi et al. 2024b), suggesting its potential for improving shoreline prediction 

accuracy through multi-parameter integration. 

Despite advances in ML applications for coastal systems, significant challenges remain 

in developing computationally efficient models that integrate multiple environmental 

parameters while maintaining high accuracy in prediction (Huang et al. 2024b). While 

recent studies have explored various ML techniques in coastal engineering (Vitousek 

et al. 2023), most focus on single-parameter predictions or limited temporal scales 

(Simmons et al. 2017). Integrating multiple time-varying parameters with historical 

shoreline data remains particularly challenging (Splinter and Coco 2021).  

This research advances shoreline prediction methodology by developing an integrated 

NARX-based framework that addresses key limitations in existing approaches. While 

previous studies have largely relied on single-parameter predictions or limited temporal 

scales, this study introduces a comprehensive multi-parameter approach incorporating 

historical displacement data, significant wave height, and tidal range. The investigation 

focuses on a 40-km stretch of Egypt's Nile Delta coastline between the Kitchener drain 

and Gamsa outlet. This region exemplifies the complex interactions between natural 

coastal processes and anthropogenic pressures. The research makes three primary 

contributions: (1) the development of a novel integrated prediction framework that 

demonstrates superior accuracy over traditional single-parameter approaches, (2) the 

quantification of the relative importance of different environmental parameters in 
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shoreline prediction, and (3) the establishment of a methodological foundation for 

incorporating multiple time-varying parameters in coastal evolution models. These 

advances provide both theoretical insights into coastal morphodynamics and practical 

tools for sustainable coastal management under changing climate conditions. 

 

2. Material and methods 

2.1. Study Area 

The study area, situated along the Mediterranean coast of Egypt's Nile Delta (Figure. 

1a), spans approximately ~35 km westward from the Kitchener drain to the Gamsa 

Inlet, encompassing coordinates 31°11'9.47"E to 31°33'48.35"E and 31°34'56.56"N to 

31°33'48.35"N. This region exhibits extensive land prone to erosion, accretion, and 

vulnerable coastal activities. As shown in Figure. 1b, the study area is divided into 

distinct zones featuring critical infrastructure, including New Mansoura City, a 

desalination plant, and popular coastal destinations such as Baltim and Gamsa Beach. 

The hydrodynamic characteristics of the study area have been continuously monitored 

using the S4DW method (Trageser and Elwany 1990), recording the directed wave 

spectrum hourly at a water depth of 12 m. Dominant seasonal waves originate from the 

north to northwest and are characterized by consistent heights around 120 cm and 6-9 

seconds durations. Winter storms, occurring at least annually between November and 

April, exhibit higher wave heights up to 2.70 m with periods of 7-9 seconds and 

maximum wave heights reaching 4.00 m. Longshore currents, measured between the 

breaker line and coast at water depths of 1.30-2.0 m, align with wave motion and reach 

peak velocities during high storm wave periods (Mansour et al. 2024). 

Wind analysis (2011-2012) reveals prevailing NW and WNW directions contributing 

50-60% of total wind energy, with average speeds ranging from 2-9 m/s in summer to 

9-13 m/s in spring (Frihy and El-Sayed 2013; Mansour et al. 2024). Completing the 

High Aswan Dam in 1964 marked a critical turning point, substantially reducing 

sediment discharge at the Nile promontories (Stanley and Warne 1998; El-Sharnouby 

et al. 2020). This reduction intensified erosive forces along the coastline, necessitating 

protection measures. In response, the western side of the drain was reinforced with 15 

groins to combat continuous erosion rates of approximately 20 meters per year (El-

Sharnouby et al. 2020; Dewidar and Bayoumi 2021). 

The digitized shorelines for multiple years between 1987 and 2022 (Figure. 1c) reveal 

significant morphological changes along the coastline. These temporal variations 

demonstrate the oblique inclination of the shoreline in this area compared to the 

Kitchener zone to the west, highlighting the region's dynamic nature of coastal 

processes (Abd-Elhamid et al. 2023). The shoreline evolution patterns visible in the 

digitized data reflect both natural processes and anthropogenic interventions over the 

study period (Tharwat Sarhan et al. 2022). Recent interventions include the installation 

of an additional 17 groins along the drain's eastern shoreline in early 2022, aiming to 

reduce downstream erosion and enhance long-term coastal stability (Masria et al. 2024). 

This ongoing coastal protection program demonstrates the continued vulnerability of 



Nada Mansour, Tharwat Sarhan, Mahmoud El-Gamal… 6 

 

this stretch of coastline to erosion processes (ElKotby et al. 2023). 

 

Figure.1 a Location of the study area; b Shoreline with a length of ~35 

km with the location of hazard cities with a number of transect IDs; c 

The digitized for the previous studied years. 

 

2.2. Research Methodology 

The comprehensive methodological framework of this study, as illustrated in Figure. 2, 

encompasses several integrated analytical approaches for shoreline prediction and 

evolution analysis. The methodology builds upon established remote sensing 

techniques while incorporating hydrodynamic parameters and ML predictions through 

the following key stages: 

1. Data Acquisition and Processing: The initial phase involves analysis of multi-

temporal Landsat satellite imagery (1987-2022), including systematic pre-

processing through radiometric calibration, atmospheric correction, and Tasseled 
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Cap Transformation for enhanced shoreline delineation, culminating in the 

establishment of 158 shore-perpendicular transects at 215 m intervals along the 

~35 km study area. 

2. Neural Network Implementation: This phase focuses on the development of five 

distinct NARX (Nonlinear Autoregressive with Exogenous inputs) models, 

integrating significant wave height measurements, tidal range data, and historical 

shoreline positions, with the dataset strategically partitioned into training (70%, 

1987-2010) and testing (30%, 2010-2021) segments. 

3. Model Development and Validation: The modeling phase involves implementing 

varying input parameter combinations across models, validated through 

comprehensive statistical metrics, including RMSE, MAPE, Nash-Sutcliffe 

Efficiency, and Performance Index. 

4. Impact Assessment: The final stage encompasses analysis of predicted shoreline 

positions, evaluation of coastal vulnerability, assessment of climate change 

implications, and generation of insights for coastal management strategies. 

This systematic approach enables quantitative analysis of shoreline dynamics while 

accounting for complex interactions between coastal processes, climate factors, and 

anthropogenic influences. The following sections detail each methodological 

component, their implementation, and their role in understanding coastal evolution 

patterns. 

 

Figure. 2 Methodological framework for shoreline prediction 

using a NARX neural network. 
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2.2.1. Data Source  

Accurately monitoring and analyzing shoreline dynamics requires high-quality satellite 

imagery with consistent spatial and temporal resolution. This study utilized multi-

temporal satellite data spanning 35 years (1987-2022) from multiple Landsat missions, 

including the Landsat-1 Multispectral Scanner (MSS), Landsat-4 and -5 Thematic 

Mapper (TM), Landsat-7 Enhanced Thematic Mapper (ETM), and Landsat-8 

Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS). The imagery was 

acquired through the United States Geological Survey (USGS) Earth Explorer platform, 

providing a comprehensive dataset for analyzing long-term coastal changes (Table 1). 

The selection of Landsat imagery was particularly appropriate for this study due to its 

moderate spatial resolution (30m), consistent temporal coverage, and extensive 

historical archive (Wulder et al. 2019). The study area's moderate tidal range minimizes 

the influence of tidal variations on shoreline position extraction from satellite data, 

enhancing the reliability of shoreline delineation (Boak and Turner 2005). Image 

processing and shoreline extraction were conducted using ArcGIS 10.8, following 

established protocols for automated shoreline detection in coastal environments 

(Hagenaars et al. 2018; Vos et al. 2019). All satellite scenes underwent rigorous quality 

assessment to ensure cloud cover was below 10%, and images were acquired during 

similar tidal conditions to maintain consistency in shoreline detection. This 

methodological approach aligns with recent advances in satellite-based coastal 

monitoring and provides a robust foundation for analyzing multi-decadal shoreline 

changes in the study area. 

 

Table 1. Technical specifications and characteristics of satellite imagery used in the 

study (1987-2022). 

Year 
Spacecra 

ID 

Sensor

 ID 

Path 

/Row 

Coordinate 

System/ 

Datum 

Spatial 

resolution 

(m) 

Spectral 

Bands 

Used 

Cloud 

Cover 

(%) 

Size 

(Row/

Path) 

1987 
LAND

SAT_1 
MSS 

178/3

9 

UTM/WG

S 84 
30 

3,4, 

and 5 

< 

10% 
178/39 

1992 
LAND

SAT_4 

TM 1994 
LAND

SAT_5 

1997 
LAND

SAT_5 

1999 
LAND

SAT_7 

ETM 2002 
LAND

SAT_7 

2007 
LAND

SAT_7 
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2012 
LAND

SAT_7 

2017 
LAND

SAT_8 OLI_

TRIS 
2022 

LAND

SAT_8 

 

The hydrodynamic characteristics of the study area, crucial for understanding coastal 

processes, are illustrated in Figure. 3. Throughout the research period, significant wave 

height (Hs) predominantly remained below four meters. In comparison, tidal levels 

fluctuated between -0.10 and 0.85 meters, demonstrating the dynamic nature of the 

coastal environment (Nielsen and Callaghan 2003). These datasets were meticulously 

documented monthly, providing a comprehensive temporal resolution for analysis. Hs 

measurements were conducted offshore, complemented by hourly hindcast wave data 

up to 2020, provided by the Beach Research Center. This approach aligns with best 

practices in coastal hydrodynamics research, ensuring a robust dataset for analysis 

(Kamphuis 2010). To account for astronomical tides, the T_Tide software package was 

employed to analyze water level data from 1990 to 2020, a method widely recognized 

in tidal studies for its accuracy and reliability (Pawlowicz et al. 2002). This multifaceted 

approach to data collection and analysis, incorporating both shoreline changes and 

hydrodynamic factors, provides a comprehensive foundation for understanding the 

complex coastal dynamics of the study area. Integrating these diverse datasets enables 

a more nuanced and accurate assessment of shoreline evolution and its driving forces. 

 

Figure. 3 a Tidal range; b Significant wave height in the study 

area over the period. 

(a) 

(b) 
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2.2.2. Shoreline extraction and uncertainty evaluation 

The extraction of shorelines from medium-resolution satellite imagery presents 

significant challenges due to the presence of a water-saturated zone at the land-water 

interface. This study implemented a systematic approach to shoreline delineation using 

Landsat imagery, specifically focusing on Band 5 (Short-Wave Infrared) due to its 

optimal spectral characteristics for water-land boundary discrimination (Figure. 4). The 

methodology leverages water bodies' distinct spectral reflectance properties, which 

exhibit minimal reflectance in the SWIR spectrum compared to other land cover types 

(Boak and Turner 2005; Hagenaars et al. 2018). 

The shoreline extraction process was executed through a semi-automated workflow in 

ArcGIS 10.6.1, comprising three primary stages: (1) conditional value calculation using 

a raster calculator to identify the dry/wet line based on reflectance thresholds, (2) raster-

to-polygon conversion for spatial delineation, and (3) polyline generation for 

continuous shoreline representation. The resultant shorelines were georeferenced using 

the WGS_1984_UTM_Zone_36N coordinate system to ensure spatial accuracy and 

compatibility with other geospatial datasets. 

The 2022 shoreline extractions underwent additional processing and comparative 

analysis for validation and uncertainty assessment. A baseline was established at 500-

meter intervals using a buffering approach, from which shore-perpendicular transects 

were generated to quantify shoreline positions and temporal changes. The accuracy of 

the shoreline detection methodology was evaluated using the normalized root mean 

square error (NRMSE). Three different pixel threshold values were tested: 14,000, 

15,000, and 16,000, yielding NRMSE values of 0.227181, 0.290475, and 0.116595, 

respectively. The optimal threshold of 16,000 produced the lowest NRMSE (0.116595), 

indicating superior accuracy in shoreline delineation (Vos et al. 2019; Mansour et al. 

2024). This dimensionless error metric enables robust comparison of shoreline 

detection accuracy across different spatial and temporal scales. The extracted shorelines 

were stored in shapefile format, facilitating subsequent analysis of coastal 

morphodynamics and enabling integration with other spatial datasets for 

comprehensive coastal change assessment. 

   

Figure. 4 The methodology for shoreline extraction in 2022 includes; a 

Landsat raster image of Band 5; b the binary image; c the vector map (polygon 

shapefile). 

(a) (c) (b) 
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2.2.3. Data Preparation and Model Development 

The foundation of robust predictive modeling lies in meticulous data preparation and 

appropriate model architecture design. Building on established practices in ML 

applications, five distinct models were developed with different combinations of input 

parameters, as detailed in Table 2. M (1) utilizes only significant wave height (Hs), M 

(2) incorporates tidal range (TR), while M (3) combines both parameters. M (4) relies 

solely on historical shoreline displacement data (ds), and M (5) integrates all three 

parameters (ds, Hs, TR) with a lag-2 value to capture temporal dependencies. The 

dataset was strategically partitioned into two segments: a training set spanning 1987-

2010 (70% of data) and a test set covering 2010-2021 (30% of data), following standard 

procedures for neural network applications (Beale et al. 2010). Data normalization was 

implemented using MATLAB's mapminmax function to ensure optimal model 

performance. 

For comprehensive spatial analysis, 158 transects were established at 215-meter 

intervals along a ~35 km baseline, with special attention given to five high-risk 

locations (IDs 6, 40, 75, 117, and 156), as shown in Figure. 1b, corresponding to 

residential areas particularly vulnerable to erosion. Figure. 5 illustrates the temporal 

evolution of shoreline positions at these critical locations, demonstrating significant 

variability in shoreline displacement patterns over 34 years. The time series data shows 

distinct characteristics at each location, with some areas exhibiting greater fluctuations 

than others, highlighting the complex nature of shoreline dynamics that the models need 

to capture. This systematic approach to data preparation and organization provides a 

robust foundation for implementing NARX neural network models, ensuring that both 

spatial and temporal variations in shoreline behavior are adequately represented in the 

training and testing datasets. 

 

Table 2 Summary of model trained and tested. 

Models Mathematical expression Input Output 

M (1) ds(t) = f(Hs(t-1); Hs(t-2))  Hs ds(t) 

M (2) ds(t) = f(TR(t-1); TR(t-2))  TR ds(t) 

M (3) ds(t) = f(Hs(t-1); Hs(t-2); TR(t-1); TR(t-2))  Hs, TR ds(t) 

M (4) ds(t) = f(ds(t-1); ds(t-2))  ds ds(t) 

M (5) ds(t) = f(ds(t-1); ds(t-2); Hs(t-1); Hs(t-2); TR(t-1); 

TR(t-2)) 

ds, Hs, TR ds(t) 

Note: ds is the shoreline displacement, Hs is the significant wave height, and TR is 

the tidal range. 
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Figure. 5 Validation and Test for shoreline displacement with time 

(1987 to 2022) at selected ID of hazard areas. 

2.2.4.  Nonlinear Autoregressive with Exogenous Input (NARX) Model 

A sophisticated nonlinear ML-based model has been implemented to predict shoreline 

displacement, leveraging both single and multivariate time-series data through 

advanced neural network techniques (Karunarathna et al. 2016). This approach, known 

as the Nonlinear Autoregressive with exogenous inputs (NARX) model, has 

demonstrated significant efficacy in capturing complex coastal dynamics (Hashemi et 

al. 2010). The neural network architecture comprises an input layer, one or more hidden 

layers, and an output layer (Figure. 6), a structure well-suited for modeling nonlinear 

systems like coastal processes (Pardo-Igúzquiza et al. 2019). The model's predictive 

capability is enhanced by its utilization of historical values, with the number of steps 

taken at the previous time considered contingent upon the input characteristics and 

feedback delay (Sahoo and Bhaskaran 2019). Weights assigned to inputs quantify their 

influence on the output, allowing the model to capture the nuanced interplay of factors 

affecting shoreline displacement. 

Central to the NARX model's effectiveness is selecting an optimal lag value, 

determined through auto-correlation and correlation functions. These statistical tools 

measure the similarity between data points across different time intervals, ensuring the 

model captures relevant temporal relationships in shoreline evolution (Torres-

Freyermuth et al. 2017). The term "auto-regression" in the model's name reflects its 
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ability to account for the influence of past shoreline positions on current and future 

states. 

The general equation of the NARX model, as described by (Torres-Freyermuth et al. 

2017), is represented as: 

ŷ(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … … . 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡), 𝑢(𝑡 − 1), 𝑢(𝑡

− 2), … . . 𝑢(𝑡 − 𝑛𝑢)) + 𝑒(𝑡)  

(1) 

where f(.) denotes the neural network mapping function, ŷ(t) is the target variable 

(predicted shoreline position), y(t-ny) is the predictor variable (historical shoreline data), 

u(t) represents exogenous inputs (e.g., wave height, tidal range), ny and nu are the 

respective time delays and e(t) is the model error between target and prediction. 

 

Figure. 6 Architecture of the NARX neural network showing 

input layer with input and feedback delays, hidden layer with 

processing nodes, and output layer. 

According to the input variable u(t), the hidden layer output Hi at time t is obtained as 

(Chan et al., 2015): 

𝐻𝑖(𝑡) = 𝑓1 [∑ 𝑤𝑖𝑟𝑢(𝑡 − 𝑟)

𝑛𝑢

𝑟=0

+ ∑ 𝑤𝑖𝑙𝑦(𝑡 − 𝑙) + 𝑎𝑖

𝑛𝑦

𝑙=1

]  (2) 

where wir is the connection weight between input neuron u(t-r) and ith hidden neuron, 

wil is the connection weight between the ith hidden neuron and output feedback neuron 

y(t-l), ai is the bias of the ith hidden neuron, and f1(·) is the hidden layer activation 

function. The final prediction can be given by combining the hidden layer outputs: 
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ŷ𝑗(𝑡) = 𝑓2 [∑ 𝑤𝑗𝑖𝐻𝑖(𝑡)

𝑛ℎ

𝑖=1

+ 𝑏𝑗]  (3) 

where wji is the connection weight between the ith hidden neuron and jth predicted 

output, bj is the bias of the jth predicted output, nh is the number of hidden neurons, and 

f2(·) is the output layer activation function. 

The model's predictive capability is enhanced by its utilization of historical values, with 

the number of previous time steps considered being contingent upon the input 

characteristics and feedback delay (Sahoo and Bhaskaran, 2019). Weights assigned to 

inputs quantify their influence on the output, allowing the model to capture the nuanced 

interplay of factors affecting shoreline displacement.  

2.2.5. Modified Levenberg–Marquardt (LM) Training Algorithm 

To optimize the NARX network parameters, the Levenberg-Marquardt (LM) algorithm 

is implemented as the training mechanism due to its superior convergence speed and 

reliability. The LM algorithm combines the Gauss-Newton algorithm's (GNM) 

acceleration with the stability of the steepest descent method (SDM), making it 

particularly effective for training neural networks (Revanesh et al. 2024). LM shifts 

between the SDM and GNM, as follows (Abd-Elmaboud et al. 2021): 

𝛿 = [𝐽𝑇 . 𝐽 + 𝜆. 𝐼]−1. 𝐽𝑇 . 𝐸 (4) 

where J is the Jacobian matrix for the first error term derivatives, T is the Jacobian 

matrix's transpose, 𝛿 is the various weighted adjustments, l is a factor, I is the identity 

matrix, and 𝐸 is a vector of the output errors. 

The LM method sticks to the nearest local minima in complex high-dimensional 

solution spaces. Training the NARX to the deepest local minimum, i.e., catching near 

zeros for all Jacobean matrix components, virtually leads to overfitting. The problem is 

solved by combining Bayesian regularization with LM. In the objective function, add a 

penalty proportionate to NARX weights. This reduces weights, so the expected output 

is smoother. A description of the modified objective function, F, is as follows (Kayri 

2016; Shang et al. 2023): 

𝐹 =  𝛽𝐹𝐷 +  𝛼𝐹𝑤 = 𝛽 ∑(𝑦𝑖
𝑂 −  𝑦𝑖

𝑃)2 + 𝛼 ∑ 𝑤𝑖
2

𝑛

𝑖=1

𝑚

𝑖=1

 (5) 

where aFw is the objective function's penalty; Fw is the square sum of the weights; FD 

is the sum of the square difference  between observed and predicted outputs at grid 

element i; 𝑦𝑖
𝑂, and 𝑦𝑖

𝑃are observed and predicted outputs at grid elements i; and a, b 

are two unknown Bayesian parameters that may be repeatedly obtained from: 
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𝛼 =  
𝛾

2𝐹𝑤
, 𝛽 =  

𝑁𝑡 − 𝛾

2𝐹𝐷
,       𝛾 = 𝑊 −  2𝛼 𝑡𝑟(𝐻−1) (6) 

where, g is the number of active weights used to guide the NARX output results; Nt is 

the number of training data points; tr(H-1) is the matrix trace H-1 and equivalent to the 

sum of the matrix's eigenvalues; and W is the weights and biases number. 

This training approach enables efficient optimization of the NARX model parameters. 

It begins by performing quadratic estimation using the steepest descent method, then 

updating weights using the Gauss-Newton method, and adaptively adjusting the 

learning parameter βn based on the error reduction. Integrating the LM algorithm with 

the NARX architecture provides several key advantages, including faster convergence 

compared to conventional gradient descent methods, improved stability during the 

training process, better handling of the nonlinear relationships inherent in shoreline 

dynamics, and reduced risk of getting trapped in local minima. Combining the NARX 

model structure (Equations 1-3) with the LM training algorithm (Equations 4-6) creates 

a robust framework for capturing and predicting complex shoreline evolution patterns 

while maintaining computational efficiency. This hybrid approach is particularly 

suitable for coastal applications where both accuracy and training speed are critical 

considerations. 

 

2.2.6. Model Performance Evaluation 

A comprehensive evaluation framework is established to assess the predictive model's 

performance using both training and test datasets. Following established protocols in 

environmental modeling (Moriasi et al. 2007), multiple statistical metrics are employed 

to quantify different aspects of model accuracy and reliability. The primary evaluation 

metrics included the correlation coefficient (R), Root Mean Squared Error (RMSE), 

Mean Absolute Percentage Error (MAPE), Nash-Sutcliffe Efficiency (NSE), and Index 

of Agreement (IoA). 

The correlation coefficient (R), represented in Equation 7, measures the strength and 

directionality of the linear relationship between predicted (P) and observed (O) values 

(Krause et al. 2005): 

𝑅 =
∑ (𝑃 − 𝑃𝑎) × (𝑂 − 𝑂𝑎)𝑛

𝑖=1

√∑ (𝑃 − 𝑃𝑎)2𝑛
𝑖=1 − ∑ (𝑂 − 𝑂𝑎)2𝑛

𝑖

 (7) 

RMSE quantifies the standard deviation of residuals (Chai and Draxler 2014): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃 − 𝑂)2

𝑛

𝑖

 (8) 
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MAPE provides a scale-independent measure of accuracy (Hyndman and Koehler 

2006): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑃 − 𝑂|

𝑂
× 100

𝑛

𝑖

 (9) 

The Nash-Sutcliffe efficiency  evaluates the relative magnitude of residual variance 

(Moriasi et al. 2007): 

NSE = 1 −  
∑ (𝑂 − 𝑃)2𝑛

𝑖

∑ (𝑂 − 𝑂𝑎)2𝑛
𝑖

 (10) 

Finally, the Index of Agreement (Legates and McCabe 1999) measures prediction error-

free degree: 

IoA =  1 − 
∑ (𝑂 − 𝑂𝑎)2𝑛

𝑖

∑ (|𝑃 − 𝑂𝑎 + |𝑂 − 𝑂𝑎|)2𝑛
𝑖

 (11) 

where P and O represent predicted and observed values, respectively, while Pa and Oa 

denote their respective meaning. This comprehensive suite of performance metrics 

enables robust evaluation of the model's predictive capabilities across multiple 

dimensions of accuracy and reliability, following best practices in environmental 

modelling (Bennet et al. 2013). 

 

3. Results  

3.1. Analysis of historical shoreline data 

Analysis of shoreline changes between 1987-2022 reveals distinct erosion and accretion 

patterns along the study area. The EPR analysis in Table 3 shows significant variations 

in shoreline behavior across seven five-year intervals. During 1987-1992, the coastline 

experienced maximum erosion rates of -37.34 m/yr and accretion rates of +24.50 m/yr, 

with 60.59% of transects showing erosion. The period witnessed mean progressive and 

regressive rates of +5.6296 m/yr and -7.1960 m/yr, respectively. A notable shift 

occurred during 1992-1997, with erosion affecting only 40% of transects, while 

accretion dominated 60%. The maximum progressive rate increased to +25.10 m/yr, 

while the maximum regressive rate decreased to -18.16 m/yr. The 1997-2002 period 

showed further improvement in coastal stability, with erosion affecting only 35.86% of 

transects and maximum accretion reaching +32.65 m/yr. 

As shown in Figure. 7, the spatial distribution of EPR values demonstrates complex 

patterns of shoreline change. The 2002-2007 period marked increased erosional 

pressure (-40.72 m/yr maximum regression), affecting 49.7% of transects. The 2007-

2012 interval maintained high erosion rates (-40.96 m/yr), though accretion dominated 

at 53.67% of locations. The most recent periods show contrasting trends. During 2012-

2017, erosion rates moderated significantly (-14.69 m/yr maximum), with 76.26% of 
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transects showing accretion - the highest percentage across all periods. However, 2017-

2022 witnessed renewed erosional pressure (-36.43 m/yr maximum) affecting 57.64% 

of transects, suggesting increased coastal vulnerability in recent years. The EPR 

patterns illustrated in Figure. 7 indicate localized zones of intense erosion interspersed 

with stable or accreting segments, reflecting the spatial variability of coastal processes. 

This temporal and spatial analysis provides crucial insights into shoreline dynamics, 

essential for understanding long-term coastal evolution and developing effective 

management strategies. 

Table 3 Temporal analysis of shoreline change rates (1987-2022) 

Time Period Accretion (Progressive) Erosion (Regressive) 

 
Mean rate 

(m/yr) 

Max Rate 

(m/yr) 

Transects 

(%) 

Mean rate 

(m/yr) 

Max Rate 

(m/yr) 

Transects 

(%) 

1987-1992 +5.6296 +24.50 39.41 -7.1960 -37.34 60.59 

1992-1997 +6.966 +25.10 60.00 -4.63 -18.16 40.00 

1997-2002 +8.42 +32.65 64.14 -7.00 -27.17 35.86 

2002-2007 +8.25 +29.49 50.30 -7.218 -40.72 49.70 

2007-2012 +8.19 +22.53 53.67 -9.66 -40.96 46.32 

2012-2017 +10.38 +31.22 76.26 -6.48 -14.69 23.74 

2017-2022 +6.937 +21.23 42.35 -10.28 -36.43 57.64 

 

(1987-

1992) 

(1992-

1997) 

(1997-

2002) 

(2002-

2007) 

(2007-

2012) 

(2012-

2017) 

(2017-

2022) 
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Figure. 7 Qualitative analysis of erosion/accretion transects using EPR every five 

years from 1987 to 2022. (      accretion /    erosion). 

 

3.2. Analysis of the performance of the five NARX models 

This study developed five distinct models using the NARX neural network, as outlined 

in Table 2. Each model is designed to predict shoreline displacement based on different 

combinations of input parameters, allowing for a comprehensive analysis of the factors 

influencing coastal dynamics. M (1) focused solely on significant wave height as a 

predictor, while M (2) utilized tidal range data. M (3) combined both significant wave 

height and tidal range to forecast displacement, offering insights into the combined 

effects of these hydrodynamic forces. M (4) took a different approach, relying on 

historical displacement data with a lag of two-time steps. Finally, M (5) integrated all 

three parameters - significant wave height, tidal range, and historical displacement - to 

provide the most comprehensive prediction of shoreline changes. 

The results of the five NARX neural network models developed for shoreline 

displacement prediction reveal significant performance variations across input 

parameters and locations. This comprehensive analysis provides valuable insights into 

the complex dynamics of coastal processes and the efficacy of various predictive 

approaches. As listed in Table 4, M (1), which solely relied on significant wave height 

as a predictor, demonstrated relatively poor performance across all locations. The 

correlation coefficients (R) ranged from -0.2019 to 0.0361, indicating a weak 

relationship between wave height and shoreline displacement. The high RMSE values 

(ranging from 47.5134 to 117.315) further underscore the model's limited predictive 

capability when considering wave height in isolation. M (2), incorporating tidal range 

data, showed marginal improvement over M (1) but still exhibited low predictive 

power. Correlation coefficients remained low (-0.0992 to 0.1799), and RMSE values, 

while slightly reduced in some locations, remained high (48.3301 to 126.7294). M (3), 



19 Geospatial Time Series Analysis for Coastal Systems… 

 

which combined significant wave height and tidal range, unexpectedly performed 

worse than the simpler models in most locations. This is evidenced by negative 

correlation coefficients at several IDs and increased RMSE values, particularly at ID 

117 (82.8634). This outcome suggests that the interaction between wave height and 

tidal range may be more complex than initially assumed, potentially involving 

nonlinear relationships that the model struggled to capture. A marked improvement is 

observed with M (4), which utilized historical displacement data. This model 

consistently achieved high correlation coefficients (0.979712 to 0.999409) and 

significantly lower RMSE values (3.63468 to 9.141776) across all locations. The Nash-

Sutcliffe efficiency (E) values close to 1 (ranging from 0.95664 to 0.999377) indicate 

that this model explains a large proportion of the variance in the observed data. M (5), 

integrating all three parameters (historical displacement, significant wave height, and 

tidal range), demonstrated the best performance across all metrics and locations. It 

achieved perfect correlation coefficients (R = 1) and near-zero RMSE values (0.00105 

to 0.013828) for all IDs. The exceptionally low MAPE values (1.38E-07 to 2.68E-08) 

further prove its superior predictive accuracy. 

Figure. 8, presented as a Taylor diagram, provides a comprehensive visual summary of 

the statistical findings, clearly illustrating the superior performance of Models 4 and 5 

across all locations. A Taylor diagram is a powerful tool for model evaluation as it 

simultaneously displays multiple performance metrics on a single plot (Taylor 2001). 

In this diagram, the radial distance from the origin represents the standard deviation 

ratio between the model and observations, the azimuthal angle corresponds to the 

correlation coefficient, and the distance from the reference point (usually marked as 

"observed") indicates the centred root mean square error (RMSE). 

The clustering of Models 4 and 5 near the reference point on the Taylor diagram 

indicates their high correlation with observed data, low RMSE, and accurate 

representation of the observed variability. This tightly grouped pattern starkly contrasts 

with the widely dispersed points representing Models 1-3, which are scattered further 

from the reference point, signifying their poorer performance across all metrics. The 

consistent proximity of M (5) to the reference point across all locations suggests that 

while historical displacement (as used in M (4)) is a strong predictor, the inclusion of 

hydrodynamic factors (wave height and tidal range) further refines the model's 

accuracy. This visual representation aligns with coastal morpho dynamic theory, which 

posits that shoreline evolution is influenced by a complex interplay of historical trends 

and contemporary forcing factors (Vitousek et al. 2023). 

The poor performance of models relying solely on hydrodynamic parameters (Models 

1-3), evident from their scattered positions on the Taylor diagram, corroborates the 

findings of (Vitousek et al. 2017), who emphasized the complexity of shoreline 

response to wave and tidal forcing. Moreover, the significant improvement observed 

when incorporating historical data (Models 4 and 5), shown by their closer proximity 

to the reference point, supports the conclusions of (Hagenaars et al. 2018) regarding the 

importance of long-term trends in shoreline prediction. 
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Table 4 Performance Metrics of Five NARX Models Across Different Coastal 

Locations (ID 6, 40, 75, 117, 156) 

Location 

 
Models 

Statistical indexes 

R MAE MAPE RMSE E Id 

ID (6) M (1) 0.0116 148.4000 0.0013 58.9365 -0.8900 0.4309 

M (2) -0.0982 200.1960 0.0015 66.5131 -1.4071 0.3874 

M (3) -0.0816 212.3000 0.0015 66.8884 -1.4344 0.3846 

M (4) 0.9975 19.5540 0.0000 3.6347 0.9928 0.9981 

M (5) 1 0.204 1.58E-07 0.013828 1 1 

ID (40) M (1) 0.0301 107.9520 0.0011 47.5134 -0.0195 0.1547 

M (2) 0.0756 126.2500 0.0012 48.3301 -0.0548 0.2813 

M (3) 0.0799 136.3290 0.0012 49.3071 -0.0979 0.3224 

M (4) 0.9994 10.8260 0.0001 3.7138 0.9938 0.9984 

M (5) 1 0.004 2.32E-08 0.00105 1 1 

ID (75) M (1) 0.0282 183.4040 0.0013 60.3939 -0.0082 0.1296 

M (2) -0.0316 230.7110 0.0014 63.0374 -0.0984 0.1761 

M (3) -0.0310 257.0010 0.0014 64.3914 -0.1461 0.2162 

M (4) 0.9978 17.7400 0.0002 9.1418 0.9769 0.9935 

M (5) 1 0.071 1.06E-07 0.007758 1 1 

ID (117) M (1) 0.0363 133.0960 0.0016 66.6875 -1.7305 0.4445 

M (2) 0.1799 239.9880 0.0019 78.9221 -2.8243 0.4328 

M (3) 0.1481 2130.4580 0.0019 82.8634 -3.2158 0.4117 

M (4) 0.9797 43.6520 0.0002 8.4049 0.9566 0.9893 

M (5) 1 4.00E-03 2.68E-08 0.001245 1 1 

ID (156) M (1) -0.2019 190.2830 0.0032 117.3152 -8.9041 0.3201 

M (2) -0.0131 232.7890 0.0034 126.7294 -

10.5575 

0.3101 

M (3) -0.0657 238.8650 0.0034 126.8293 -

10.5757 

0.3050 

M (4) 0.9968 14.0080 0.0001 4.2010 0.9873 0.9966 

M (5) 1 0.027 1.35E-07 0.007104 1 1 
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To further enhance the evaluation process and provide a holistic assessment of model 

performance, a novel multi-index criterion, the Performance Index (PIm), was 

introduced as follows: 

𝑃𝐼𝑚 =
1

3
[
𝑅𝑚𝑖𝑛

𝑅𝑚
+

𝑅𝑀𝑆𝐸𝑚

𝑅𝑀𝑆𝐸𝑚𝑎𝑥
+

𝑀𝐴𝑃𝐸𝑎

𝑀𝐴𝑃𝐸𝑚𝑎𝑥
] (12) 

where the subscript 'm' denotes the specific model under evaluation. This composite 

index, represented by Equation 12, synthesizes multiple statistical measures into a 

single, comprehensive metric, directly comparing model performance across all 

observed locations. Fig. 9 presents a compelling visualization of the PIm results, clearly 

illustrating the superior performance of M (5) across all locations. M (5) consistently 

achieved the lowest PI values, with a remarkable minimum of 0.000149 at ID 6, 

indicating near-perfect prediction accuracy. In stark contrast, M (1) exhibited the 

highest PI values across all locations, peaking at 0.976347 for ID 4, underscoring its 

limited predictive power. 

 

 
 

  

(a) 

ID_6 

(b) 

ID_40 

(c) 

ID_75 

(d) 

ID_118 
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Figure. 8. Taylor diagram comparing the performance of five NARX models 

for shoreline displacement prediction across multiple coastal locations. 

 

A closer examination of Fig. 9 reveals a distinct hierarchical performance among the 

models. The consistently low PI values for M (5) are visually represented by a nearly 

flat line at the bottom of the graph, highlighting its robust and stable performance across 

all spatial locations. Conversely, the erratic and elevated pattern of M (1)'s PI values 

across different IDs emphasizes its inconsistent and poor predictive capability. Models 

2, 3, and 4 demonstrate intermediate performance, with M (4) notably outperforming 

M (2) and M (3), aligning with earlier findings regarding the significance of historical 

displacement data in accurately predicting shoreline changes. 

The comprehensive evaluation methodology employed in this study, coupled with the 

intuitive visualization provided by Fig. 9, offers a nuanced understanding of model 

performance that surpasses traditional single-metric assessments. By incorporating 

multiple statistical indices and synthesizing them into a single Performance Index, this 

approach enables a more robust and reliable comparison of the predictive capabilities 

of various models. The superiority of the current investigation's results, particularly 

those of M (5), over predictions obtained using conventional Digital Shoreline Analysis 

System (DSAS) tools, as reported by Oborie et al. (2024) and Mansour et al. (2024), 

underscores the significant advancement this study represents in shoreline prediction 

modeling. The advanced modeling techniques combined with the comprehensive 

evaluation framework demonstrate the potential for more accurate and reliable 

shoreline displacement predictions compared to traditional methods. 

(e) 

ID_156 
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Figure. 9. Performance Index for all observed Id according 

to five-models 

 

3.3. Evaluation of spatial and temporal prediction 

Building upon the initial performance evaluation of the five NARX models, this section 

delves deeper into the models' efficacy in predicting shoreline changes across the entire 

study area. While the previous analysis focused on specific locations and overall 

performance metrics, this part aims to assess how each model performs in capturing the 

spatial variability of shoreline changes along the full extent of the coastline. The NARX 

neural network models demonstrate varying degrees of efficiency in predicting 

shoreline movement along the entire coastline of the eastern Kitchener drain. Fig.10 

illustrates the performance of all five models across four different years (2012, 2017, 

2019, and 2021), providing a comprehensive view of their predictive capabilities over 

time and space. 

Building upon the initial performance evaluation of the five NARX models, this section 

delves deeper into the models' efficacy in predicting shoreline changes across the entire 

study area. While the previous analysis focused on specific locations and overall 

performance metrics, this part aims to assess how each model captures the spatial 

variability of shoreline changes along the full extent of the coastline. The NARX neural 

network models demonstrate varying degrees of efficiency in predicting shoreline 

movement along the entire coastline of the eastern Kitchener drain. Fig.10 illustrates 

the performance of all five models across four different years (2012, 2017, 2019, and 

2021), providing a comprehensive view of their predictive capabilities over time and 

space. 

M (1), utilizing solely significant wave height as input, exhibited substantial residual 

variability, with residual errors progressively increasing from 87.98 m in 2012 to 

123.80 m in 2021, demonstrating systematic over-prediction in the western sections (x 

= 330000-340000) and under-prediction in eastern regions (x = 350000-360000). M 

(2), incorporating tidal range data, showed marginal improvement in spatial prediction 
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accuracy. However, residual errors remained elevated (116.95 m in 2017), with 

persistent systematic bias particularly pronounced in the central coastal segment (x = 

340000-350000). Integration of both hydrodynamic parameters in M (3) yielded 

variable spatial performance, with residual errors ranging from 78.49 m to 115.71 m 

across the temporal domain. At the same time, M (4), based on historical displacement 

data, demonstrated marked enhancement in prediction accuracy, with residual errors 

constrained between 1.64 m (2012) and 7.55 m (2021), exhibiting notably reduced 

spatial variability with localized peaks primarily associated with morphological 

features such as coastal structures and inlet zones. M (5), incorporating all three 

parameters, achieved superior spatial and temporal prediction accuracy, with residual 

errors ranging from 0.07 m (2012) to 0.52 m (2021), revealing highly uniform 

distribution patterns across all spatial segments with minimal systematic bias; notably, 

the western section (x = 330000-340000) consistently exhibited higher residual 

variability across all models, attributed to complex morphodynamic processes 

associated with the Kitchener drain outlet, while the central coastal segment 

demonstrated relatively stable prediction characteristics, particularly in Models 4 and 

5, suggesting more predictable shoreline evolution patterns in this region, with temporal 

evolution of prediction accuracy showing a general trend of increasing residual errors 

with prediction horizon, though this effect was substantially mitigated in M (5), and the 

rate of accuracy degradation varied spatially, with maximum deterioration observed in 

the vicinity of coastal structures and areas of high morphodynamic activity. 

 

  

(a) (b) 
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Figure. 10. Comparative analysis of five NARX models' performance in the 

testing phase, illustrating residual values between observed and predicted 

shorelines along the eastern Kitchener drain coastline for: (a) 2012 shoreline, (b) 

2017 shoreline, (c) 2019 shoreline, and (d) 2021 shoreline. 

3.4. Prediction Results and Decision Matrix Analysis 

The model, calibrated using a 35-year historical dataset (1987-2022), demonstrated 

robust predictive capabilities with a normalized root mean square error (NRMSE) of 

0.116595, indicating reliability in capturing complex morpho dynamic processes. So, 

implementing the NARX neural network model facilitated shoreline evolution 

forecasting for 2022-2050. Quantitative analysis of the forecasted shoreline 

configurations, as illustrated in Fig. 11, revealed significant spatial heterogeneity in 

coastal response patterns. The study area, spanning approximately ~35 km, is 

systematically segmented into 21 distinct sectors based on predicted morpho dynamic 

behaviour. These sectors, ranging from 100 to 5700 meters in length, exhibited varying 

degrees of vulnerability to erosional and accretionary processes. Critical erosion zones 

are identified in sectors 4, 8, and 10, with projected regression rates of -7.61, -7.08, and 

-9.92 meters per year, respectively. These rates, derived from the NARX predictions, 

indicated potentially severe coastal retreat requiring immediate intervention measures. 

The temporal evolution of shoreline positions demonstrated notable variability across 

the forecast period. Sector 1, characterized by substantial accretion (+24.48 m/year), 

represented a significant sediment accumulation zone, while sectors 14 and 20 

exhibited moderate erosional tendencies with rates of -4.81 and -5.74 meters per year, 

respectively. The spatial distribution of these morphodynamical changes, visualized 

(c) (d) 
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through colour-coded risk assessment in Fig. 11, revealed a complex pattern of coastal 

evolution with implications for strategic management interventions. The integration of 

hydrodynamic factors with predicted morphological changes led to the identification of 

three distinct risk categories, following the classification framework established by 

Vousdoukas et al. (2020): High Accretion/Erosion (±20 m/year), Moderate 

Accretion/Erosion (±5-20 m/year), and Low Accretion/Erosion (±0-5 m/year). These 

classifications facilitated the prescription of targeted intervention measures, following 

methodologies developed by El-Sharnouby et al. (2020), ranging from comprehensive 

protection schemes for critical erosion zones to monitoring protocols for stable 

segments. Sectors exhibiting critical erosion patterns were designated for intensive 

protection measures, incorporating designs validated by Kamphuis (2010), including 

seawall construction integrated with groin systems and periodic beach nourishment 

programs. 

The decision matrix demonstrates that sectors 4, 8, and 10, characterized by severe 

erosion rates exceeding -7.0 m/year, require immediate implementation of 

comprehensive protection measures. Following the engineering principles established 

by Torres-Freyermuth et al. (2017), these interventions include engineered seawall 

construction with complementary groin fields designed to mitigate projected shoreline 

regression. The seawall configurations incorporate wave energy dissipation features 

and are optimized based on local hydrodynamic conditions, as Masria et al. (2022) 

specified. Conversely, sectors demonstrating moderate erosion (-1.48 to -5.74 m/year) 

are prescribed intermediate intervention strategies, adhering to the soft protection 

protocols developed by Khalifa et al. (2019) and incorporating beach nourishment and 

regular monitoring protocols. 

 

4. Discussion 

The comprehensive evaluation of five NARX neural network models for shoreline 

prediction along Egypt's Nile Delta coast reveals important insights into the relative 

significance of different environmental parameters and their combined effects on 

prediction accuracy. This analysis demonstrates the critical importance of integrating 

multiple parameters for robust shoreline forecasting while highlighting specific 

limitations of single-parameter approaches. 

The performance analysis of model M (1), which relied solely on significant wave 

height, revealed substantial limitations in prediction accuracy. The model's RMSE 

values showed a concerning upward trend, increasing from 87.98 m in 2012 to 123.80 

m in 2021, indicating deteriorating prediction reliability over time. This finding aligns 

with Vitousek et al. (2017)'s observation that single-parameter models often fail to 

capture the inherent complexity of coastal systems. The model's poor correlation 

coefficients, ranging from -0.2019 to 0.0361, further emphasize the inadequacy of using 

wave height as a standalone predictor, supporting the conclusions drawn by Antolínez 

et al. (2019) regarding the necessity of multi-parameter approaches in coastal 

modelling. 
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Model M (2)'s incorporation of tidal range data showed only marginal improvement 

over the wave height-based model, with RMSE values remaining notably high (116.95 

m in 2017). Despite the inclusion of this additional parameter, the persistence of 

substantial prediction errors supports Hagenaars et al. (2018) findings regarding the 

spatial variability of coastal processes and the need for more comprehensive prediction 

frameworks. The correlation coefficients for M (2), ranging from -0.0992 to 0.1799, 

suggest that tidal range alone cannot adequately capture the complex dynamics of 

shoreline evolution. 

 

Sector 

number 

Length 

(m) 

No. of 

transects 

Mean rate 

of changes 

(m/year) 

Evaluation 

(Risk level) 

Decision 

(Artificial 

protection) 

1 2000 20 24.48 
High 

Accretion 
 

Sediment 

management 

system 

2 700 7 -4.98 
High 

Erosion 
 

Groin field + 

nourishment 

3 400 4 5.37 
Low 

Accretion 
 Monitoring only 

4 999 9 -7.61 
Critical 

Erosion 
 

Seawall + 

groins 

5 399 3 0.77 
Low 

Accretion 
 

Regular 

monitoring 

6 399 3 -2.57 
Moderate 

Erosion 
 Soft protection 



Nada Mansour, Tharwat Sarhan, Mahmoud El-Gamal… 28 

 

7 699 6 4.87 
Low 

Accretion 
 Monitoring 

8 3899 38 -7.08 
Critical 

Erosion 
 

Seawall + 

nourishment 

9 3599 35 10.78 
Moderate 

Accretion 
 

Monitoring + 

dredging 

19 1399 13 -9.92 
Critical 

Erosion 
 

Complete 

protection 

11 2499 24 10.80 
Moderate 

Accretion 
 

Sediment 

management 

12 299 2 -3.40 
Moderate 

Erosion 
 Soft protection 

13 3199 31 17.54 
High 

Accretion 
 Bypass system 

14 499 4 -4.81 
High 

Erosion 
 

Groin + 

nourishment 

15 4499 44 13.57 
Moderate 

Accretion 
 

Monitoring + 

dredging 

16 199 1 -1.84 
Moderate 

Erosion 
 

Regular 

monitoring 

17 2999 20 7.15 
Moderate 

Accretion 
 Monitoring 

18 199 1 -1.48 
Moderate 

Erosion 
 Soft protection 

19 5799 57 10.94 
Moderate 

Accretion 
 

Sediment 

management 

29 1999 10 -5.74 
High 

Erosion 
 

Combined 

protection 

21 2499 24 11.93 
Moderate 

Accretion 
 

Monitoring + 

dredging 

Figure. 11 Decision matrix displaying the research area's shoreline assessment 

and risk forecast between 2022 and 2050. 
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A particularly noteworthy finding emerged from model M (3)'s performance, which 

combined wave height and tidal range data. Despite incorporating multiple 

hydrodynamic parameters, this model demonstrated variable performance with RMSE 

values ranging from 78.49 m to 115.71 m across different years. This unexpected result 

suggests that the interaction between wave height and tidal range may involve more 

complex, nonlinear relationships than initially assumed. This observation aligns with 

the findings by Ghosh et al. (2015), who emphasized the importance of considering 

historical trends alongside hydrodynamic parameters. 

The introduction of historical displacement data in Model M (4) marked a significant 

breakthrough in prediction accuracy. The model achieved remarkably high correlation 

coefficients (0.979712 to 0.999409) and substantially lower RMSE values (3.63468 to 

9.141776) across all locations. This dramatic improvement underscores the critical role 

of historical data in shoreline prediction, supporting Bamunawala et al. (2018) research 

on the significance of temporal patterns in coastline evolution. The model's Nash-

Sutcliffe efficiency values (0.95664 to 0.999377) further validate incorporating 

historical trends in prediction models. 

Model M (5), which integrated all three parameters (wave height, tidal range, and 

historical displacement), demonstrated exceptional predictive capabilities that 

surpassed all other models. The achievement of perfect correlation coefficients and 

near-zero RMSE values (0.00105 to 0.013828) across all locations significantly 

advances shoreline prediction accuracy. This comprehensive integration aligns with 

Vousdoukas et al. (2020) findings regarding incorporating multiple environmental 

factors in coastal change assessments. 

The spatial analysis of prediction accuracy revealed interesting patterns across the study 

area. The western section (x = 330000-340000) consistently exhibited higher residual 

variability across all models, particularly near the Kitchener drain outlet. This 

observation aligns with ElKotby et al. (2024) findings regarding the complex 

morphodynamic processes associated with coastal structures and inlet zones. The 

central coastal segment demonstrated more stable prediction characteristics, especially 

in models M (4) and M (5), suggesting more predictable shoreline evolution patterns in 

this region. 

The temporal evolution of prediction accuracy showed a general trend of increasing 

residual errors with prediction horizon, though this effect is substantially mitigated in 

M (5). This finding supports the conclusions of Abd-Elhamid et al. (2023) regarding 

the importance of long-term monitoring and adaptive prediction approaches. The rate 

of accuracy degradation varied spatially, with maximum deterioration observed in the 

vicinity of coastal structures and areas of high morphodynamic activity, confirming 

observations by Mansour et al. (2024) regarding the spatial variability of prediction 

accuracy. 

The superiority of M (5)'s predictions across all metrics and locations demonstrates the 

critical importance of integrating multiple parameters in shoreline prediction models. 

The model's exceptional performance, particularly in capturing both spatial and 

temporal variations in shoreline position, provides strong evidence for the effectiveness 
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of combining historical trends with current hydrodynamic conditions. This 

comprehensive approach enables more accurate predictions of shoreline evolution, 

supporting the findings of Vitousek et al. (2017) regarding the complex response of 

coastlines to climate change and anthropogenic pressures. 

The systematic approach to coastal vulnerability assessment and intervention planning, 

founded on NARX-derived predictions, provides a quantitative framework for 

sustainable coastal management through 2050, aligning with the methodological 

framework proposed by Abd-Elhamid et al. (2023). The decision matrix is a crucial tool 

for stakeholders, enabling evidence-based allocation of protection resources aligned 

with sector-specific vulnerability assessments. This approach incorporates the 

morphodynamic evolution patterns identified by ElKotby et al. (2024). It integrates the 

coastal protection strategies validated by Vitousek et al. (2017), ensuring 

comprehensive consideration of both local and regional coastal processes in protection 

measure design and implementation. 

The matrix's effectiveness is particularly evident in its ability to prescribe location-

specific interventions based on quantified erosion risks, with protection measures 

ranging from complete structural solutions for high-risk zones (>20 m/year erosion) to 

monitoring-based management for low-risk areas (<5 m/year erosion). This granular 

approach to coastal protection, supported by Nassar et al. (2018) findings on 

intervention effectiveness, enables optimal resource allocation while maintaining 

coastal stability across the entire study area. 

The comprehensive evaluation of the five NARX models reveals significant insights 

into shoreline prediction methodologies while demonstrating clear alignment with 

multiple UN Sustainable Development Goals (SDGs). Through careful analysis, the 

research findings contribute to three primary categories of SDGs - Environmental Goals 

(40%), Social Goals (25%), and Economic Goals (35%), each supporting specific 

targets and indicators for coastal sustainability (Fig. 12).  

The research findings demonstrate the strongest alignment with environmental SDGs, 

particularly SDG 13 (Climate Action, 25%) and SDG 15 (Life on Land, 15%), reflected 

in several key outcomes. M (5)'s exceptional prediction accuracy, with RMSE values 

ranging from 0.07m (2012) to 0.52m (2021), provides crucial support for Target 13.1 

(strengthen resilience to climate-related hazards) by enabling precise forecasting of 

climate change impacts on coastlines. The integrated approach incorporating wave 

height, tidal range, and historical displacement aligns with Target 13.2 (integrate 

climate change measures into policies), as evidenced by the model's superior 

performance across all evaluation metrics (Vitousek et al. 2023). 

The research's contribution to SDG 15 is particularly evident in Target 15.1 

(conservation of terrestrial ecosystems) through the model's capacity to predict and help 

preserve coastal ecosystems. Identifying critical erosion zones, such as sectors 4, 8, and 

10, with regression rates exceeding -7.0 m/year, provides essential data for ecosystem 

conservation planning (Vousdoukas et al. 2020). This integrative approach to shoreline 

prediction supports Target 15.9 (integrating ecosystem values into planning) by 

enabling evidence-based coastal management strategies. 
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The research demonstrates a significant impact on social sustainability through SDG 

11 (Sustainable Cities and Communities, 15%), SDG 4 (Quality Education, 3%), and 

SDG 17 (Partnerships, 7%). The NARX model's ability to predict shoreline changes 

with unprecedented accuracy (correlation coefficients of 1.0 for M (5)) directly 

supports Target 11.5 (reduce vulnerability to disasters) by enabling proactive coastal 

protection measures. The research's comprehensive spatial analysis, covering 158 

transects at 215-meter intervals, provides crucial data for Target 11.3 (sustainable 

urbanization), particularly relevant for the study area's critical infrastructure, including 

New Mansoura City and the desalination plant (Abd-Elhamid et al. 2023). The 

methodological framework's contribution to Target 4.7 (education for sustainable 

development) is demonstrated through its potential for knowledge transfer and capacity 

building. The robust validation process, achieving Nash-Sutcliffe efficiency values 

close to 1 (ranging from 0.95664 to 0.999377), provides a scientific foundation for 

developing educational resources about coastal sustainability (Mansour et al. 2024). 

The economic dimension of sustainability is primarily addressed through SDG 8 

(Economic Growth, 15%) and SDG 9 (Infrastructure, 20%). The research's economic 

impact is evident in its support for Target 8.4 (resource efficiency) through optimizing 

coastal protection resources. M (5)'s superior performance in predicting shoreline 

changes enables a more efficient allocation of protection measures, demonstrated by 

the low-performance Index values (minimum 0.000149 at ID 6). The research 

significantly contributes to Target 9.1 (develop resilient infrastructure) by providing 

essential data for infrastructure planning in coastal zones. The model's ability to identify 

varying degrees of coastal vulnerability, from high accretion (+24.48 m/year in Sector 

1) to critical erosion (-9.92 m/year in Sector 10), directly supports sustainable 

infrastructure development (ElKotby et al., 2024). This aligns with Target 9.4 (upgrade 

infrastructure for sustainability) by enabling data-driven decision-making for coastal 

protection strategies. 

 

Figure. 12 Mind map illustrating the alignment between research outcomes and 

Sustainable Development Goals (SDGs), categorizing impacts across 

environmental, social, and economic dimensions, with specific targets and 

indicators for coastal sustainability. 
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5. Conclusion 

This investigation comprehensively analyzes shoreline morphodynamics along a 

critical 35-kilometre segment of Egypt's Nile Delta coastline, encompassing dynamic 

deltaic beaches between the Kitchener drain and Gamsa outlet. The study area contains 

vital infrastructure, including New Mansoura City and desalination facilities. Through 

the integration of 35-year multi-temporal satellite data (1987-2022) from multiple 

Landsat missions (MSS, TM, ETM, and OLI-TIRS), the research implemented rigorous 

shoreline delineation using advanced image processing protocols, achieving a 

normalized root mean square error (NRMSE) of 0.116595. A NARX (Nonlinear 

Autoregressive with Exogenous inputs) neural network architecture, optimized through 

modified Levenberg-Marquardt algorithms with Bayesian regularization, was 

developed to forecast shoreline evolution, incorporating wave height, tidal, and 

historical shoreline displacement parameters. The dataset underwent strategic 

partitioning into training (70%, 1987-2010) and validation (30%, 2010-2021) segments. 

Model calibration integrated significant wave height measurements (<4 meters), tidal 

range observations (-0.10 to 0.85 meters), and historical shoreline positions across 158 

transects at 215-meter intervals. Among five NARX configurations, M (5), which 

integrated significant wave height, tidal range, and historical displacement data, 

demonstrated superior predictive accuracy (RMSE: 0.07-0.52 meters, correlation 

coefficients: 1.0, Nash-Sutcliffe efficiency: 0.95664-0.999377, MAPE: 1.38E-07 to 

2.68E-08) and minimal Performance Index values (0.000149 at ID 6). Cross-correlation 

analysis revealed stronger relationships between combined parameters and shoreline 

changes compared to individual variables. Spatial-temporal analysis validated M (5)'s 

robustness, maintaining residual errors between 0.07 and 0.52 meters with uniform 

distribution patterns and negligible systematic bias. The western segment, influenced 

by complex morphodynamic processes near the Kitchener drain outlet, exhibited 

elevated residual variability, while the central coastal region demonstrated consistent 

prediction stability with quantifiable temporal accuracy degradation rates across 

different spatial zones. Forecasting through 2050 facilitated the systematic 

classification of the coastline into 21 distinct sectors, enabling targeted intervention 

strategies based on quantified vulnerability thresholds (High Accretion/Erosion: ±20 

m/year, Moderate: ±5-20 m/year, Low: ±0-5 m/year). Spatial analysis identified critical 

erosion zones in sectors 4, 8, and 10 with regression rates exceeding -7.0 meters/year, 

contrasting with significant accretion in sector 1 (+24.48 meters/year). The resultant 

decision matrix enabled evidence-based coastal protection strategies, prescribing 

engineering interventions ranging from comprehensive structural solutions for high-

risk zones to monitoring protocols for stable segments. The integration of 

hydrodynamic parameters with predicted morphological evolution supported the 

development of a robust coastal management framework, demonstrating significant 

alignment with environmental sustainability goals (SDG 13, 25%; SDG 15, 15%), 

social development objectives (SDG 11, 15%), and economic considerations (SDG 8, 

15%; SDG 9, 20%). This methodological advancement provides both theoretical 

insights into coastal morphodynamics and practical tools for sustainable coastal 

management under evolving climate conditions. Future research directions should 

incorporate additional parameters, including sediment transport rates, long-term 
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climate trends, and anthropogenic factors, to enhance model applicability and 

predictive accuracy. 
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