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Abstract 

The primary productivity in the upper ocean is also a key factor associated 

with the surface CO2. Therefore, there is a potential to remotely sense the 

surface pCO2 using satellite data based on its correlation with SST and 

chlorophyll a. Hence, the in-situ SST and chlorophyll datasets have been 

regressed with the calculated pCO2 three dimensionally for four different 

functions suchas plane, paraboloid, Gaussian and Lorentzian.  Among four 

functions parabolic function found to be better fit than other functions for 

postmonsoon with a R2 of 0.783 and minimum standard error estimate (SEE) 

of ± 24.052 µatm. Thus, the postmonsoon parabolic algorithm was used to 

generate the pCO2 image. The validation of MODIS-Aqua derived SST and 

chlorophyll based pCO2 map showed better agreement with calculated pCO2 

with R2 of 0.755 and SEE of ± 23.609µatm. The better regression between 

pCO2, SST and chlorophyll suggest that the effects of biological activities on 

the spatial and temporal changes in pCO2 of the southwest Bay of Bengal 

cannot be ignored. However, the RMSE (± 27.156µatm) of present pCO2 

algorithm is appreciably high due to inbound errors in MODIS derived SST 

and chlorophyll data products. Hence, improvement in sensor technology and 

retrieval algorithm would definitely improve the retrieval of input parameters 

(SST and Chlorophyll a) which in turn useful in estimating pCO2 and air-sea 

CO2 flux precisely in the Bay of Bengal at large spatial and temporal scales.  

Keywords: SST, chlorophyll, pCO2, regression, RMSE, SEE, paraboloid 

 

                                                           
* Corresponding author: T. Thangaradjou 
   E-mail address: umaradjou@gmail.com 

mailto:umaradjou@gmail.com


232 R.Shanthi, D.Poornima, T.Thangaradjou, A.Saravanakumar, S.B.Choudhry 

1. INTRODUCTION  

In the recent years, researchers are more and more interested in understanding the 

global carbon cycle in the changing global climate.  As one of the most important 

reservoir of the earth’s carbon, oceans play a vital role in regulating global 

atmospheric CO2 concentration.  By using accurate estimates of global sea surface 

partial pressure of CO2 (pCO2), the ratio of net CO2 uptake of global ocean can be 

measured, which can provide a support for further research of global carbon cycle1. 

The Indian Ocean has been shown to be a net sink of atmospheric CO2, although the 

north Indian Ocean is richer in CO2 than the atmosphere2. Studies from the north 

Indian Ocean indicated that the Arabian Sea is a perennial source of atmospheric 

CO2
3,4,5, while the Bay of Bengal act as a seasonal sink6. Due to strong upwelling 

during the southwest monsoon, surface waters of the coastal region in the Arabian Sea 

show a substantial increase in dissolved inorganic carbon (DIC) accompanied by very 

high pCO2
7. 

Generally, the solubility of CO2 in seawater is temperature dependent; hence the 

variation in the pCO2 is mainly driven by thermodynamics. In a parcel of seawater 

with constant chemical composition, pCO2 would increase by 4% when the water is 

warmed about 1°C8,9.  Bay of Bengal is much warmer than the Arabian Sea and is 

consistent with Levitus climatology10 indicating a possibility of stronger stratification 

in the Bay of Bengal which make it as sink of atmospheric CO2.  The exchange of CO2 

directly with the atmosphere at the mixed-layer waters is affected primarily by 

temperature (SST), dissolved inorganic carbon (DIC) levels and total alkalinity (TA), 

where SST is influenced by physical processes like mixing of water masses, DIC and 

TA are influenced by the biological processes (photosynthesis and respiration)11. The 

DIC in the surface ocean varies from an average value of 2150 μmol kg-1 in Polar 

Regions to 1850 μmolkg-1 in the tropics as a result of biological processes and reduce 

pCO2 by 4%12. Therefore, the effect of biological drawdown and temperature on 

surface water pCO2 is similar but the two effects are often compensating. Hence, the 

spatial and temporal distribution of pCO2 in surface waters and CO2 flux is largely 

governed by a balance between the changes in seawater temperature, net biological 

utilization of CO2 and the upwelling flux of CO2 rich waters. 

Satellite observations are more useful in distinguishing spatial-temporal variations of 

geophysical parameters over the global oceans from intra-seasonal to inter-annual 

time scales.  In addition to the change of atmospheric CO2 accumulation, pCO2 is also 

essential to study the changes in ocean biogeochemistry. As the temperature and 

upwelling process can well be recorded in SST and the biological utilization can be 

derived in terms of chlorophyll a concentration.  Both these parameters are effectively 

been recorded from space which can result in retrieval of pCO2 through empirical 

algorithms.  Various algorithms have been derived for different areas at varied spatial 

scales. Initially, Stephens et al.8 produced the statistical relationship between pCO2 
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and SST in the north Pacific and concluded that the relation is sufficient to estimate 

pCO2 using satellite SST over the oligotrophic waters but not over the eutrophic 

waters with significant primary production. Likewise, many algorithms that relate 

SST to pCO2 followed, in the Arabian Sea13, in the Sargasso Sea14, in the equatorial 

Pacific15, in the north Pacific16,17, in the Bay of Biscay18 and in the northern south 

China Sea8, but their applicability is limited by geographical region, season and time 

scale based on the data used to develop the relationship between variables. 

 Later, the inclusion of chlorophyll a along with SST was done in North Pacific16 and 

South China Sea8.  Sarma et al.17 further developed a remote-sensing algorithm for 

pCO2, by including SST, chlorophyll a and climatological salinity. Lohrenz and Cai19 

added chromophoric dissolved organic matter (CDOM) to derive sea surface salinity 

as a parameter in their remote-sensing algorithm for pCO2.  Recently, Zui et al.20 and 

Qin et al.1 proposed a regression equation for pCO2 with SST and chlorophyll a with a 

RMSE of 13.45 μatm and 21.46 μatm with the satellite derived pCO2 respectively.  

Similar such studies that relate SST and chlorophyll with pCO2 through empirical 

relation are scanty in the Bay of Bengal. Hence, the present study is attempted to 

develop a regional pCO2 algorithm using the relationships between in-situ SST, 

chlorophyll and calculated pCO2 and the best fit algorithm has been validated with the 

calculated pCO2 measurements for remote sensing applications. 

 

2. MATERIALS AND METHODS 

The present study was carried out along the Tamilnadu coast falling along the 

southwest Bay of Bengal region. Four sampling station covering the longitude and 

latitude viz. Chennai (80⁰23.9E-13⁰07.9N), Cuddalore (79⁰48.5E – 11⁰42.4N), 

Parangipettai (79⁰51.7E – 11⁰30.6N) and Karaikal (79⁰55.5E – 10⁰54.8N) (Fig.1) 

were fixed and regular monthly samplings were made from January 2013 to March 

2017. The entire study period was classified into four seasons namely postmonsoon 

(January to March), summer (April to June) and premonsoon (south west monsoon - 

July to September) and monsoon (October –December) classified based on northeast 

monsoon prevails in the region. Northeast monsoon is an actual monsoon in the 

southwest Bay of Bengal which brings more rainfall over Tamilnadu coast with 

northeast monsoon winds.  Whereas, during southwest monsoon, the strong 

southwesterly winds play vital role in the surface waters resulting the turbulence at 

surface and wind driven vertical mixing of water column but rainfall was very 

minimum in the southwest Bay of Bengal. 
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Fig. 1. Map showing the study area 
 

In-situ data 

In-situ SST was measured using digital multi-stem thermometer of 0.1º C accuracy. 

Water samples were collected using 5-litre Niskin water sampler and stored in 

polypropylene bottles (Tarson) in dark ice box and transported to laboratory.  

Chlorophyll a concentration was measured by following the method described by 

INCOIS21 using spectrophotometer (Shimadzu- UV 2450) and it was calibrated with 
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standard chlorophyll a (Sigma C6144) using 90% acetone within 24 hours. 

Salinity was measured using a hand held refractometer (Atago hand refractometer, 

Japan) and the pH was measured using a pH meter (EUTECH - cyberscan pH meter) 

with the accuracy of ± 1‰ and ± 0.002 respectively. Total alkalinity (TA) was 

measured using an automated titrator (905 potentiometric Titrando, Metrohm, 

Switzerland) by following the Gran titration method22. 0.1N stock solution of HCl 

was standardized by preparing standard solution of known alkalinity with analytical 

grade Na2CO3.  DIC and pCO2 were computed based on measured SST, salinity, pH 

and TA using CO2CALC program23 by using the CO2 dissociation constants (k1 and 

k2) given by Lueker et al.24.   
 

SST and chlorophyll a based pCO2 retrieval algorithm  

In-situ SST, chlorophyll a and calculated pCO2 concentrations (595 data points) were 

obtained by monthly coastal samplings carried out at four sampling stations from 

January 2013 to March 2017 in the southwest Bay of Bengal region. The data points 

(15) matching with the date of satellite derived chlorophyll and SST data were treated 

separately for validation purposes.  Finally, 580 points were taken for regression 

analysis accounting for ~97% of the total data. 

The primary productivity in the upper ocean is also a key factor associated with the 

surface CO2. Therefore, there is a potential to remotely sense the surface pCO2 using 

satellite data based on its correlation with SST and chlorophyll a.  Hence, the in-situ 

SST and chlorophyll datasets have been regressed with the pCO2 three dimensionally 

for four different functions such as plane, paraboloid, Gaussian, and Lorentzian 

(Table 1).  

Table 1. Results of regression analysis between in-situ SST, chlorophyll and calculated pCO2 

 
 

N 

Plane Paraboloid Gaussian Lorentzian 

R2 SEE(±) R2 SEE(±) R2 SEE(±) R2 SEE (±) 

Entire 580 0.804 76.174 0.809 75.266 0.815 74.104 0.811 74.811 

Postmonsoon 165 0.778 24.154 0.783 24.052 0.637 31.090 0.632 31.298 

Summer 120 0.690 42.870 0.700 42.370 0.535 52.781 0.522 53.486 

Premonsoon 150 0.725 48.102 0.749 46.224 0.746 45.517 0.751 46.071 

Monsoon 145 0.721 120.086 0.750 114.307 0.747 121.960 0.696 126.124 
 

Parabolic function found to be better fit than other functions from the entire 

regression analysis with a R2 of 0.783 and  minimum standard error estimate of ± 

24.052 µatm. The derived pCO2 algorithm was used to generate the pCO2 image.  The 

pCO2 algorithm implies the following equation: 

22

2
*9015.19*5777.0*0874.6*7794.76820.1025 ChlSSTChlSSTpco   

Where, pCO2 = Partial pressure of carbon dioxide, SST = Sea surface temperature  

Chl = Chlorophyll concentration, N = Number of points 
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Satellite data 

To generate remotely sensed pCO2 image, satellite derived SST and chlorophyll a 

data were required. For remote sensing measurements in the southwest Bay of Bengal, 

February to May is good period for getting cloud free data, on the other part of the 

year only rare and sporadic data sets alone available because of the influence of both 

southwest and northeast monsoons which makes southern Bay of Bengal as more 

cloud prone area in the northern Indian Ocean region.  Hence, MODIS-Aqua derived 

Level-2a SST and chlorophyll data products for the date 11th February 2017 with a 

spatial resolution of 1km were acquired from the http://modis.gsfc.nasa.gov.  The data 

were processed to generate SST and chlorophyll image using ERDAS IMAGINE 

(ver. 9.2.), SeaDAS (Ver. 7.3.2.) and ENVI (ver.4.7.) software.  The datasets were 

applied to geometric correction to remove the image distortion and bring them to a 

standard geographic projection (Lat/Lon) with modified Everest Datum.  

 

Evaluation criteria 

The evaluation process was made by comparing satellite derived values with the field 

measurements. Statistical fitting was applied to these data using SigmaPlot (Ver.12.0) 

statistical software.  Mean Normalized Bias (MNB), Standard Error of Estimate 

(SEE) and Root Mean Square Error (RMSE) were analyzed to test the performance of 

the algorithms.  Mean normalized bias is a measure of the over or underestimation of 

the true values. Root mean square error provides a good measure of data scatter for 

normally distributed variables and gives useful information of the accuracy between 

satellite and in-situ data.  

 

3. RESULTS AND DISCUSSION 

The oceanic partial pressure of CO2 (pCO2) is highly variable and it is difficult to 

assess spatial and temporal variability because of the paucity of measurements. In 

general, pCO2 is strongly correlated with sea surface temperature (SST). Even in 

oceanic regions where physical and biological factors are significant, the pCO2 remain 

be strongly correlated with SST.  SST has a dual impact on pCO2. On one hand, the 

equilibrium of carbonate system in seawater would alter due to the influence of SST 

in the absence of external exchange. Thereby pCO2 will be enhanced as temperature 

rises25. On the other hand, the solubility of carbon dioxide in seawater decreases as 

temperature increases, which leads to a decrease of pCO2
1. The chlorophyll is capable 

of altering the carbonic acid cycle with its primary productivity and respiration.  

Hence, the three dimensional approach of SST, chlorophyll and pCO2 regression fits 

are attempted to understand the role of SST and chlorophyll on pCO2 in the southwest 

Bay of Bengal coastal waters.   

 

Development of pCO2 algorithm based on in-situ SST and chlorophyll a 

The regression analysis between in-situ SST, chlorophyll a and calculated pCO2 was 

http://modis.gsfc.nasa.gov/
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carried out for four different three dimensional functions viz. plane, paraboloid, 

Gaussian and Lorentzian. The regression equations are given below: 

 

Entire dataset (N=580) 

ChlSSTpCO *7721.59*7099.469047.16592  Plane)1(  

22

2 *3970.1*9715.1*6872.46*7676.1627004.3378 ChlSSTChlSSTpCO    

       Paraboloid)2(  

 

))9075.10/)8418.15((

))3584.7/()8135.21((*5.0exp(*9996.1482

2

2

2





Chl

SSTpCO
             Guassian)3(  

 

)))9683.9/)4741.12((1(*))8894.6/)9130.23((1/((3895.1314 22

2  ChlSSTpCO  

        Lorentzian)4(  

 

Postmonsoon (N=165) 

PlaneChlSSTpCO )5(*5801.46*6711.394029.14472   

22

2 *9015.19*5777.0*0874.6*7794.76820.1025 ChlSSTChlSSTpCO   

        Paraboloid)6(  

 

))584.4/)8488.6((

)5464.1078697778/)6265.1750771883((*5.0exp(*3998.3315

2

2

2





Chl

SSTpCO

 

Guassian)7(  

 

)))9575.2/)954.2((1(*))256.211512/()4186.42((1/((4279.522 22

2  ChlSSTpCO  

        Lorentzian)8(  

 

Summer (N=120) 

PlaneChlSSTpCO )9(*1597.63*6222.507438.17762   

22

2 *3216.27*9237.1*17778.1*7775.1744168.3796 ChlSSTChlSSTpCO   

        Paraboloid)10(  
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))9359.1/)499.2(()4115.197788508/)1995.109275((*5.0exp(*2731.502 22

2  ChlSSTpCO  

        Guassian)11(  

 
)))3569.2/)7029.2((1(*)))624.60993449/()007.119216((1/((2731.502 22

2  ChlSSTpCO  

        Lorentzian)12(  

 

Premonsoon (N=150) 

PlaneChlSSTpCO )13(*8118.16*5094.715745.24492   

22

2 *6697.0*7786.16*8756.18*7893.10562522.16901 ChlSSTChlSSTpCO   

        Paraboloid)14(  

 

))2197.31/)1642.39(()5839.12/)0725.2((*5.0exp(*9896.17301 22

2  ChlSSTpCO

  

        Guassian)15(  

 

)))0347.21/)2996.12((1(*))0488.4/)0947.21((1/((7451.2390 22

2  ChlSSTpCO

 

        Lorentzian)16(  

 

Monsoon (N=145) 

PlaneChlSSTpCO )17(*3749.33*5165.834296.28382   

22

2 *7575.6*7814.6*6913.27*3587.3025231.2546 ChlSSTChlSSTpCO 

 

        Paraboloid)18(  

 

2

2 ))6683.5335726006/()0953.3999570((*5.0exp(*6457.1382  SSTpCO   

    GuassianChl )19())7063.768/)4147.1602(( 2   

  

))8715.286260419/)863.9356374((1/((4029.1505 2

2  SSTpCO    

    LorentzianChl )20()))581.8/)6659.14((1(* 2   
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The entire dataset was regressed at first without considering seasonal variations  

which represents the significant relationship between in-situ variables of entire dataset 

for plane (R2 = 0.804, SEE = ±76.174), paraboloid (R2 = 0.809, SEE = ±75.266), 

Gaussian (R2 = 0.815, SEE = ±74.104) and Lorentzian (R2 = 0.811, SEE = ±74.811) 

functions. Though coefficient of determination is found to be significant for all the 

functions, the standard error of estimate was high. Hence, the regression analysis with 

seasonal difference was thought off for retrieving pCO2 fields, because the seasonal 

change of SST and chlorophyll a have obvious effect on the pCO2 algorithm as these 

input variables were subject to high seasonal differences in this part of the Bay of 

Bengal.  

In the seasonal regression analysis, the R2 values obtained for different functions and 

seasons are summarized in table 1.  Among the four functions, the parabolic 

function found to be better fit for the entire and seasonal datasets. The parabolic 

function provides the highest determination coefficient (R2 = 0.809, SEE = ± 75.266) 

for entire dataset and the lowest R2 values of 0.700 and 0.749 with the SEE of ± 

42.370 and ± 46.224 obtained for summer and premonsoon seasons respectively. 

During premonsoon, the highest chlorophyll a concentrations associated with 

moderate SST, indicating that both SST and chlorophyll have a mutual control on 

pCO2. During summer the biological productivity is low due to the high SST and 

diminished nutrients, under these conditions the pCO2 concentration is largely 

influenced by SST rather than chlorophyll a.  The low chlorophyll a concentrations 

and high SST suggesting that SST might have a major control on pCO2 as opinioned 

by Chierici et al.26.  Moreover, the stratified nature of the water column observed 

during postmonsoon leads to the lowest biological activities due to the absence of 

nutrients at the surface waters27 hence, the SST has a predominant control over the 

pCO2 distribution in the Bay of Bengal. Finding a pCO2-chlorophyll and pCO2-SST 

fit does not mean that only biological or physical mechanisms are at work, but rather a 

complexity of interactions determines the small scale variations in pCO2, hence, 

biological contribution must be included in pCO2 model as the biological activity 

tends to be higher in warm water28.  

Though, the entire dataset exhibit the better fit than other seasonal datasets, the 

regression analysis of postmosoon dataset results the minimum SEE ± 24.052 with 

significant R2 (0.783). Hence, the postmonsoon parabolic equation (6) is further 

utilized for the generation of remotely sensed pCO2 maps.   

 

Validation of MODIS-Aqua derived SST 

MODIS derived SST data (Fig.2a) was validated with in-situ SST to evaluate the 

performance of MODIS-Aqua and exhibited the good agreement with significant 

correlation co-efficient (R2) of 0.887 with SEE of ±0.179, MNB of -0.104 and RMSE 

of 3.168ºC (Fig.2b). The data points fall outside of the 95% confidence band suggest 

that the satellite derived values were higher or lower than they should be in natural 

waters. However, the comparison plot of in-situ SST with MODIS derived SST 

showed that the 100% of the in-situ data were underestimated by the MODIS-SST 
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(Fig.2c). However, the regression fit found significant with correlation of R2 = 0.887 

hence, MODIS derived SST data was utilized to generate remotely sensed pCO2 map. 

 

Fig. 2. MODIS-Aqua derived SST image of 11th February 2017 (a) and regression (b) 

and comparison (c) plots of in-situ SST Vs MODIS-Aqua derived SST 

 

Evaluation of MODIS-SST with in-situ SST shows the negative bias (MNB = -0.104) 

with RMSE of ±3.168ºC which is greater than the error (±0.38°C) observed by 

Gentemann (2014) and could be attributed to possible errors in cloud removal, aerosol 

contaminated retrievals, or sampling. Moreover, SST measured using infrared 

radiometers will estimate with high resolution only under cloud free conditions and it 

has been clearly evident from the regression results (R2=0.887 and SEE ±0.179ºC).  

The statistical results obtained in this study are comparable to MODIS SST validation 

with in-situ measurements along the western Pacific coasts29 with a bias of –0.32°C; 

western North Pacific30 with a bias of –0.06°C and RMSE of ±0.81°C, Taiwan coast31 

with a bias of 0.42°C and RMSE of ±0.86°C, San Matías Gulf of Argentina32 with a 

R2 of 0.89 and Bay of Bengal33 with a bias of 1.80°C and reported the overestimation 

of the satellite product.  

Validation of MODIS-Aqua derived chlorophyll 

The relationship between the in-situ and MODIS chlorophyll exhibited the fairly good 

agreement with correlation co-efficient (R2) of 0.731, SEE of ±0.207µgl-1 and RMSE 
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of 0.246µgl-1 (Fig. 3a and 3b). MODIS derived chlorophyll shows the 33% 

underestimation and 67% overestimation of in-situ chlorophyll (Fig.3c) which is 

confirmed by the large positive bias of 0.184.  Present algorithm (chlor_a_2) of 

MODIS overestimates the chlorophyll concentration at low concentrations around 

<1.0 µgl-1 of chlorophyll along the coastal waters.  This study agrees with the 

previous studies of Xiu et al. 35, Montres et al.36 and Poornima et al.27 using MODIS 

data.     
 

Fig. 3. MODIS-Aqua derived chlorophyll-a image of 11th February 2017 (a) and 

regression (b) and comparison (c) plots of in-situ chlorophyll a Vs MODIS-Aqua 

derived chlorophyll a 
 

Possibly, the overestimation of chlorophyll could be due to the interference of 

suspended sediment and CDOM in the water leaving radiances.  Besides this, other 

possible sources of errors are also identified and are bottom effects37, the mixtures of 

organic and inorganic suspensions38, absorption due to CDOM39 and turbulent effect 

of wind agitation.  MODIS will probably continue to be executed indiscriminately for 

all waters of the world’s oceans with standard algorithms designed primarily for case 

1 waters and at present the NASA adopted OC3M algorithm for the global MODIS 

processing. Moreover, global algorithms for satellite remote sensing do not always 

provide reasonable retrievals in all areas of the ocean, because an empirical algorithm 

is only as good as the data for specific environment or bio-optical provinces where the 

algorithm is to be applied40.  
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Validation of remotely sensed pCO2 

The two parameter (SST and Chlorophyll a) parabolic algorithm of pCO2 showed 

better agreement with in-situ pCO2 measurements with a R2 of 0.755 and SEE 

of ±23.609 (Fig. 4a - c).  This suggests that the effects of biological activities on the 

spatial and temporal changes in pCO2 of the southwest Bay of Bengal cannot be 

ignored. Hence, algorithm based on SST and chlorophyll a is better fit for the region.  

However, the RMSE (±27.156µatm) and MNB (0.040) of SST and chlorophyll based 

algorithm is appreciably higher than RMSE (±14 and ±17µatm) reported by Ono et 

al.16 in large areas of subtropical and sub-polar North Pacific Ocean respectively. 

Similarly, Zhu et al.9 recorded the improvement of pCO2 algorithm by the inclusion of 

chlorophyll a with RMSE of ±4.5µatm. On the other hand, Olsen et al.41 obtained an 

error of ±9.5µatm from measurements gathered in the Caribbean Sea using different 

algorithm based on linear relationship between SST and pCO2 including geographical 

location. Comparitively higher RMSE in the present study is due to the inbound error 

in SST and chlorophyll images with higher percentage of cloud cover.  The error in 

SST and chlorophyll estimation reported for the MODIS data would definitely 

cascade with the pCO2 measurements. 

Fig. 4. SST and chlorophyll a based satellite derived pCO2 image of 11th February 

2017 (a) and regression (b) and comparison (c) plots of calculated pCO2 Vs satellite 

derived pCO2 using MODIS-Aqua derived SST and chlorophyll 
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Lohrenz and Cai 19 described pCO2 algorithm using temperature, salinity derived from 

chromophoric dissolved organic matter (CDOM) and chlorophyll with a R2= 0.838 of 

satellite derived pCO2 with shipboard measurements. The pCO2 algorithms developed 

based on in-situ SST, chlorophyll and climatological salinity exhibited the RMSE of 

17-20µatm with in-situ pCO2 data17.  Padin et al.18 applied the empirical algorithm 

described by Ono et al.16 for predicting fCO2 measurements in the Bay of Biscay from 

remotely sensed SST and chlorophyll a with a residual error of 0.1±7.5µatm. 

Similarly, Chierici et al.26 predicted fCO2 with a standard error of ±13µatm using SST 

and chlorophyll a based algorithm, the SST, chlorophyll a and mixed layer depth 

(MLD) based prediction of fCO2
42 and matched with in-situ data (RMSE = ±11µatm) 

and Zui et al.20 reported two parameter algorithm and found that the two parameter 

(SST and chlorophyll) algorithm worked better (RMSE = ±15.82µatm) with the 

relative error of less than 4.25%.  Recently, Qin et al.1 modified the Ono’s equation 

by removing the second order variable of chlorophyll a to obtain a good retrieval of 

pCO2 in the Yellow Sea and got RMSE of ±16.68µatm. 

The seasonal regression analysis showed the significant seasonal variability in the 

relationship of pCO2 with SST and chlorophyll a. The pCO2 and SST had a strong 

inverse relationship in all the seasons suggesting that increased SST reduce the 

dissolution of CO2 in seawater, thereby decreases the pCO2 in seawater. The error in 

the satellite derived pCO2 map is mainly because of the inbound errors in MODIS 

derived SST and chlorophyll data products. Hence, improvement in sensor technology 

and retrieval algorithm would definitely improve the retrieval of input parameters 

(SST and Chlorophyll a) which in turn useful in estimating pCO2 precisely. This 

would enable us to understand biogeochemical processes behind the variability of 

CO2 in the surface waters of the southwest Bay of Bengal 

. 

4. CONCLUSION 

The significant agreement between the SST and chlorophyll a based algorithm 

derived pCO2 and calculated pCO2 suggesting that the remote sensing technique is 

applicable to air-sea CO2 flux observations in the southwest Bay of Bengal. The 

collection of more in-situ data covering various temporal and spatial scales is 

necessary in order to improve the algorithm. It should be noted that this work is 

limited to the preliminary results for the southwest Bay of Bengal in the postmonsoon 

season. Whether this applicable to other regions of the Bay of Bengal and for other 

seasons requires further investigation.  
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