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Abstract

The primary productivity in the upper ocean is also a key factor associated
with the surface CO.. Therefore, there is a potential to remotely sense the
surface pCOz using satellite data based on its correlation with SST and
chlorophyll a. Hence, the in-situ SST and chlorophyll datasets have been
regressed with the calculated pCO. three dimensionally for four different
functions suchas plane, paraboloid, Gaussian and Lorentzian. Among four
functions parabolic function found to be better fit than other functions for
postmonsoon with a R? of 0.783 and minimum standard error estimate (SEE)
of + 24.052 patm. Thus, the postmonsoon parabolic algorithm was used to
generate the pCO> image. The validation of MODIS-Aqua derived SST and
chlorophyll based pCO. map showed better agreement with calculated pCO>
with R? of 0.755 and SEE of + 23.609uatm. The better regression between
pCO,, SST and chlorophyll suggest that the effects of biological activities on
the spatial and temporal changes in pCO. of the southwest Bay of Bengal
cannot be ignored. However, the RMSE (+ 27.156patm) of present pCO:
algorithm is appreciably high due to inbound errors in MODIS derived SST
and chlorophyll data products. Hence, improvement in sensor technology and
retrieval algorithm would definitely improve the retrieval of input parameters
(SST and Chlorophyll a) which in turn useful in estimating pCO> and air-sea
CO: flux precisely in the Bay of Bengal at large spatial and temporal scales.
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1. INTRODUCTION

In the recent years, researchers are more and more interested in understanding the
global carbon cycle in the changing global climate. As one of the most important
reservoir of the earth’s carbon, oceans play a vital role in regulating global
atmospheric CO> concentration. By using accurate estimates of global sea surface
partial pressure of CO, (pCOy), the ratio of net CO, uptake of global ocean can be
measured, which can provide a support for further research of global carbon cycle?.
The Indian Ocean has been shown to be a net sink of atmospheric COz, although the
north Indian Ocean is richer in CO, than the atmosphere?. Studies from the north
Indian Ocean indicated that the Arabian Sea is a perennial source of atmospheric
CO2*4%, while the Bay of Bengal act as a seasonal sink®. Due to strong upwelling
during the southwest monsoon, surface waters of the coastal region in the Arabian Sea
show a substantial increase in dissolved inorganic carbon (DIC) accompanied by very
high pCO_".

Generally, the solubility of CO2 in seawater is temperature dependent; hence the
variation in the pCO- is mainly driven by thermodynamics. In a parcel of seawater
with constant chemical composition, pCO2 would increase by 4% when the water is
warmed about 1°C%°, Bay of Bengal is much warmer than the Arabian Sea and is
consistent with Levitus climatology®® indicating a possibility of stronger stratification
in the Bay of Bengal which make it as sink of atmospheric CO2. The exchange of CO;
directly with the atmosphere at the mixed-layer waters is affected primarily by
temperature (SST), dissolved inorganic carbon (DIC) levels and total alkalinity (TA),
where SST is influenced by physical processes like mixing of water masses, DIC and
TA are influenced by the biological processes (photosynthesis and respiration)*t. The
DIC in the surface ocean varies from an average value of 2150 umol kg™ in Polar
Regions to 1850 pmolkg™ in the tropics as a result of biological processes and reduce
pCO, by 4%'% Therefore, the effect of biological drawdown and temperature on
surface water pCO is similar but the two effects are often compensating. Hence, the
spatial and temporal distribution of pCO: in surface waters and CO> flux is largely
governed by a balance between the changes in seawater temperature, net biological
utilization of CO; and the upwelling flux of COz rich waters.

Satellite observations are more useful in distinguishing spatial-temporal variations of
geophysical parameters over the global oceans from intra-seasonal to inter-annual
time scales. In addition to the change of atmospheric CO, accumulation, pCO: is also
essential to study the changes in ocean biogeochemistry. As the temperature and
upwelling process can well be recorded in SST and the biological utilization can be
derived in terms of chlorophyll a concentration. Both these parameters are effectively
been recorded from space which can result in retrieval of pCO2 through empirical
algorithms. Various algorithms have been derived for different areas at varied spatial
scales. Initially, Stephens et al.® produced the statistical relationship between pCO:
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and SST in the north Pacific and concluded that the relation is sufficient to estimate
pCO; using satellite SST over the oligotrophic waters but not over the eutrophic
waters with significant primary production. Likewise, many algorithms that relate
SST to pCO: followed, in the Arabian Seal, in the Sargasso Seal4, in the equatorial
Pacific’®, in the north Pacific!®’, in the Bay of Biscay'® and in the northern south
China Sea®, but their applicability is limited by geographical region, season and time
scale based on the data used to develop the relationship between variables.

Later, the inclusion of chlorophyll a along with SST was done in North Pacific® and

South China Sea®. Sarma et al.!” further developed a remote-sensing algorithm for
pCO,, by including SST, chlorophyll a and climatological salinity. Lohrenz and Cai®®
added chromophoric dissolved organic matter (CDOM) to derive sea surface salinity
as a parameter in their remote-sensing algorithm for pCO,. Recently, Zui et al.® and
Qin et al. proposed a regression equation for pCO, with SST and chlorophyll a with a
RMSE of 13.45 patm and 21.46 patm with the satellite derived pCO2 respectively.
Similar such studies that relate SST and chlorophyll with pCO> through empirical
relation are scanty in the Bay of Bengal. Hence, the present study is attempted to
develop a regional pCO. algorithm using the relationships between in-situ SST,
chlorophyll and calculated pCO- and the best fit algorithm has been validated with the
calculated pCO2 measurements for remote sensing applications.

2. MATERIALS AND METHODS

The present study was carried out along the Tamilnadu coast falling along the
southwest Bay of Bengal region. Four sampling station covering the longitude and
latitude viz. Chennai (80°23.9E-13°07.9N), Cuddalore (79°48.5E — 11°42.4N),
Parangipettai (79°51.7E — 11°30.6N) and Karaikal (79°55.5E — 10°54.8N) (Fig.1)
were fixed and regular monthly samplings were made from January 2013 to March
2017. The entire study period was classified into four seasons namely postmonsoon
(January to March), summer (April to June) and premonsoon (south west monsoon -
July to September) and monsoon (October —December) classified based on northeast
monsoon prevails in the region. Northeast monsoon is an actual monsoon in the
southwest Bay of Bengal which brings more rainfall over Tamilnadu coast with
northeast monsoon winds.  Whereas, during southwest monsoon, the strong
southwesterly winds play vital role in the surface waters resulting the turbulence at
surface and wind driven vertical mixing of water column but rainfall was very
minimum in the southwest Bay of Bengal.
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Fig. 1. Map showing the study area

In-situ SST was measured using digital multi-stem thermometer of 0.1° C accuracy.
Water samples were collected using 5-litre Niskin water sampler and stored in
polypropylene bottles (Tarson) in dark ice box and transported to laboratory.
Chlorophyll a concentration was measured by following the method described by
INCOIS?! using spectrophotometer (Shimadzu- UV 2450) and it was calibrated with
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standard chlorophyll a (Sigma C6144) using 90% acetone within 24 hours.

Salinity was measured using a hand held refractometer (Atago hand refractometer,
Japan) and the pH was measured using a pH meter (EUTECH - cyberscan pH meter)
with the accuracy of £ 1% and + 0.002 respectively. Total alkalinity (TA) was
measured using an automated titrator (905 potentiometric Titrando, Metrohm,
Switzerland) by following the Gran titration method?2. 0.1N stock solution of HCI
was standardized by preparing standard solution of known alkalinity with analytical
grade NaxCOz. DIC and pCO; were computed based on measured SST, salinity, pH
and TA using CO2CALC program?® by using the CO> dissociation constants (k1 and
k2) given by Lueker et al.?,

SST and chlorophyll a based pCO: retrieval algorithm

In-situ SST, chlorophyll a and calculated pCO> concentrations (595 data points) were
obtained by monthly coastal samplings carried out at four sampling stations from
January 2013 to March 2017 in the southwest Bay of Bengal region. The data points
(15) matching with the date of satellite derived chlorophyll and SST data were treated
separately for validation purposes. Finally, 580 points were taken for regression
analysis accounting for ~97% of the total data.

The primary productivity in the upper ocean is also a key factor associated with the
surface COz. Therefore, there is a potential to remotely sense the surface pCO: using
satellite data based on its correlation with SST and chlorophyll a. Hence, the in-situ
SST and chlorophyll datasets have been regressed with the pCO- three dimensionally
for four different functions such as plane, paraboloid, Gaussian, and Lorentzian
(Table 1).

Table 1. Results of regression analysis between in-situ SST, chlorophyll and calculated pCO;

Plane Paraboloid Gaussian Lorentzian
N R?2 | SEE(%) R2 | SEE(+) | R? | SEE(*) | R? | SEE (%)
Entire 580 | 0.804 | 76.174 0.809 | 75.266 | 0.815| 74.104 | 0.811 | 74.811
Postmonsoon 165 | 0.778 24.154 0.783 | 24.052 | 0.637 | 31.090 | 0.632 | 31.298
Summer 120 | 0.690 | 42.870 0.700 | 42.370 | 0.535 | 52.781 | 0.522 | 53.486
Premonsoon 150 | 0.725 | 48.102 0.749 | 46.224 | 0.746 | 45517 | 0.751 | 46.071
Monsoon 145 | 0.721 | 120.086 | 0.750 | 114.307 | 0.747 | 121.960 | 0.696 | 126.124

Parabolic function found to be better fit than other functions from the entire
regression analysis with a R? of 0.783 and minimum standard error estimate of +
24.052 patm. The derived pCO; algorithm was used to generate the pCOz image. The
pCO:2 algorithm implies the following equation:

pCo, =1025.6820 — 7.7794*SST +6.0874*Chl —0.5777*SST 2 +19.9015* Chl ?

Where, pCO> = Partial pressure of carbon dioxide, SST = Sea surface temperature
Chl = Chlorophyll concentration, N = Number of points
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Satellite data

To generate remotely sensed pCO: image, satellite derived SST and chlorophyll a
data were required. For remote sensing measurements in the southwest Bay of Bengal,
February to May is good period for getting cloud free data, on the other part of the
year only rare and sporadic data sets alone available because of the influence of both
southwest and northeast monsoons which makes southern Bay of Bengal as more
cloud prone area in the northern Indian Ocean region. Hence, MODIS-Aqua derived
Level-2a SST and chlorophyll data products for the date 11" February 2017 with a
spatial resolution of 1km were acquired from the http://modis.gsfc.nasa.gov. The data
were processed to generate SST and chlorophyll image using ERDAS IMAGINE
(ver. 9.2.), SeaDAS (Ver. 7.3.2.) and ENVI (ver.4.7.) software. The datasets were
applied to geometric correction to remove the image distortion and bring them to a
standard geographic projection (Lat/Lon) with modified Everest Datum.

Evaluation criteria

The evaluation process was made by comparing satellite derived values with the field
measurements. Statistical fitting was applied to these data using SigmaPlot (Ver.12.0)
statistical software. Mean Normalized Bias (MNB), Standard Error of Estimate
(SEE) and Root Mean Square Error (RMSE) were analyzed to test the performance of
the algorithms. Mean normalized bias is a measure of the over or underestimation of
the true values. Root mean square error provides a good measure of data scatter for
normally distributed variables and gives useful information of the accuracy between
satellite and in-situ data.

3. RESULTS AND DISCUSSION

The oceanic partial pressure of CO2 (pCOz) is highly variable and it is difficult to
assess spatial and temporal variability because of the paucity of measurements. In
general, pCO: is strongly correlated with sea surface temperature (SST). Even in
oceanic regions where physical and biological factors are significant, the pCO> remain
be strongly correlated with SST. SST has a dual impact on pCOz. On one hand, the
equilibrium of carbonate system in seawater would alter due to the influence of SST
in the absence of external exchange. Thereby pCO, will be enhanced as temperature
rises?®. On the other hand, the solubility of carbon dioxide in seawater decreases as
temperature increases, which leads to a decrease of pCO2. The chlorophyll is capable
of altering the carbonic acid cycle with its primary productivity and respiration.
Hence, the three dimensional approach of SST, chlorophyll and pCO: regression fits
are attempted to understand the role of SST and chlorophyll on pCO- in the southwest
Bay of Bengal coastal waters.

Development of pCO:2 algorithm based on in-situ SST and chlorophyll a
The regression analysis between in-situ SST, chlorophyll a and calculated pCO2 was
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carried out for four different three dimensional functions viz. plane, paraboloid,
Gaussian and Lorentzian. The regression equations are given below:

Entire dataset (N=580)
pCO, =1659.9047 — 46.7099 * SST +59.7721* Chl — (1)Plane

pCO, =3378.7004 —162.7676* SST + 46.6872* Chl +1.9715* SST 2 +1.3970*Chl?
— (2)Paraboloid

PCO, =1482.9996 *exp(~0.5* ((SST ~21.8135)/(~7.3584))’
+((Chl —15.8418)/10.9075)%)

— (3)Guassian

pCO, =1314.3895/((1+ ((SST —23.9130)/ 6.8894)%) * (1 + ((Chl —12.4741)/9.9683)2))

— (4)Lorentzian

Postmonsoon (N=165)
pCO, =1447.4029 —39.6711* SST +46.5801* Chl — (5)Plane

pCO, =1025.6820 —7.7794* SST +6.0874*Chl —0.5777 * SST? +19.9015*Chl?
— (6)Paraboloid

pPCO, = 3315.3998 * exp (—0.5 * ((SST +1750771883.6265) /1078697778.5464)
+ ((Chl — 6.8488) / 4.584)?)

— (7)Guassian

pCO, =522.4279/((1+ ((SST +42.4186) /(—211512.256)2) * (1+ ((Chl — 2.954) / 2.9575)?))

— (8)Lorentzian

Summer (N=120)
pCO, =1776.7438—50.6222* SST + 63.1597 * Chl — (9)Plane

pCO, =3796.4168 —174.7775* SST —1.17778* Chl +1.9237 * SST 2 +27.3216*Chl*
— (10)Paraboloid
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pCO, =502.2731*exp(—0.5* ((SST —109275.1995) /197788508.4115)? + ((Chl — 2.499) /1.9359)?)
— (LD)Guassian

pCO, =502.2731/((1+ ((SST +119216.007) /(—60993449.624))) * (1-+ ((Chl — 2.7029) / 2.3569)?))

— (12)Lorentzian

Premonsoon (N=150)
pCO, = 2449.5745—-71.5094* SST +16.8118* Chl — (13)Plane

pCO, =16901.2522 —1056.7893* SST +18.8756* Chl +16.7786* SST > — 0.6697 * Chl®
— (14)Paraboloid

pPCO, =17301.9896* exp(—0.5* ((SST +2.0725)/12.5839)? + ((Chl —39.1642)/31.2197)?)

— (15)Guassian

pCO, = 2390.7451/((1+ ((SST —21.0947)/ 4.0488)%)* (1 + ((Chl —12.2996) / 21.0347)?))

— (16)Lorentzian

Monsoon (N=145)
pCO, = 2838.4296 —83.5165* SST +33.3749* Chl — (17)Plane

pCO, =—2546.5231+302.3587 * SST —27.6913* Chl —6.7814* SST * +6.7575* Chl

— (18)Paraboloid

pCO, =1382.6457 *exp(—0.5* ((SST — 3999570.0953) /(5335726006.6683))
+((Chl —1602.4147)/ 768.7063)?) — (19)Guassian

pCO, =1505.4029/((1+ ((SST —9356374.863) / 286260419.8715)?)
*(1+ ((Chl —14.6659)/8.581)2)) — (20) Lorentzian
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The entire dataset was regressed at first without considering seasonal variations
which represents the significant relationship between in-situ variables of entire dataset
for plane (R? = 0.804, SEE = %76.174), paraboloid (R? = 0.809, SEE = +75.266),
Gaussian (R? = 0.815, SEE = +74.104) and Lorentzian (R? = 0.811, SEE = +74.811)
functions. Though coefficient of determination is found to be significant for all the
functions, the standard error of estimate was high. Hence, the regression analysis with
seasonal difference was thought off for retrieving pCO- fields, because the seasonal
change of SST and chlorophyll a have obvious effect on the pCO> algorithm as these
input variables were subject to high seasonal differences in this part of the Bay of
Bengal.

In the seasonal regression analysis, the R? values obtained for different functions and
seasons are summarized in table 1. Among the four functions, the parabolic
function found to be better fit for the entire and seasonal datasets. The parabolic
function provides the highest determination coefficient (R?> = 0.809, SEE = + 75.266)
for entire dataset and the lowest R? values of 0.700 and 0.749 with the SEE of +
42.370 and * 46.224 obtained for summer and premonsoon seasons respectively.
During premonsoon, the highest chlorophyll a concentrations associated with
moderate SST, indicating that both SST and chlorophyll have a mutual control on
pCO2. During summer the biological productivity is low due to the high SST and
diminished nutrients, under these conditions the pCO. concentration is largely
influenced by SST rather than chlorophyll a. The low chlorophyll a concentrations
and high SST suggesting that SST might have a major control on pCO- as opinioned
by Chierici et al.?®®. Moreover, the stratified nature of the water column observed
during postmonsoon leads to the lowest biological activities due to the absence of
nutrients at the surface waters?’ hence, the SST has a predominant control over the
pCO: distribution in the Bay of Bengal. Finding a pCO2-chlorophyll and pCO2-SST
fit does not mean that only biological or physical mechanisms are at work, but rather a
complexity of interactions determines the small scale variations in pCO2, hence,
biological contribution must be included in pCO. model as the biological activity
tends to be higher in warm water?,

Though, the entire dataset exhibit the better fit than other seasonal datasets, the
regression analysis of postmosoon dataset results the minimum SEE + 24.052 with
significant R? (0.783). Hence, the postmonsoon parabolic equation (6) is further
utilized for the generation of remotely sensed pCO> maps.

Validation of MODIS-Aqua derived SST

MODIS derived SST data (Fig.2a) was validated with in-situ SST to evaluate the
performance of MODIS-Aqua and exhibited the good agreement with significant
correlation co-efficient (R?) of 0.887 with SEE of +0.179, MNB of -0.104 and RMSE
of 3.168°C (Fig.2b). The data points fall outside of the 95% confidence band suggest
that the satellite derived values were higher or lower than they should be in natural
waters. However, the comparison plot of in-situ SST with MODIS derived SST
showed that the 100% of the in-situ data were underestimated by the MODIS-SST
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(Fig.2c). However, the regression fit found significant with correlation of R? = 0.887
hence, MODIS derived SST data was utilized to generate remotely sensed pCO2 map.
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Fig. 2. MODIS-Aqua derived SST image of 11" February 2017 (a) and regression (b)
and comparison (c) plots of in-situ SST Vs MODIS-Aqua derived SST

Evaluation of MODIS-SST with in-situ SST shows the negative bias (MNB = -0.104)
with RMSE of +3.168°C which is greater than the error (+0.38°C) observed by
Gentemann (2014) and could be attributed to possible errors in cloud removal, aerosol
contaminated retrievals, or sampling. Moreover, SST measured using infrared
radiometers will estimate with high resolution only under cloud free conditions and it
has been clearly evident from the regression results (R?=0.887 and SEE +0.179°C).
The statistical results obtained in this study are comparable to MODIS SST validation
with in-situ measurements along the western Pacific coasts?® with a bias of —0.32°C;
western North Pacific®® with a bias of —-0.06°C and RMSE of +0.81°C, Taiwan coast®!
with a bias of 0.42°C and RMSE of +0.86°C, San Matias Gulf of Argentina® with a
R? of 0.89 and Bay of Bengal®® with a bias of 1.80°C and reported the overestimation
of the satellite product.

Validation of MODIS-Aqua derived chlorophyll

The relationship between the in-situ and MODIS chlorophyll exhibited the fairly good
agreement with correlation co-efficient (R?) of 0.731, SEE of +0.207ugl™* and RMSE
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of 0.246ugl? (Fig. 3a and 3b). MODIS derived chlorophyll shows the 33%
underestimation and 67% overestimation of in-situ chlorophyll (Fig.3c) which is
confirmed by the large positive bias of 0.184. Present algorithm (chlor_a 2) of
MODIS overestimates the chlorophyll concentration at low concentrations around
<1.0 pgl? of chlorophyll along the coastal waters. This study agrees with the
previous studies of Xiu et al. >, Montres et al.*® and Poornima et al.?” using MODIS
data.
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Fig. 3. MODIS-Aqua derived chlorophyll-a image of 11" February 2017 (a) and
regression (b) and comparison (c) plots of in-situ chlorophyll a Vs MODIS-Aqua
derived chlorophyll a

Possibly, the overestimation of chlorophyll could be due to the interference of
suspended sediment and CDOM in the water leaving radiances. Besides this, other
possible sources of errors are also identified and are bottom effects®’, the mixtures of
organic and inorganic suspensions®®, absorption due to CDOM® and turbulent effect
of wind agitation. MODIS will probably continue to be executed indiscriminately for
all waters of the world’s oceans with standard algorithms designed primarily for case
1 waters and at present the NASA adopted OC3M algorithm for the global MODIS
processing. Moreover, global algorithms for satellite remote sensing do not always
provide reasonable retrievals in all areas of the ocean, because an empirical algorithm
is only as good as the data for specific environment or bio-optical provinces where the
algorithm is to be applied*°.
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Validation of remotely sensed pCO:

The two parameter (SST and Chlorophyll a) parabolic algorithm of pCO, showed
better agreement with in-situ pCO, measurements with a R? of 0.755 and SEE
of £23.609 (Fig. 4a - ¢). This suggests that the effects of biological activities on the
spatial and temporal changes in pCO. of the southwest Bay of Bengal cannot be
ignored. Hence, algorithm based on SST and chlorophyll a is better fit for the region.
However, the RMSE (+27.156patm) and MNB (0.040) of SST and chlorophyll based
algorithm is appreciably higher than RMSE (£14 and +17patm) reported by Ono et
al.1® in large areas of subtropical and sub-polar North Pacific Ocean respectively.
Similarly, Zhu et al.° recorded the improvement of pCO; algorithm by the inclusion of
chlorophyll a with RMSE of +4.5patm. On the other hand, Olsen et al.*! obtained an
error of £9.5patm from measurements gathered in the Caribbean Sea using different
algorithm based on linear relationship between SST and pCO: including geographical
location. Comparitively higher RMSE in the present study is due to the inbound error
in SST and chlorophyll images with higher percentage of cloud cover. The error in
SST and chlorophyll estimation reported for the MODIS data would definitely
cascade with the pCO2 measurements.
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Lohrenz and Cai *° described pCO; algorithm using temperature, salinity derived from
chromophoric dissolved organic matter (CDOM) and chlorophyll with a R?= 0.838 of
satellite derived pCO> with shipboard measurements. The pCO, algorithms developed
based on in-situ SST, chlorophyll and climatological salinity exhibited the RMSE of
17-20patm with in-situ pCO- datal’. Padin et al.!® applied the empirical algorithm
described by Ono et al.*® for predicting f{CO, measurements in the Bay of Biscay from
remotely sensed SST and chlorophyll a with a residual error of 0.1+7.5patm.
Similarly, Chierici et al.?® predicted fCO, with a standard error of +13patm using SST
and chlorophyll a based algorithm, the SST, chlorophyll a and mixed layer depth
(MLD) based prediction of fCO,* and matched with in-situ data (RMSE = +11patm)
and Zui et al.?° reported two parameter algorithm and found that the two parameter
(SST and chlorophyll) algorithm worked better (RMSE = +15.82patm) with the
relative error of less than 4.25%. Recently, Qin et al.! modified the Ono’s equation
by removing the second order variable of chlorophyll a to obtain a good retrieval of
pCO: in the Yellow Sea and got RMSE of +16.68uatm.

The seasonal regression analysis showed the significant seasonal variability in the
relationship of pCO; with SST and chlorophyll a. The pCO; and SST had a strong
inverse relationship in all the seasons suggesting that increased SST reduce the
dissolution of CO; in seawater, thereby decreases the pCO. in seawater. The error in
the satellite derived pCO> map is mainly because of the inbound errors in MODIS
derived SST and chlorophyll data products. Hence, improvement in sensor technology
and retrieval algorithm would definitely improve the retrieval of input parameters
(SST and Chlorophyll a) which in turn useful in estimating pCO. precisely. This
would enable us to understand biogeochemical processes behind the variability of
COz2 in the surface waters of the southwest Bay of Bengal

4. CONCLUSION

The significant agreement between the SST and chlorophyll a based algorithm
derived pCO2 and calculated pCO suggesting that the remote sensing technique is
applicable to air-sea CO flux observations in the southwest Bay of Bengal. The
collection of more in-situ data covering various temporal and spatial scales is
necessary in order to improve the algorithm. It should be noted that this work is
limited to the preliminary results for the southwest Bay of Bengal in the postmonsoon
season. Whether this applicable to other regions of the Bay of Bengal and for other
seasons requires further investigation.
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