Proposed Artificial Island City Near Kovalam at Bay of Bengal

Sampathkumar V^{1*} and P.Mohana²

¹*Professor, Department of Civil Engineering, Sathyabama Institute of Science and Technology, Deemed University, Chennai 600119, India. E-mail: svsjpr@gmail.com

² Scientist, Centre for remote sensing and geo-informatics, Sathyabama Institute of Science and Technology, Deemed University, Chennai 600119, India.

E-mail:mohanaperumal@yahoo.com

Abstract

Because of the scarcity in developed land surface, it is needed a surface on water. In the recent days naturally formed land surface is not available in desired places for the requirements such as extended airport runways, wind energy generation, underwater mining of mineral resources, oil & petroleum drilling platforms, tourism and recreational spaces like hotel and parks, infrastructure developments of ports and airport. The man-made land or artificial Island may be the solution. Around the world many countries face severe urban land shortages and congestion which may make man-made Islands as a logical option. In India many artificial Islands are there such as Willingdon Island near Cochin. Chennai is the capital of the Indian state of Tamilnadu, located on the Coromandel coast of the Bay of Bengal. It is the 6th largest city and 4th most populous urban agglomeration in India. Kovalam is a fishing village 40km south to Chennai. Muttukadu backwater is one of the ideal tourist attractions of kovalam. Tamil Nadu Tourism Development Corporation has constructed a boathouse in Muttukadu. Creation of an artificial Island is proposed near the beach resort in Kovalam which is two kilometer away from the sea shore. The proposed four rows design will involve the parks, cottages and villas, two hotels and two multi speciality hospitals, restaurants and few resorts with play area, walking area, swimming pools and green cover within the Island. The development of this Island may be allotted to the willing developer under Build, own, operate and transfer (BOOT) programme through Tamilnadu Infrastructure development Board and the payback period will be accounted accordingly. The proposed Island may be of six hectare of land area designed in circular shape with two kilometer road connectivity with the main land and of 15m total height, in which below and above the sea water of 9m and 6m respectively. The quantity of boulder material required and the geometry of Island are planned. The proposed Island needs to reclaim land by dumping of random rubble boulders with filling material in void. The filling material may be replaced up to 50% with construction and concrete debris from land which may also help in solid waste management strategies.

Keywords: artificial Island, BOOT, solid waste management, construction and concrete debris, quantity of boulders, cost of development, payback period.

INTRODUCTION

Islands often give an imagery of an unknown world. It is always exciting to explore such unique places but artificial Islands are rare (Akshatha Vinayak 2018). Artificial Islands are expensive but few Islands are profitable. It is an option of many countries which has lack of land such as Tokyo's Odaiba and Fukuoka's Island cities. In the future they may be common sites for many Asian cities. Around the world many countries face severe urban land shortages and congestion which may make manmade Islands as a logical option. Countries such as Australia, Denmark, Egypt, France, Germany, Hong Kong, India, Italy, Japan, Kazakhstan, Kuwait, Maldives, Mexico, Malaysia, Netherlands, Oman, Panama, Philippines, Poland, Qatar, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Sri Lanka, Taiwan, Abu Dhabi, Dubai, England, Scotland, United States and New York were already developed artificial Islands for their purpose. Japan has constructed many artificial Islands around it counting about 1000 sq.km. Presently technology vastly developed that construction of artificial Islands in water depth of even 75m is also possible.

The constructor, civil engineering home (2018) said that the process of construction of an artificial Island involve dredging which need special type of dredgers, sea bed preparation which involve sand dump and layer of armor rocks and concreting by temporary tube piles and sheet piles to support the boundary rocks. It is possible to create the artificial Island of any shape and size, reclamation will increase land area of the country and may be used for mass tourism purpose and this creation will be very slow in process, will lead to financial crisis, may cause settlement of the Island in deep water and damaging to corals and marine life. Artificial Island may become

popular and seen as a modern technique but its history dates back long time behind. It was even used in ancient Egyptian civilization. In 17th century it has been extensively used for oil exploration and production platforms, coal mine ventilation, and coastal defense and extensive of land base. Artificial Island is a man-made structure. This type of Islands can be constructed to any size and shape and can be used for infrastructure, tourism and industry purpose.

The need for construction of artificial Island has increased in the recent days as any naturally formed land surface is not available in the desired places for the requirements such as extended airport runways, wind energy generation, underwater mining of mineral resources, oil and petroleum drilling platforms, tourism and recreational spaces like hotel and parks, infrastructure development of ports and airports. The process is very costly this can lead to financial crisis and slow process of construction due to limited availability of dredgers. Faulty construction process can cause settlement of the Island in deep waters, as in the case of Kansai airport in Japan. Land reclamation can damage corals and marine life. Excessive exposure to winds, tidal forces and earthquake and tsunami loads hence special provisions are required. Many factors are influencing the design and construction of artificial Islands. Depth of water is the first and foremost factor. Other factors such as the height of the waves which hit the structure, currents occurred in the sea, availability of construction material, existing pipelines and cables, environmental conservation in that region, sea bed conditions and earthquake risk. The design involve arriving permanent or dead load, Variable or live load and environmental loads such as wind pressure, climatic changes, wave and tidal loads, ocean currents and earthquake load.

In India many artificial Islands are there such as Willingdon Island near Cochin, Murud-Janjira and Padmadurg near Maharastra, Jag Mandir at Udaipur, Nehru Garden and Taj Lake Palace at Udapur, Kesar Kyari at Rajasthan and Jal Mahal at Jaipur (From Wikipedia, List of artificial Islands 2018). Willingdon Island was a creation of the British to improve their trade which is shown in Figure 1. A patch of sandy land was gorged out of Vembanad Lake to create a new sea port and, it is the largest artificial Island in India. It is a seaport in the city of Cochin. It was so constructed that the isle is connected through road and rail. In 17th century it had been extensively used for oil exploration and production platforms, coal mine ventilation, coastal defense and extensive of land base. After the independence of the Nation, it came under the control of Indian Navy and Cochin Port Trust. This Island seaport has linked with many other sea ports.

Chennai is the capital of the Indian state of Tamilnadu, located on the Coromandel coast of the Bay of Bengal, it is one of the biggest cultural, economic and educational centers in South India it is the 6th largest city and 4th most populous urban agglomeration in India. The city together with the adjoining regions constitutes the

Chennai Metropolitan Area (CMA), which is the 36th largest urban area by population in the world. It was ranked the 43rd most visited city in the world. The CMA is one of the largest municipal economies of India with more than one-third of India's automobile industry being based in this city. From Wikipedia, East Coast Road (2018), State Highway 49, also known as East Coast Road (ECR) is a two lane highway in Tamilnadu, India, built along the coast of the Bay of Bengal connecting Tamilnadu's state capital city Chennai with Cuddalore via Pondicherry. The ECR has been extended up to Kanyakumari via Chidambaram, Sirkali, Akkur, Tharangambadi, Karaikal, Nagore, Nagapattinam, Thiruthuraipoondi, Muthupet, Adirampattinam, Manora, Manamelkudi, Mimisal, Ramanathapuram, Koodankulam and Tuticorin. The total length of this road is about 800 km from Chennai to Kanyakumari. The 113-km long stretch from Akkarai to Pondicherry, dotted with resorts and beach houses, became a toll road since 2002 and was upgraded into a two-lane road from a small winding road passing through 154 villages.

State Government upgraded most part of ECR to four lane divided, open access highway in 2015. This stretch currently has width varying between 15.25m and 24.40m. After widening at a sanctioned cost of Rs.3540 million, the stretch would be uniformly 30.5 m (100 ft) wide and would have six lanes with a 1.20m wide median and footpath-cum-storm water drain. Many famous locations are situated here. The locations along ECR in Chennai are such as Thiruvanmiyur, Kottivakkam, Palavakkam, Neelankarai, Injambakkam, Panaiyur, Uthandi, Muttukadu, Kovalam and Vilambur. On an average 10,000 passenger car equivalence (PCEs) uses the road during rush hour and a total of 40,000 PCEs using daily. The ECR starts at Thiruvanmiyur in Chennai and is a part of the Chennai City roads till Uthandi and the speed of the vehicles on this road is restricted to a maximum of 80 kmph.

Kovalam is a fishing village 40km south of Chennai. It is a port town built by the Pallavas. Shore temples are an important attraction of Kovalam which add to the tourist value of the region. Muttukadu backwater is one of the ideal tourist attractions of kovalam. Tamil Nadu Tourism Development Corporation (TTDC) has constructed a boathouse in Muttukadu. Dutch built a fort in Kovalam during the colonial times, which today has been made the Taj Fisherman's Cove and it is one of the preferred sightseeing attractions of the small hamlet. Along with the fort, there are several villas, sea view cottages and sea shore huts that grab attention of tourists. An ancient Catholic church on the beach is another attraction. There is also a Dharga & temple nearby the beach. Kovalam beach has beautiful palm trees and white sand offers a sight of widespread Bay of Bengal. Kovalam beach offers a plethora of water sport activities such as wind surfing, fishing and swimming. Here in this beach, the sea and the surf are very calm and gentle and famous for its fishing activities, draws an astonishing number of people (Covelong 2018). The objective of this paper is to step in the creation of a new artificial Island at Kovalam which is along Bay of Bengal

near Chennai. To create a new Island city, land area may be increased by dumping selected solid wastages extracted from existing in-land area is the basic idea.

REVIEW OF LITERATURE

Abhishek Arya (2002) said that the Palm Islands are an artificial archipelago in Dubai, United Arab Emirates on which major commercial and residential infrastructures were constructed. They are being constructed by Nakheel Properties, a property developer in the United Arab Emirates, who hired Belgian and Dutch dredgers who were the world's specialists in land reclamation. Each settlement is in the shape of a palm tree, topped with a crescent, and will have a large number of residential, leisure and entertainment centers. The Palm Islands are located off the coast of United Arab Emirates in the Persian Gulf and add 520km of beaches to the city of Dubai. These Islands were a new step to mankind to develop land on water and find more resources for the increasing population which is shown in Figure 2.

Fig.1: Willingdon Island at Kochi, Kerala

Chetna Shaktawat et al (2010) Boundary rock bunds to be placed on the either sides of the sheet piles and between the rocks bunds, hydraulic fill is deposited to remove seawater and form an Island. Tube piles, sheet piles and tie rods to be driven in to the sea bed so as to support the boundary rocks. Concrete armor unit may be placed permanently all around the Island to protect it from waves. Piles are driven to sea bed to stabilize the structure. Reinforce concrete retaining wall to be built around the Island of any shape, any size. More lands, more buildings and better infrastructure can be built and used for tourism as Palm Islands in Dubai. The design and construction of artificial Islands influenced by the following factors such as the depth of water, the height of the waves that hit on the structure, currents of the ocean, construction

material available in the nearby vicinity, existing pipelines or cables, environmental conservation and Flora Fauna in that region and foundation conditions and earthquake risk.

Fig.2: The Palm Island, Dubai

The weight of structure and superstructure coming up on new Island, machineries and equipments that are permanently fixed hydrostatic pressure and buoyancy in sea level, water pressure and earth pressure are accounted as dead load and loads such as machineries, materials that are placed on the Island at the time of construction. Pressure exerted on the structure internally and externally from water, wind and other factors, the load due to movement of vehicles or machinery on structures like helicopter, vessels, cranes and dredging machines are accounted as live load. Ocean depth divided into five main layers. The temperature drops and the pressure increases at an astounding rate. The layers known as "zones" are extended from the surface to the most extreme depths where light can no longer penetrate. These deep zones are where some of the most bizarre and fascinating creatures in the sea can be found. The surface layer known as the Epipelagic zone and it extends from the surface to 200 meters below which is the Mesopelagic zone, extending from 200 meters to 1,000 meters. The below layer is called as Bathypelagic zone also referred as the midnight zone or the dark zone which extends from 1,000 meters to 4,000 meters. The water pressure at this depth is immense, reaching 5,850 pounds per square inch. Sperm whales can dive down to this level in search of food. The bottom most layer is called as Abyssopelagic zone and known as the abyssal zone which extends from 4,000 meters to 6,000 meters. Here the water temperature is nearly freezing and no light at all. Very few creatures can be found at these crushing depths. Most of these are invertebrates such as basket stars and tiny squids. Beyond the Abyssopelagic zone lies the forbidding Hadalpelagic zone. This layer extends from 6,000m to the bottom of the deepest parts of the ocean. The deepest point in the ocean is located in the Mariana trench off the coast of Japan about 10,920 meters (Layers of the Ocean, 2010).

Jack Fowler (2013) discussed about the Amwaj Islands project, Venice style resort involved the development of a new Island off the northeast shore of Muharraq Island in Bahrain which is shown in Figure 3.

Fig. 3: Amwaj Islands in Bahrain

They used sand filled geo tubes to form the Island perimeter for containment of 12 million cubic meter of dredged sand that formed the basic platform for the development project. The development was strategically located on the northeastern end of Muharrag-Bahrain between the Persian Gulf and Bahrain Sea. Amwaj Island development would provide a variety of amenities such as living in beach front properties, hotels, restaurants, recreation parks, theaters, marinas and golf courses. The Island also provides a neighborhood mall and entertainment center. Ossis property developers were responsible for land reclamation of 2.79 million square meters of open sea in a shallow reef area to form land at the north east of Muharraq Island, Bahrain. Need for construction of artificial Island has increased in the recent days as any naturally formed land surface is not available in the desired places for the following requirements such as extended airport runways, wind energy generation, underwater mining of mineral resources, oil and petroleum drilling platforms, tourism and recreational places like hotel and parks and infrastructure development of ports and airports. Coarse grain sand is ideal for bed preparation, directly dump into dredged construction site from the trailer and sand is protected from water waves by

rack revetments and layer of armor rocks. On the top surface of sand, bitumen emulsion was sprayed followed by layer of soil, to reduce soil erosion with suitable grass planted on the embankments. Cram (2014), breakwaters were structures constructed as part of coastal management or to protect an anchorage from the effects of both weather and long shore drift. Breakwaters reduce the intensity of wave action of inshore waters and thereby reduce coastal erosion. An anchorage was only safe if ships anchored there are protected from the force of high winds and powerful waves thev some large under water barrier which can shelter Natural harbours were formed by such barriers as headlands or reefs. Artificial harbours could be created with the help of breakwaters.

Ishwar Dahall & Dr. Om Prakash (2017) said that the construction process of an artificial Island had steps such as dredging, construction of breakwater. Breakwaters were constructed on Bay of Bengal. The depth of Bay of Bengal is of 4600m. It had 64 largest marine ecosystems. While constructing an Island one have to check the ecosystem of ocean. The Bay of Bengal is full of biological diversity, diverging amongst coral reefs, estuaries, fish spawning and nursery areas, and mangroves. By calculating that for breakwater crescent to be functional along the 5 km radius it had to be at least 3m above waves, 11.5 km long and 200m wide in cross section. This project may require barges, tugboats, dredgers, heavy land-based machines, and floating cranes. The Islands themselves would be made out of an obscene amount of sand dredged from three massive barren sea beds nearby, while the breakwater crescent out of rock and sand, though mostly rock. The bottom sand layer of the crescent breakwater may be 6.5m thick. The challenge of dumping this sand layer was that it had to be done when the sea was the calmest to ensure stability. The rocks were selected by size and weight and specially positioned by cranes. Each rock must "interlock" with the adjacent one to tackle forces of the sea. The perfect place for such construction because with a depth of 30 m and a width of 160 m, it is too short and shallow for the creation of immensely destructive waves. The New Holland was a man-made Island completed in 1719. It is a 19 acres Island now listed in one of the Russian federation. It attracts people with lush green, park and tourists for sun bath, picnic and play (From Wikipedia, New Holland Island 2018).

Dubai Chicago beach hotel, 93 meters high making the 19th tallest building in Dubai was opened in 1997, located on an Island of reclaimed Island. The Burj Al Arab, tower of the Arabs, also known as Arab Sail. It is a luxury hotel located in Dubai, United Arab Emirates with a height of 321m, it is the 3rd tallest building in the world. It stands on an artificial Island and connected to main land by a private curving bridge. It is an iconic structure, designed to symbolize Dubai's urban transformation and to mimic the sail of a boat. It is also a signature building which welcomes tourists to Dubai (From Wikipedia, Burj Al Arab 2018). Mobile harbours, such as the D-Day Mulberry harbours, were floated into position and acted as breakwaters. Some natural harbours, such as those in Plymouth Sound, Portland Harbour, and Cherbourg, have been enhanced or extended by breakwaters made up of rock.

PLANNING OF NEW ISLAND

This Island is proposed to construct near the beach resort which is located in Kovalam (12.788135, 80.254966) and the Kovalam beach is shown in Figure 4.

Fig.4: Kovalam beach along ECR, Chennai

The Island may be placed two kilometer away from the sea shore (12.787947, 80.273463). The depth of sea level is of 50m beyond 2km perpendicular to the shore line and has 5 different layers. The road connection will be made from sea shore to the proposed Island. The proposed Island will have a total area of 6 Hectare and it will contain four rows of circular shape and a two lane road which is shown in Figure 5.

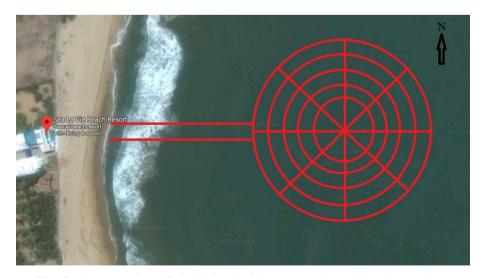


Fig.5: Proposed artificial Island, 2km away from Kovalam shore

Facilities may be provided to fit for commercial and residential purpose. The proposed developments will be recreational resorts and cottages, residential villas, multi-speciality hospitals, five star hotels and restaurants which may follow the regulations of the local planning authority. Directive principles of State policy, National Institute of Ocean Technology, Directorate of Town and Country planning (DTCP), Chennai Metropolitan Development Authority (CMDA), Tamil Nadu Fisheries Development (TFD), Pollution control board for environmental clearance, Solid waste management, coastal authority and regulation, Navy and few more authorities will have to be involved in the proposed development of this Island.

The proposed four rows design will involve the park in the early row, cottages and villas in the next row, two hotels and two multi speciality hospitals in the third row, restaurants and few resorts in the fourth row and play area, walking area, swimming pools with green cover will be planned. The studies and survey will cover the Environmental Impact Assessment, environmental Management Plan and environmental Impact statement, marine hydrostatic study, Costal Regulation zone delineation and modeling studies. The primary and secondary data may be collected by conducting survey. Bathymetry data, breakwater layout, model studies, numerical simulations, subsea database, environmental attributes, onshore details and drainage studies are collected as primary data and tide, current, wave data including its direction, height and period and socio economic data to be collected as secondary. Sea bed contour will help in selecting the site to form the Island economically.

The development of this Island may be allotted to the willing developer under BOOT programme through Tamilnadu Infrastructure development Board. Kovalam shoreline is oriented in North to South, the sea is characterized by moderate in roughness. The slope towards seaward is gentle. This beach is exposed to wind generated waves. It is noticed that waves breaking at beach is mostly long period of 10-14s with the height of 0.7-1.0m in general the waves are perpendicular to beach. It is seen by visual observation that the prevailing wave direction in this area is east to west. It is obtained from local information that during rough sea condition, the wave height approaches to a maximum of 3.0m. The tidal variation at Kovalam is 0.4m. The coastal currents are predominant in North East monsoon. The monthly variation of wave height rose is collected from boat based visual observations. The predominant wave direction during June to September is from East and during October and November is from South East.

MATERIAL MANAGEMENT

The proposed Island may be of 6 Hectare land designed in circular shape at top and bottom on sea bed with 15m total height in which below and above sea water of 9m and 6m respectively. The required quantity of boulder material and the geometry of Island are shown in Table 1. The proposed Island may be connected with main land by 2km

length of road which may have 10m width at top and minimum of 6m above sea water level or from low tide level with 1 in 2 self balancing slopes at sides. The proposed geometry of road is shown in Table 2. Here to fill the void between the boulders filler material such as smaller size boulders will be needed up to 0.83Million m³ which can be partially (50%-70%) replaced with construction and concrete debris which is available on land larger in quantity and it is the major part of municipal solid waste of the Nation. The available quantity of construction and concrete debris per day in national level comes around 0.073 Million m³. The Table 3 shows the quantity of debris generated per day in mega and few metro cities. Every week, 8000 tonnes of construction and demolition debris is generated in the Chennai city (The Hindu 2/6/2016). In the proposed Island it may need 415000 m³ (50% replace) of concrete debris as filler material, which is 830 days of Chennai generation (or) 68 days of Tamil Nadu generation.

Table 1: Geometry and material required for the Island with 6 Hectare of land

Item	Description
Top surface	Circular in shape
Diameter of surface	280m
Height of Island above LTL	6m
Side slope	1 in 2
Diameter of Island at sea water level	304m
Depth between sea bed to sea water level	9m
Diameter of Island at sea bed	340m
Quantity of boulders required	1.15Million m ³
Quantity of filler material required	0.35Millon m ³

Table 2: Geometry and material required for 2km road

Item	Description
Cross section of road	Trapezoidal shape
Width at top	10m
Height of road above LTL	6m
Side slope	1 in 2
Width of road at sea water level	34m
Depth between sea bed to sea water level	9m
Width of road at sea bed	70m
Quantity of boulders required	1.2Million m ³
Quantity of filler material required	0.48Millon m3

COST OF ISLAND DEVELOPMENT

The proposed Island needs to reclaim land and dump of random rubble boulders with void filling material. For main land connecting road and the Island about 2.35Million m³ of boulders and 0.83Millon m³ of filler material will be required. After reducing 50% of filler material the required rubble material comes to 3.88Million Tonne which costs about Rs 150Crs. The on surface developments will comes around 1.4L m² which will cost about 140Crs. Therefore the cost of this Island development will be Rs. 370Crs including 30% of overhead expenditure. Taxes and service charges may be levied in various levels to receive the expended money within a payback period of 10 years.

Location	Quantity of concrete debris (m ³)
Delhi	2085
Mumbai	1250
Kolkata	835
Chennai	500
Hyderabad, Pune, Lucknow, Gurgon and Jaiput	625
Tamil Nadu	6100
South India	22500
India	73000

Table 3: Quantity of concrete debris generated per day

SCOPE

India has 7516 km of coastal line and scare in land area. On the other hand waste generation and managing it is a real challenge. Creating this type of artificial Island will give us a solution in all aspects.

REFERENCES

- [1] Akshatha Vinayak (2018), "2 Fantastic Man-made Islands in India", available at https://www.nativeplanet.com/travel-guide/man-made-Islands-in-india-002454.html
- [2] The constructor, civil engineering home (2018), "Artificial Island Construction Methods, Design and Advantages", available at https://theconstructor.org/construction/artificial-Island-construction-methods/16380/
- [3] From Wikipedia, List of artificial Islands (2018) available at **Error! Hyperlink** reference not valid..
- [4] From Wikipedia, East Coast Road (2018), available at https://en.wikipedia.org/wiki/East_Coast_Road.
- [5] From Wikipedia, New Holland Island (2018), available at

- https://en.wikipedia.org/ wiki/ New_Holland_Island.
- [6] From Wikipedia, Burj Al Arab (2018), available at https://en.wikipedia.org/wiki/Burj_Al_Arab.
- [7] Abhishek Arya (2002), "Creation of the Palm Island", International Journal of Innovative Research in Science & Engineering, ISSN (Online), pp 2347-3207, available at **Error! Hyperlink reference not valid.**docs/IJIRSE1407.pdf
- [8] Covelong (2018) available at https://www.revolvy.com/page/Covelong.
- [9] Jack Fowler, Thomas C. Stephens, Mario Santiago and Pieter de Bruin (2013), "Amwaj Islands constructed with geotubes, Bahrain" available at http://www.geotec.biz/publications/Amwaj%20Islands%20Constucted%20with%20Geotubes.pdf
- [10] Chetna Shaktawat, Deeksha Joshi, Sakshi Gandhi and Prodipta Chatterjee (2010), "Case Study-BURJ- AL- ARAB, Dubai", available at **Error! Hyperlink reference not valid.**
- [11] Layers of the Ocean, Creatures of the deep sea (2010), available at http://www.seasky.org/deep-sea/ocean-layers.html
- [12] Ishwar Dahall & Dr. Om Prakash (2017), "The Study on Construction of Artificial Island Using Land Reclamation Techniques", Imperial Journal of Interdisciplinary Research (IJIR), Vol-3, Issue-2, ISSN: 2454-1362, available at https://www.onlinejournal. in/ IJIRV3I2/349.pdf
- [13] Cram (2014), "Foundations of Earth science, 7th Edition, Study guide, available at https://books.google.co.in/books?isbn=1490271406
- [14] The Hindu (2/6/2016), "Is Chennai ready to recycle construction debris?" available at https://www. thehindu.com/news/cities/chennai/is-chennai-ready-to-recycle-construction-debris/article 5026583.ece