Natural Radioactivity measurement and Radiological hazards of Sand Samples used as building material in Tiruvannamalai district, Tamilnadu, India

Y. Raghu¹, A. Chandrasekaran², M. Selvapandian³, N. Harikrishnan⁴, R. Ravisankar⁴*

¹Department of Physics, Aarupadai Veedu Institute of Technology, Paiyanoor, Kanchipuram-603 104, Tamilnadu, India,
²Department of Physics, SSN College of Engineering, Kalavakkam, Chennai-603110, Tamilnadu, India,
³Department of Physics, Periyar University, PG Extension Center, Dharmapuri-636011, Tamilnadu, India,
⁴Post Graduate and Research Department of Physics, Government Arts College, Thiruvanamalai-606603, Tamilnadu, India.

*Email: ravisankarphysics@gmail.com; Tel: +91-9840807356

Abstract

Objectives: To study the naturally occurring radioactivity level of the sand samples and its radiological hazards while it is used as a building construction material.

Materials and methods: Fifteen sand samples were collected from different sand quarries from Tiruvannamalai district for the purpose of investigation of natural radioactivity measurement and their associated radiation hazards using gamma-ray spectrometry system.

Results: The activity concentrations of ²²⁶⁸Ra, ²³²⁴Th and ⁴⁰⁸K in sand samples were measured using NaI (Tl) detector and it is found that mean activity concentrations that ²²⁶⁸Ra is lower by a factor of 7.66 and ⁴⁰⁸K is lower by a factor of 1.03 while ²³²⁴Th is higher by a factor of 3.98 when compared with world average values. The radiological hazards associated with the sand samples were computed using radiation indices to assess its suitability for building constructions. Results showed that the investigated sand can be used in construction of dwellings in the study area.

Conclusion: The studied sands in this works are recommended for building constructions without any radiological sequences. This analysis will be very much useful to assess the radiation hazards in sand used as building material in dwelling and it is an initiate step to obtain database as well as radiological map of the area at stake.

Key words: Gamma-ray spectrometry, activity concentration, radiation hazards

1. Introduction
Human population is always exposed to ionizing radiation from natural sources. Natural radioactivity is widespread in the earth environment and it exists in various geological formations such as earth crust, rocks, soils, plants, water, air and also traces level in construction materials, which may contribute significantly towards an increased radiation dose received by human beings [1-2].

Building materials are the main source of indoor gamma radiation, besides terrestrial and cosmic radiation [2]. Measurement of natural radioactivity in different types of building materials was reported by many authors in different parts of the world [1-7].

Among the various building materials, sand (riverbed) is one of the essential and important materials for building constructions in different parts of the world and also in India. In Tamilnadu it is frequently used as binder in cement for construction purposes. A considerable amount of natural radionuclides can be found in sand as the end result of fertilizer washing, industrial activities and human activities [8].

Building and industrial materials like sand contribute to environmental radioactivity in two ways. First, by gamma radiation mainly due to 226Ra, 232Th, 40K and their progenies to a whole body dose and in some cases by beta radiation to a skin dose, and secondly by releasing the noble gas radon, its radioactive daughters, which are deposited in the human respiratory tract [9].

Based on the above discussion, it is expected that ionizing radiation from sand due to the natural radionuclides. Knowledge of natural radioactivity present in sand (river beds) enables one to assess any possible radiological hazard to mankind. The main goal of the present work is to study the naturally occurring radioactivity level in sand samples and its relevant dose and radiological hazards while it is used as a building construction material.

2. Materials and Methods
2.1. Sample collection and preparation
Fifteen sand samples of different locations in and around Tiruvannamalai Dist of Tamilnadu were collected from sand quarries and river beds and were prepared by a standard method of IAEA Technical Report 295 [10]. The location map of the study area is shown in Fig 1. Samples were cleaned and grounded into powder form using a ball mill grinder machine. Samples then were dried in the oven at 110ºc until the sample weight became constant. Samples were left to cool at room temperature and fine quality was obtained using a scientific sieve of 150 micron mesh to obtain uniform size particles. All the samples were sealed in radon-impermeable plastic containers. The samples were then stored for more than 40 days to bring 222Rn and its short-lived daughter products into equilibrium with 226Ra [11].

2.2. Gamma ray Spectroscopic Analysis
All the selected samples were subjected to gamma spectral analysis with a counting time of 20,000 secs. A 3" x 3" NaI(Tl) detector was employed with adequate lead shielding which reduced the background by a factor of about 95%. The concentrations of various nuclides of interest were determined in Bq Kg$^{-1}$ using the count spectra. The samples were then counted in the same source-to-detector geometry used for the establishment of the efficiency calibration. The spectra were acquired for 20,000 sec and the photo peaks were evaluated by the MCA software.
The gamma-ray photo peaks corresponding to 1.46 MeV (40K), 1.76 MeV (214Bi) and 2.614 MeV (208Tl) were considered in arriving at the activity of 40K, 226Ra and 232Th in the samples. The detection limit of NaI (TI) detector system for 40K, 226Ra and 232Th are 8.5, 2.21 and 2.11 in Bq Kg$^{-1}$ respectively for a counting time of 20,000 secs. [6].

3. Results and Discussion

3.1. Specific activity concentration

The activity concentrations of the detected radionuclides of 226Ra, 232Th and 40K in 15 sand samples from different locations of Tiruvannamalai district are tabulated in 2nd, 3rd and 4th column of Table 1. The highest values observed for the specific activities of 226Ra, 232Th and 40K are 15.33 (SA-6), 358.56 (SA-1) and 633.94 (SA-1) in Bq Kg$^{-1}$ respectively while the lowest values of the same radionuclides are ≤ 2.21 (BDL), 12.99 (SA-12) and 262.11 (SA-10) in Bq Kg$^{-1}$ respectively. It was also found that the arithmetic mean activity concentrations of 226Ra, 232Th and 40K are 4.57, 119.42 and 388.78 in Bq Kg$^{-1}$ respectively. To compare the values of mean activity concentrations of 226Ra, 232Th and 40K of the present study with the world average values (which are 35, 30 and 400 in Bq Kg$^{-1}$) [12], 226Ra is lower by a factor of 7.66 and 40K is lower by a factor of 1.03 while 232Th is higher by a factor of 3.98.

3.2. Radium equivalent activity (Ra$_{eq}$)

The distribution of 226Ra, 232Th and 40K in the sand samples was not uniform. With respect to the radiation exposure, the radioactivity has been defined in terms of radium equivalent activity Ra$_{eq}$ in Bq Kg$^{-1}$ to compare the specific activity of materials containing different amounts of 226Ra, 232Th, and 40K. The Ra$_{eq}$ is related to the external gamma dose and the internal dose due to radon and its daughters [13]. It was calculated through the following relation [14].

$$Ra_{eq} (\text{Bq Kg}^{-1}) = A_{Ra} + 1.43A_{Th} + 0.077A_{K} \quad (1)$$

Where A_{Ra}, A_{Th}, and A_{K} are the activity concentrations in Bq Kg$^{-1}$ of 226Ra, 232Th, and 40K, respectively. It may be noted that 238U has been replaced with decay product 226Ra because there may be disequilibrium between 238U and 226Ra. While defining Ra$_{eq}$ activity according to the above equation, it has been assumed that 10 Bq of 226Ra, 7 Bq of 232Th, and 130 Bq of 40K produce the same gamma doses [15].

The estimated Ra$_{eq}$ activity for all investigated sand samples is given in the 5th column of Table 1. The lowest and higher values of Ra$_{eq}$ are 59.11 (SA-12) and 561.55 (SA-1) in Bq Kg$^{-1}$ with an average of 205.27 Bq Kg$^{-1}$.

The values of Ra$_{eq}$ in building materials must be less than the 370 Bq Kg$^{-1}$ for safe use [16-18]. All the values of Ra$_{eq}$ for the present study (except SA-1) showed lower than recommended safety value and do not pose any radiological hazard when used for the construction of buildings.

Table 3 is used to compare the activity concentrations and radium equivalent activities (Bq Kg$^{-1}$) of sand samples between the present study and different areas of the world.

3.3. The absorbed gamma dose rate (D$_{G}$)

The outdoor absorbed dose rate (nGy h$^{-1}$) in air from terrestrial gamma radiation at 1m above the ground is calculated after applying the conversion factors (in nGy h$^{-1}$ per Bq Kg$^{-1}$) to transform specific activities A_{Ra}, A_{Th} and A_{K} into absorbed
dose rate. According to the formula provided by UNSCEAR [12] and European Commission [19], the absorbed dose rate is calculated.

In the UNSCEAR and European Commission reports, the resulting dose coefficients were found to be 0.92 nGy h\(^{-1}\) per Bq Kg\(^{-1}\) for \(^{226}\)Ra, 1.1 nGy h\(^{-1}\) per Bq Kg\(^{-1}\) for \(^{232}\)Th and 0.080 nGy h\(^{-1}\) per Bq Kg\(^{-1}\) for \(^{40}\)K and the formula for the absorbed gamma dose rate can be written as:

\[
D_R(nGy h^{-1}) = 0.92A_{Ra} + 1.1A_{Th} + 0.0807A_K \quad (2)
\]

Where \(A_{Ra}, A_{Th}\) and \(A_K\) are the activities of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K respectively in the units of Bq Kg\(^{-1}\).

The results of absorbed dose rate for the present study are given in the 6\(^{th}\) column of Table 1. Its values are ranging from 56.40 (SA-12) to 445.13 (SA-1) with an average of 166.67 in nGy h\(^{-1}\). The obtained mean value of \(D_R\) in the studied samples is greater than the world average (populated-weighted) indoor absorbed gamma dose rate of 84 nGy h\(^{-1}\). This is due to high activity concentrations of \(^{232}\)Th and \(^{40}\)K in the samples.

3.4. The annual effective dose rate (\(H_R\))

To estimate the annual effective dose rates, the conversion coefficient from absorbed dose in air to effective dose (0.7 svGy\(^{-1}\)) and outdoor occupancy factor (0.2) proposed by UNSCEAR (2000) [12] were used. The effective dose rate in units of mSv y\(^{-1}\) was calculated according to Arafa, (2004) [20] using the following formula.

\[
H_R(mSv y^{-1}) = D_R(nGy h^{-1}) \times 24 \times 365.25 \times 0.2 \times 0.7 \times 10^{-6} \quad (OR)
\]

Where \(D_R\) (nGy h\(^{-1}\)) is given by equation (2). The obtained values of annual effective dose rate for all sand samples are listed in the 7\(^{th}\) column of Table 1. Its values varied between 0.0694 (SA-12) and 0.547 (SA-1) with a mean value of 0.205 in mSv y\(^{-1}\). The estimated mean value of \(H_R\) is lower than the world average value which is 0.45 mSv y\(^{-1}\) [12]. It indicated that sand samples can be used safely for building constructions.

3.5. Criteria formula

Based on models suggested by Krisiuk et al., 1971[21] and Stranden, 1976 [22], a value of 1.5 mGy was obtained by Kreiger, 1981 [23] when evaluating the annual external radiation dose inside dwellings constructed of building materials with a Ra\(_{eq}\) value of 370 Bq Kg\(^{-1}\). These authors later corrected their calculations by taking into consideration a wall of finite thickness and applying a weighing factor of 0.7 [24] to account for the presence of windows and doors.

Their results can be used as a criterion to limit the annual radiation dose from building materials based on the formula

\[
CF = \frac{A_{Ra}}{740 \text{ Bq/kg}} + \frac{A_{Th}}{520 \text{ Bq/kg}} + \frac{A_K}{9620 \text{ Bq/kg}} \quad (4)
\]

Where \(A_{Ra}, A_{Th}\) and \(A_K\) are the activities of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K respectively in units of Bq Kg\(^{-1}\).

The calculated CF values from the sum of the three quotients for the annual radiation dose associated with the studied samples are given in the 5\(^{th}\) column of Table 2. The criteria formula values are ranging from 0.0797 (SA-12) to 0.7554
(SA-1) with an average of 0.2762. All the studied samples are well below the recommended maximum value (<1). This indicates that the gamma activities in the studied sand samples do not exceed the proposed criterion level and the sand can be used for constructions purpose.

3.6. Radiation Hazard Indices

Beretka and Mathew, (1985) [13] defined two indices that represent (i) the external radiation hazard, \(H_{ex} \), and (ii) the internal radiation hazard, \(H_{in} \), which are discussed in the following section. The prime objective of these indices is to limit the radiation dose to a dose equivalent limit of 1 mSv y\(^{-1}\).

3.6.1. External radiation hazard (\(H_{ex} \))

The external hazard index is defined as exposure of gamma rays emitted from radionuclides and also to assess the radiological suitability of a material. Beretka and Mathew (13) introduced a hazard index for the external gamma radiation dose from building materials as given below:

\[
H_{ex} = \frac{A_{Ra}}{370 \text{ Bq/kg}} + \frac{A_{Th}}{259 \text{ Bq/kg}} + \frac{A_{K}}{4810 \text{ Bq/kg}} \leq 1
\]

Where \(A_{Ra} \), \(A_{Th} \) and \(A_{K} \) are the activities of \(^{226}\)Ra, \(^{232}\)Th and \(^{40}\)K respectively in the units of Bq kg\(^{-1}\).

The calculated external hazard is listed in 6\(^{th}\) column of Table 2 and its minimum and maximum values are ranging from 0.1596 (SA-12) to 1.5162 (SA-1) with the mean value of 0.5543. All the values of \(H_{ex} \) are less than unity except (SA-1) indicating that the radiation hazard to be negligible and the studied samples can be used for construction purposes.

3.6.2. Internal radiation hazard (\(H_{in} \))

The internal hazard index (\(H_{in} \)) gives the internal exposure to carcinogenic radon and its short-lived progeny and it is given by the following formula [13, 17]:

\[
H_{in} = \frac{A_{Ra}}{185 \text{ Bq/kg}} + \frac{A_{Th}}{259 \text{ Bq/kg}} + \frac{A_{K}}{4810 \text{ Bq/kg}} \leq 1
\]

The value of \(H_{in} \) must also be less than unity to have negligible hazardous effects of radon and its short-lived progeny to the respiratory organs [12]. The calculated values of this index are given in 7\(^{th}\) column of Table 2.

It was found that the internal hazard index values are varied between 0.1596 (SA-12) to 1.5162 (SA-1) with the mean value of 0.5666. The hazard indices (\(H_{in} \)) in most of the samples are less than unity (permissible level) [25]. This indicated that studied samples can be used as a construction material in the building of houses.

Conclusion

The average specific activity concentration of \(^{226}\)Ra and \(^{40}\)K is lower and \(^{232}\)Th is higher in sand samples when compared with world average value. The potential radiological hazards associated with sand samples were identified by computing radiation indices. All the radiation indices are well below their recommended limits. Hence the investigated sand in this study can be recommended for safe usage for dwelling construction.
Acknowledgement

Authors are wishes to express their high gratitude and sincere thanks to Dr. B. Venkatraman, Group Director, Health, Safety & Environmental Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu, India for giving permission to use the nuclear counting facility in Radiological safety division. Our special thanks to Dr. M. T. Jose, Head, RSS, RSD, IGCAR for his keen help, constant encouragements in Gamma ray spectroscopic measurements and also Mr. R. Mathiyarasu, Head, RDS, RSD, IGCAR for his technical help in counting the samples.

One of the authors (Mr. Y. Raghu) is also highly indebted to the management of Aarupadai Veedu Institute of Technology, Paiyanoor, Tamilnadu, India for constant encouragement and support for this research work.

Reference

Table. 1. Different located sand samples with activity concentration and other calculated radiological parameters

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Activity concentrations (Bq Kg⁻¹)</th>
<th>Radium equivalent Raₑₑ (Bq Kg⁻¹)</th>
<th>Absorbed dose rate Dᵣ (nGyh⁻¹)</th>
<th>Annual effective dose rate Hₑ (mSv y⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-1</td>
<td>BDL</td>
<td>358.56</td>
<td>561.55</td>
<td>445.13</td>
</tr>
</tbody>
</table>
Table. 2. Different located sand samples with activity concentration and other calculated radiological parameters

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Activity concentrations (Bq Kg(^{-1}))</th>
<th>Criteria formula CF</th>
<th>Hazard indices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^{226})Ra</td>
<td>(^{232})Th</td>
<td>(^{40})K</td>
</tr>
<tr>
<td>SA-1</td>
<td>BDL</td>
<td>358.56</td>
<td>633.94</td>
</tr>
<tr>
<td>SA-2</td>
<td>BDL</td>
<td>121.37</td>
<td>439.73</td>
</tr>
<tr>
<td>SA-3</td>
<td>BDL</td>
<td>93.70</td>
<td>322.16</td>
</tr>
<tr>
<td>SA-4</td>
<td>7.96</td>
<td>33.58</td>
<td>300.87</td>
</tr>
<tr>
<td>SA-5</td>
<td>7.47</td>
<td>27.09</td>
<td>293.21</td>
</tr>
<tr>
<td>SA-6</td>
<td>15.33</td>
<td>196.71</td>
<td>339.29</td>
</tr>
<tr>
<td>SA-7</td>
<td>13.58</td>
<td>187.42</td>
<td>303.26</td>
</tr>
<tr>
<td>SA-8</td>
<td>10.3</td>
<td>184.9</td>
<td>282.35</td>
</tr>
<tr>
<td>SA-9</td>
<td>8.71</td>
<td>83.49</td>
<td>302.68</td>
</tr>
<tr>
<td>SA-10</td>
<td>5.2</td>
<td>28.08</td>
<td>262.11</td>
</tr>
<tr>
<td>SA-11</td>
<td>BDL</td>
<td>68.84</td>
<td>351.78</td>
</tr>
<tr>
<td>SA-12</td>
<td>BDL</td>
<td>12.99</td>
<td>526.42</td>
</tr>
<tr>
<td>SA-13</td>
<td>BDL</td>
<td>94.64</td>
<td>395.56</td>
</tr>
<tr>
<td>SA-14</td>
<td>BDL</td>
<td>121.25</td>
<td>554.11</td>
</tr>
<tr>
<td>SA-15</td>
<td>BDL</td>
<td>178.66</td>
<td>524.27</td>
</tr>
<tr>
<td>MEAN</td>
<td>4.57</td>
<td>119.42</td>
<td>388.78</td>
</tr>
</tbody>
</table>

Table. 3. Comparison of activity concentrations and radium equivalent (Bq Kg\(^{-1}\)) for sand samples in different areas of the world

<table>
<thead>
<tr>
<th>Country</th>
<th>(^{226})Ra Bq Kg(^{-1})</th>
<th>(^{232})Th Bq Kg(^{-1})</th>
<th>(^{40})K Bq Kg(^{-1})</th>
<th>Ra(_{eq}) Bq Kg(^{-1})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3.7</td>
<td>40</td>
<td>44.4</td>
<td>65.3</td>
<td>[13]</td>
</tr>
<tr>
<td>China</td>
<td>39.4</td>
<td>47.2</td>
<td>573</td>
<td>151</td>
<td>[14]</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>24.3</td>
<td>27.1</td>
<td>841</td>
<td>128</td>
<td>[14]</td>
</tr>
<tr>
<td>Brazil</td>
<td>14.3</td>
<td>18</td>
<td>807</td>
<td>102</td>
<td>[26]</td>
</tr>
<tr>
<td>Country</td>
<td>#1</td>
<td>#2</td>
<td>#3</td>
<td>#4</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Netherlands</td>
<td>8.1</td>
<td>10.6</td>
<td>200</td>
<td>38.6</td>
<td>[27]</td>
</tr>
<tr>
<td>USA</td>
<td>37</td>
<td>33.3</td>
<td>18.5</td>
<td>86</td>
<td>[28]</td>
</tr>
<tr>
<td>Cuba</td>
<td>17</td>
<td>16</td>
<td>208</td>
<td>55</td>
<td>[29]</td>
</tr>
<tr>
<td>Egypt</td>
<td>9.2</td>
<td>3.3</td>
<td>47.3</td>
<td>16.6</td>
<td>[30]</td>
</tr>
<tr>
<td>Turkey</td>
<td>6.7</td>
<td>6.7</td>
<td>882.9</td>
<td>84.3</td>
<td>[31]</td>
</tr>
<tr>
<td>Pakistan</td>
<td>21.5</td>
<td>31.9</td>
<td>520</td>
<td>107</td>
<td>[32]</td>
</tr>
<tr>
<td>Pakistan</td>
<td>20</td>
<td>29</td>
<td>383</td>
<td>91</td>
<td>[1]</td>
</tr>
<tr>
<td>India</td>
<td>43.7</td>
<td>64.4</td>
<td>455.8</td>
<td>170.8</td>
<td>[33]</td>
</tr>
<tr>
<td>India/Haryana</td>
<td>63</td>
<td>96</td>
<td>824</td>
<td>263</td>
<td>[34]</td>
</tr>
<tr>
<td>World</td>
<td>35</td>
<td>30</td>
<td>400</td>
<td>-</td>
<td>UNSCEAR (2000)[12]</td>
</tr>
<tr>
<td>India/Tiruvannamalai</td>
<td>4.57</td>
<td>119.42</td>
<td>388.78</td>
<td>205.27</td>
<td>Present work</td>
</tr>
</tbody>
</table>

![Fig. 1. Location map of Tiruvannamalai district](image)