Review On Overload Torque Tender Using Electromechanical Clutch

Bhavana C. Kulkarni1 and Prashant H. Jain2

1PG Student, bhavana.kulkarni1@gmail.com
2Assistance Professor, phjain30@rediffmail.com
Author Correspondence: parijatkasociety, osmanabad

Abstract

Positive clutches used to transmit power between coincident shafts. The positive Engagement between clutch element ensure 100\% torque transmission but occasionally the output shaft may be subjected to sudden overload which May make driving motor or engine to stall, which will lead to burn out electric Motor. In extreme cases this overload will lead to breakage of drive elements or clutch itself. In order to avoid this damage, it is needed that the input and output shafts be disconnected in case of sudden overload. Torque tender is overload safety devices which provide the reliable overload protection. Torque tender is tamper proof. Generally whenever overload occurs in any shaft drive mechanism there is failure of following components possible-1) Shaft / Coupling / Belt Drive 2) Machine shaft 3) Motor (Burning of electrical motor) Due to Overloading In any case this damage leads to Replacements of machine parts and Ultimately Replacement cost increases. To overcome all this problem available in machine element, Torque tender will help us to avoid this damage.

Keywords: Torque tender, electromechanical clutch..

1. Introduction
Safety ball clutch are Overload Safety Devices with Torque tender which provide reliable overload protection. When a jam-up or excessive loading occurs the Safety ball clutch will reliably and quickly release to prevent system damage.

- These torque tender are tamper-proof. Once installed, the torque value cannot be changed. This is an important feature that ensures the integrity of the machine design. Costly and potentially risky calibration procedures are not necessary. The torque value is controlled by the part number that is ordered.
That value determines what spring is used during the assembly at the factory.

- The torque value can be changed in the field, however; the Safety ball clutch must be disassembled and the springs replaced to achieve the new torque value. Standard Safety ball clutch are bidirectional. The torque value is the same regardless of rotation. If specified, these torque limiters can be configured at the factory to release at different torque ratings for different rotational directions.

- In the coupling configuration, the Safety ball clutch fulfills two functions: (1) A flexible shaft coupling (2) a mechanical torque limiter. The Safety ball clutch in the shaft to shaft configuration will handle angular shaft misalignment up to 1.5 degrees and a .005” to .015” maximum parallel misalignment.

- The enclosed design of the mechanical Safety ball clutch enables it to operate in a wide variety of industrial environments. Special designs and materials can be made to withstand even more adverse conditions.

![Figure 1: Spring Clutch](image)

The torque value is determined by the force of the springs that are installed in the unit. The spring force acts upon the slides that are part of the inner shaft. These slides transmit force that will hold the drive key into an engagement slot in the outer housing. When the torque load exceeds the rating, (determined by precision tempered torque springs) the Safety ball clutch’s drive key will pivot out of the engagement slot to disengage the Safety ball clutch. After disengagement the Safety ball clutch does not have significant resistance to rotation. Upon completion of one shaft rotation the Safety ball clutch will automatically try to reengage. Once the overload is removed and speed reduced, the drive key will snap into the engagement slot and the Safety ball clutch will be reset for the next overload event. This particular design is suitable for a single set of the design torque, and is not suitable for applications where the set torque may vary as per application. Rarely occurring overloads must be considered during the design process of a power train. These overloads can be evoked
Review On Overload Torque Tender Using Electromechanical Clutch

by malfunctions in the electronics of inverter and installation control, by obstructions in the work flow, by mis-operation etc. These overloads may create pre-damages which lead to full failure of the assembly or its components. Such affecting loads are avoidable by means of overload clutches. Thus reliable overload clutches are of strongly increasing interest for years.

1.1 Disadvantages of current system of overload protection
To protect the drive from failure What is available in market is a „Flying ball clutch” which transmits torque from input to output using balls held by a spring in assembly when overload occurs the balls will come out of assembly—thus disconnecting input and output thereby saving part failure But

a) Rating of clutch is fixed value so if o/p torque change we have to replace clutch.
b) Every time ball comes out of assembly we have to remove the clutch to replace ball this increases down time of machine
c) Drive always remains coupled there is no flexible arrangement like automobile clutch i.e. possibility to disengage at will.
d) If temporary overload occurs the clutch will slip and remain disengaged till it is preset even though the overload is now removed this leads to process down time.
e) Thus there is a need of Timer belt spindle drive with overload Safety ball clutch with following features

1.2 Advantages of overload torque tender
- Electromechanical dis-engagement so that drive can be temporarily disengaged for I in process inspection or other activity.
- The Safety ball clutch can be set over a range of torques (say 0 to 20 kg-cm) so that the machine operator can set it to desired value for given application unlike the conventional clutches that are factory set.
- The transmission elements i.e., the balls will not come out of assembly when there is overload slipping this comes as an advantage as the clutch can be preset without removing it from assembly this will save considerable amount of downtime of process as compared to the conventional clutch.
- If temporary overload occurs the clutch will slip and remain disengaged only till the overload is removed thus if the overload is removed while in running condition the clutch shall automatically engage and start transmitting power.

1.3 Problem Statement
Whenever an overload occurs in any shaft drive mechanism as shown below there are three possibilities:
a) Shaft / coupling/ belt drive fill fail or break.
b) Application i.e. machine shaft will fail or break
c) Motor will be overloaded resulting into electric burn… In any case it is damage leading to machine part replacement …Down time of machine and increased part replacement and maintenance cost …
Machine tool spindle drives use timer belts with timer belt pulleys in open belt drive system.

2. Literature Review
“Nicolae EFTIMIE” in the paper titled “Dynamic Simulation Of The Safety Clutches With Balls” states that, explored the clutches are used largely in machine buildings, and by the correct selection of these depends to a great extent the safe and long working, both of these and of the kinematic chain equipped with them[1].

“Transilvania University Brasov, Romania” in the paper titled “Design Procedure of Elastic and Safety Clutches using Cam Mechanisms” states that, topological and structural generation of elastic and safety coupling, In the second part, on the basis of the functional characteristic of the cam gears, we propose a simple method for the structural and generation of elastic and safety couplings[2].

Mr..S.Jegadeesan, Asst.Professor, N.Suganthi, M.E (Applied Electronics) V.S.B. Engineering College, karur” in the paper titled “Design of Energy Savings in Metropolitan Railway Substations and Communication Based Train Control” states that, explored the reduction in energy consumption has become a global concern and the EU is committed to reducing its overall emissions to at least 20%[3].

“M Jackel1, J Kloepfer, M Matthias and B Seipel” in the paper titled “The novel MRF-ball-clutch design-a MRF-safety-clutch for high torque applications” states that the development of a safety-clutch by using magneto rheological fluids(MRF) to switch the transmission torque between a motor and a generator in a bus-like vehicle[4].

3. Design and Development
- System design as to number of ball-springs for desired torque capacity.
- Design and geometrical derivations of the groove profile in input base flange.
- Design and geometrical derivations of spring plunger profile.
- Selection and geometrical profile of clutch body ball holder.
- Selection and design of torque control using plunger and casing arrangement.
- Selection of solenoid coil for transmission of desired power
- Selection of timer belt drive for open belt drive
- Mechanical design : This includes the design and development of springs selection of suitable drive motor, strength analysis of various components under the given system of forces □ The critical components of assembly input pulley, solenoid mount, Safety ball clutch input shaft, input base flange, plunger, cylindrical body, output shaft etc., components will be designed using conventional theories of failure using various formulae, 3-D models of the above parts will be developed using Unigraphix software and meshing-analysis will be done, the result of stress produced will be validated using ANSYS-Workbench 14.5 release.
4. Summary
The torque value is determined by the force of the springs that are installed in the unit. The spring force acts upon the slides that are part of the inner shaft. These slides transmit force that will hold the drive key into an engagement slot in the outer housing. When the torque load exceeds the rating, (determined by precision tempered torque springs) the Safety ball clutch’s drive key will pivot out of the engagement slot to disengage the Safety ball clutch. After disengagement the Safety ball clutch does not have significant resistance to rotation. Upon completion of one shaft rotation the safety ball clutch will automatically try to reengage. Once the overload is removed and speed reduced, the drive key will snap into the engagement slot and the Safety ball clutch will be reset for the next overload event. This particular design is suitable for a single set of the design torque, and is not suitable for applications where the set torque may vary as per application. Rarely occurring overloads must be considered during the design process of a power train. These overloads can be evoked by malfunctions in the electronics of inverter and installation control, by obstructions in the work flow, by mis-operation etc. These overloads may create pre-damages which lead to full failure of the assembly or its components. Such affecting loads are avoidable by means of overload clutches.

5 SCOPES
1. Hydraulic piston pump, vane pump, roots blower, axial blower shaft drives either electrical or engine drives are normally furnished with the overload slipping ball clutch to avoid the breakage or damages arising due to pump clogging or blockage.
2. Compressor drives: Commonly the screw compressor especially in many mining applications are equipped with the over load slipping ball clutch.

3. Compact size: The size of the Torque limiter is very compact; which makes it low weight and occupies less space in any drive.

4. Ease of operation: The changing of torque is gradual one hence no calculations of speed ratio required for change torque. Merely by rotating adjuster lock nut torque can be changed.

5. Machine tool slides are driven by electrical drives connected to lead screw. The over load slipping ball clutch isolates the electrical drive from the output in case of overload.

References

