International Journal of Educational Administration.
ISSN 0976-5883 Volume 16, Number 1 (2024), pp. 01-05
© Research India Publications
http://www.ripublication.com

Transforming Horizons: Challenges and Revamps in Scientific Graduation in India

Rupa S Madyal*and Kanak Saxena

Abstract

Science education is diverse and complex but remains an engaging subject to teach and learn. It should be taught explicitly to help students understand and reflect on concepts, enhancing their problem-solving skills. Despite numerous discoveries, science education faces global challenges. In India, the teaching approach can be overly technical and unengaging, making subjects like analytical chemistry difficult for students. The focus on exams has produced graduates who excel in scoring but lack competency, compounded by a shortage of trained and enthusiastic teachers. Educational reforms, hands-on learning and integrating modern technology are essential. Recent reforms by regulatory bodies aim to improve the academic environment through self-evaluation, accountability, and innovation. Emphasizing practical work and computational methods can enhance understanding and engagement. Curriculum restructuring to promote creativity and critical thinking is crucial. Overall, addressing these issues can lead to excellence in science education and prepare students for global challenges.

The Nature and Challenges of Science Education

Science is a diverse and complex subject, making it both exciting and challenging to teach and learn. To effectively grasp scientific concepts, explicit teaching is necessary, providing opportunities for students to reflect and engage with the material. This approach helps students develop strong problem-solving skills and prepares them for future science courses. Despite numerous discoveries and insights from scientific research, science education faces significant challenges worldwide.

Several factors contribute to these challenges, and attributing them solely to students' attitudes towards education is insufficient. In universities, lecturing often dominates teaching methods. In the Indian education system, this approach is frequently inadequate and flawed. The presentation of theory can be overly technical, uninteresting, and even boring, leading to disengagement. For instance, students may

find analytical chemistry challenging due to its abstract concepts and lack of direct practical applications, such as the operation of instruments that they cannot physically observe.

The Decline in Science Careers

The current educational system heavily emphasizes achieving high marks in examinations, leading to the production of graduates who excel in scoring but lack competency. This issue stems from an outdated undergraduate (UG) and graduate education system that has not kept pace with global needs and trends. A significant problem is the shortage of formally trained and enthusiastic teachers. Many view "teaching" as a last resort, resulting in a lack of inspiring educators. Consequently, teachers often take on non-scientific assignments, widening the gap between desired and available teaching resources.

After completing the XII standard, students typically choose between science and technical education. High-performing students often enroll in technical colleges, while others join science colleges. This results in education being delivered by unwilling teachers to unwilling students, perpetuating a cycle of disinterest and disengagement. Declining enrollment in science disciplines poses a significant challenge for a developing country like India, which aims to excel in science and technology. One major reason for this decline is the perception that careers in science are less attractive than other professions. Parents and students often prefer fields with perceived greater opportunities, such as engineering or commerce.

The existing education system, characterized by rote learning and reservation in posts, further dissuades young students from pursuing science. The delayed recognition of the importance of basic science subjects highlights the need for curriculum restructuring to foster creativity, understanding, and entrepreneurial skills essential for industry success. Colleges must break away from conventional teaching frameworks and embrace new methodologies and resources, such as e-resources, for effective teaching and learning. Overall, there is an urgent need for curriculum restructuring to promote hands-on learning, creativity and a deeper understanding of subjects. Addressing these issues can help achieve academic excellence and prepare students for success in a rapidly evolving global landscape.

Educational Reforms and Innovations

In the last decade, significant educational reforms have been initiated by regulatory bodies like the UGC and AICTE, through various accreditation committees. These reforms include introducing the semester system for undergraduate non-technical education in the academic year 2011-12. These changes aim to enhance the academic environment by promoting the quality of teaching, learning, and research in higher education institutions. The reforms encourage self-evaluation, accountability, and innovation in higher education, contributing to the development of a system for conscious, consistent, and catalytic action to improve both academic and

administrative performance.

Under these reforms, teachers are encouraged to attend orientation and refresher programs organized by the Academic Staff College to develop their teaching skills. Additionally, they are urged to participate in conferences and publish articles, books, and research work. The greater use of modern teaching techniques using ICT databases and multimedia facilities, such as audio/video cassettes, computer-aided learning, and overhead projectors, is emphasized to facilitate effective teaching and learning. These reforms also include organizing periodical guest lectures in colleges and industrial visits to strengthen the teaching-learning process. However, due to time constraints (to cover the syllabus), the unavailability of resource persons for guest lectures, or a lack of enthusiasm in arranging visits, these activities are sometimes not taken seriously.

Computational Modeling and Practical Work

Computational modeling provides a powerful and versatile alternative to physical laboratory experiments, particularly when access to real equipment is limited. By leveraging advanced software tools and virtual laboratory platforms, educators and researchers can enhance safety, reduce costs, and gain deeper insights into chemical processes. Integrating computational methods into the curriculum not only prepares students for modern scientific challenges but also fosters a comprehensive understanding of both theoretical and practical aspects of chemistry.

The ultimate aim of the teaching-learning plan is for students to find the subject exciting, challenging, and useful. From my twenty years of teaching experience, I have found that students enjoy laboratory work. The laboratory is the only place where students actually do science. It helps illustrate ideas and develop important concepts through experimental evidence. Emphasis should be placed on practical work, with theory taught to explain these practical activities. Practical work should include hands-on training with all major analytical equipment. The first and foremost task in teaching-learning is for educators to know more about both science and their students. It is also essential to continually relate the subject to the real-world experiences of students for successful understanding.

Shifting Focus to Applications and Critical Thinking

The dominant focus of teaching should be on applications to maintain students' interest in the classroom. Enjoyment of learning is not simply related to the perception of how easy the subject is. Enjoyment comes when learners succeed in understanding. In a high-concept subject, the possibility of working memory overload is considerable.² Students often end up memorizing topics for examinations. It is essential to move from memory-based learning to a system that promotes critical thinking and logical reasoning.³ Otherwise, topics will be constrained by students' imagination.

Striving for excellence in science and technology in the near future requires a strong foundation built on graduates who possess scientific reasoning, logical thinking skills, vital knowledge in science, and proficiency in computational and analytical techniques. Students must be encouraged to ask questions. The Indian education system needs to focus on fostering the holistic development of undergraduate students to prepare them for the wider world.

Revamping the Curriculum

A good understanding of basic science is essential. Research is the only way to truly engage in scientific inquiry. Unfortunately, the taste for research is largely missing from the current undergraduate science curricula. The concept of refresher or orientation courses (teachers' training) for educators is not new. While teachers are trained to use modern technology—such as PowerPoint slides, videos, and animations—these methods often miss out on vital classroom interaction and the transmission of the teacher's knowledge and perception. The entire procedure needs a revamp to add value for both students and educators, who are often absorbed by institutions immediately after completing their master's courses.

Students would greatly benefit from early exposure to hands-on research. To bridge the gap between education and research, undergraduates should be encouraged to undertake short projects during their vacations as a compulsory part of their college experience. Problem-solving skills help students not only gauge their understanding of the subject but also test their ability to apply basic concepts and arrive at solutions to various questions. Unfortunately, the curriculum of many Indian universities does not provide ample scope for extensive problem-solving. Learning from videos of sophisticated equipment can be a highly effective educational strategy when direct access to the equipment is not possible. By selecting high-quality videos, engaging students with structured activities, and supplementing with additional resources, educators can provide a comprehensive and interactive learning experience that bridges the gap between theoretical knowledge and practical skills.

Repurposing and Advancing Equipment

Repurposing condemned scientific equipment for use in educational institutions offers a practical and sustainable solution to enhance learning and research capabilities. By establishing robust partnerships, ensuring proper assessment and refurbishment, integrating equipment into the curriculum, and seeking necessary funding and support, educational institutions can greatly benefit from this approach. This not only provides students with valuable hands-on experience but also promotes a culture of sustainability and resourcefulness.

Being a teacher in the current age is a significant challenge. With advancements in technology, students can receive and gather information faster than their teachers. The speed at which industries adopt new technology far outpaces the implementation of these topics in undergraduate science education. For example, the use of Bunsen

burners is fundamental in educational settings, but their use in the chemical industry has diminished due to the availability of safer, more efficient, and more controllable heating methods. This transition reflects the broader trend of adopting advanced technologies to improve scientific and industrial processes.

Reforming Teacher Training and Curriculum Design

The UGC should take steps to revamp the structure of refresher courses to ensure the development of well-equipped and high-quality teachers for the future. Additionally, the UGC should make appropriate positive changes within the available resources to enhance the overall quality of education and research in undergraduate programs. Including experienced industrial professionals in curriculum design commissions is essential. Graduating should not be evolved to prioritize discipline and memorization (Prussian Education model) over creativity and play. Indian science education system should shape graduates to fostering their individual potentials.

In conclusion, addressing the challenges in science education requires a multifaceted approach. This includes curriculum restructuring to foster creativity, understanding, and entrepreneurial skills; integrating modern technology and hands-on learning; and reforming teacher training programs. By implementing these changes, we can achieve excellence in science and technology education, preparing students for success in the rapidly evolving global landscape.

References

- [1] Raghvendra, G., Curr. Sci., 2006, 90, 473-474.
- [2] Norman, R., In *Chemical Education*, Narosa Publishing House, New Delhi, 2012, pp 27-53.
- [3] Narayan, T.R., Curr. Sci., 2009, 91, 267-268.
- [4] Deb B. M., Curr. Sci., 2006, **91**, 267-268
- [5] Brown, C. and Luzmore, R. (2021), "A Brief History of Education From Ancient Greece to the Enlightenment", *Educating Tomorrow* (*Society Now*), Emerald Publishing Limited, Leeds, pp. 39-55.

Dr. Rupa S. Madyal* was formerly at the S.I.W.S. NR Swamy College of Commerce & Economics and Smt.Thirumalai College of Science, Wadala, Mumbai (Maharashtra) Pin-400031, India and now at Department of Chemistry, National Defence Academy, Khadakwasla, Pune, India-411 023.Dr. Kanak Saxena is in Department of Chemistry, National Defence Academy, Khadakwasla, Pune-411 023, India. *E-mail: rupamadyal@gmail.com