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Abstract

We obtained oscillation criteria for the second-order half-linear neutral advanced
difference equations of the kind

A((O)(Aw(C)®) + 0Oy’ (C+r) =0; ¢ > (o,

where w(¢) = y(¢) + p(O)y(¢ + &). We provide a new oscillation condition,
which significantly improves the existing ones, by providing a new axiom bound
for a non-oscillatory solution. The derived oscillation constant is unimprovable in
a certain nonneutral case.
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1. INTRODUCTION

The goal of this research is to investigate the oscillation of the second-order neutral
difference equation of advanced argument of the type

A(a(O)(AZ())°) + 0Oy’ (C+r) =0; ¢ > (o (1.1)

where w(¢) = a(C) +p(¢)y(¢ + &) and A is the forward difference operator defined by
Ay(¢) = y(¢ + 1) — y(¢). Without further mention, we will assume that

(Cy) ¢ > 0is aratio of odd positive integers;
(Cy) & is aninteger and & is a positive integer;
(C3) {a(()}Z, is sequence of positive real numbers;

(Ca) {n()}Z, is non-increasing, non-negative real numbers and 7(¢) # 0 for
sufficiently large values of (;

(C5) {p(¢)}&, is a non-negative real sequence;

(Cs) The equation (1.1) is in so-called non-canonical form,

1.e.,

s (s)

=1
00) =) < 00; (1.2)
s=C

(C;) there exists a constant py with 0 < pg < 1 and

(€) > p(()% for £ <0, (1.3)
00 for £ > 0. '

Let ¢ = min{0,&}. A solution of (1.1) is a real sequence {y(¢)} which is defined for
all ¢ > (o + ¢ and satisfies equation (1.1) for all ¢ € N () = {Co,Co + 1,¢0 + 2, ...}
A nontrivial solution {y(¢)} of equation (1.1) is said to be oscillatory if it a neither
eventually positive nor eventually negative and it is non-oscillatory otherwise.

A large number of authors have studied into second-order linear difference equations.
This is most likely due to the fact that such equations are functional relations using
three consecutive terms of sequences, which are the next most difficult after functional
relations involving two consecutive terms of sequences on the complexity scale.

Although there are a variety of dynamical behaviours for solutions to second-order
difference equations, we will only consider conditions that are sufficient for all solutions
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of [16] to be oscillatory in this paper. Several recent articles, particularly those by
Zhang and Cheng [19], Wong and Agarwal [17, 18] as well as Thandapani et. al [16]
have attracted our interest.

The study of oscillation for solutions of second-order neutral difference equations has
received much interest. Second-order neutral difference equations are discussed in the
articles [14, 15], whereas the second-order self-conjugate neutral difference equation is
discussed in the work [4].

The application of the difference equation with advanced argument is in the progression
of growth rate, which does not only rely on the present but also extends into the future.
Incorporating a more advanced argument persuades the activities that are immediately
available and useful for economic crises, population dynamics and decision-making, for
example, are phenomenal problems that are expected to exhibit [1, 6]. The following
equation can be used to describe the population of the future population growth limit

A(a(€))Ay(¢) + p(Qy(g(¢)) = 0.

Despite the fact that delay difference equations have received a lot of attention, there
have been few investigations on equations with advanced arguments [8, 10, 12, 13, 20].

Murugesan et al. [10] derived sufficient conditions for oscillation to the second-order
advanced difference equation

A(a(O)(AY(€))") + 0y (€ +r) =0, ¢ >
o o0 1
Under the condition that >~ 30 < 00
Dinakar et al. [5] derived sharp conditions for the oscillation of every solution of the
second-order advanced noncanonical difference equation

A(a(O)(Ay(€)") +n(Q)y’ (r(¢)) =0, ¢ = Go.

In [8], we derived oscillatory conditions for the second-order noncanonical difference
equation of the delay and advanced type

A(a(Q)Ay(C)) +n(Qy(C +x) =0 ¢ = G

In [7], we derived single-condition criteria for the oscillation to the equation (1.1) for
p(¢) =0.

We shall enhance the lower bound of the quantity w({)/w(¢ + k) consecutively up to
its limit value in this study, using a different technique. The oscillation criteria for (1.1)
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is the major conclusion of the study, and it is a direct result of the observed lower and
upper bounds of a nonoscillatory solution.

2. MAIN RESULTS

All functional inequalities that occur in the following are assumed to hold eventually,
that is, they are satisfied for all ¢ large enough. We only need to be concerned with
positive solutions of (1.1) in the argument of the major conclusions, as usual and
without compromising generality, because the proofs for eventually negative solutions
are comparable.

Our results are based on the assumption that w, must be positive, where

Wy = %lign infa%(( +K)THC + k+ 1)n(0).

Also, let us define

I (9
Oy 1= llggf—e(g+n)

and notice that o, > 1. We will frequently use the fact that there exists a (, > (o,
sufficiently large,with the property that for arbitrary fixed o € [1,0,) and w € (0, w,),

0(¢)

n(()a%(g + 1)+ Kk +1) > dw and m

>oon( > (. (2.1)

Let us define a sequence {wy} by

W = (1 - pO) \6/ Wees
Wyl = ———, keN,.
¢+1 M 0
By induction, it is easy to check that if for some k € Ny, w; < 1,7 =0,1,2,...,k, then
W41 exists and

W1 = lpwr > wy, (2.2)
where
z o
0- — /T — w07
1—
lopt : = o@D 7@k g o (2.3)
1-— lkwk

Lemma 2.1. Let w, > 0 and {y({)} be an eventually positive solution of (1.1). Then
{w(()} satisfies the followings, eventually:
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(i) w(C) > 0, A(e(C)(Aw(()))* < 0, and y(¢) = w(C) — p(Qw (¢ +&);

(v) lim¢ oo w(¢) = 0.
Proof. Let {y(¢)} be an eventually positive solution of (1.1). Then, we can find (; > ¢
with y(¢) > 0, y(( + &) > 0, and y(¢ + k) > 0 for ¢ > (5.

(i) Obviously, for all ¢ > (i, w(¢) > y(¢) > 0, and a(¢)(Aw(¢))° is decreasing
sequence and of one sign because

A(a(O)(Aw(Q)?) < —n(O)y’(C + &) < 0.

Now,
y(¢) = w(C) = p(Qy(C +7) > w(¢) —p(Qw(C+7), (>, (2.4)

(ii) On the contrary, assume that Aw(¢) > 0 for ¢ > ¢;. First, we show that

y(¢) > pw(¢), ¢ =G¢ >, 2.5)

1_p07 ggo?
=
1_€p07 §>07

where

po is given by (1.3) and € € (1, pio) which is arbitrary fixed.
If¢£ <0, (24) gives

0(C+¢)
0(¢)

where we made use of the fact that {#(()} is decreasing and {w(()} is increasing.

¥(0) = w(O)(1 - p(0)) = w(e) (1 —2(0) ) > w()1=p) >0, ¢>0

Suppose that & > 0. Since, {a5 (()Aw(¢)} is decreasing, we have

Q) =w(G +Z

1
s=Q1 ON S s=(1 OM(S)

where R(Ca gl) Zs ¢1 a— )

M) ="

Sl

QAWOREG) ~u(Q) _
as (QR(GGRIEC+1,¢)

o (s)Aw(s) > a5 (Q)Aw(C) Y = a7 (Q)Aw(QR(C, G,
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Using this monotonicity in (2.4), we get

Q) 2 w(e) (1- FEEEN ).

Now, we see that
im

(=00 R(Ca Cl)
we have, for any € € (1, pio) and (; > (; sufficiently large,

=1,

y(Q) Zw(Q)( = epo), €= G

Thus, (2.5) is true in both cases. By using (2.5) in (1.1), we get

Ala()(Aw())’) + @’n(Qu’(C+x) <0, (=G

Summing the above inequality from (; to ( — 1, and using that {w(()} is increasing
sequence, we obtain
(-1

a(Q)(Aw(Q))’ < a(G)(Aw(G))’ — 1 Y n(s)w’(s + k)

s=(2

C1

() (Aw(()’ = p’uw’ (G + ) Y n(s).

$=(2

(2.6)

For any w € (0,w,) satisfying (2.1), there exists (3 > (s such that

o
as(s+ k)P (s +k+1)
1 1
= w |:95(§_|_ ,{) o 95((3 + K):| ;> G 2.7

Using (2.7) along with the fact that lim,_,, #(¢) = 0 in (2.6), we see that

M
Mh

(O (Aw(Q)’ < alGe)(Aw(G))’

1 1
— 1w’ (G + K) {95(C—|—/@) _65(§3—|—m)} — —oo as ( — oo,

which contradicts the positivity of {Aw(()}.

(iii) Since {a% (¢)Aw(()} is a negative and decreasing sequence, we have

a (Q)Aw(C). (2.8)

g
o
Vv
|
(]
—_
&
&=
>
g
=
V
X
O
m\»—t
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Hence

A(w(@)_ a? (A <><>+w<<)20
a3 (O)0(Q)0(C +1)

(iv) This can be proved directly from (C7) and (2.5).

(v) From (i) and (i), {w({)} is positive and decreasing sequence and so,
lime_,o w(¢) = 1 > 0. On the contrary, suppose that w(¢) > > 0 for ( > (» > (.
Consequently, (1.1) becomes

Ala(O)(Aw(C)?) < =1°(1 —po)’n(C), ¢ > . (2.9)

Summing (2.9) from ¢, to { — 1 and using (2.7) we have, for any w € (0, w,) and (3 > (s
large enough,

o(O(Aw(Q)) < ~I(1 — py)’ CE{; n(s)

S {96@1 nRe »e)}

CESS ;]Z!)ﬁ ForsFaE)
Summing the above inequality from (3 to ¢ — 1, we obtain

w(¢) < w(G) ~ (1 po fsz@, i [95(81+ ]

— (@) - 10 _m)%;@ e [ e ]

w(G) ~ 11 = po) Vo {1 - %} =~ aé(sw;(s T k)

w(¢) < w(Gy) — 11— po) I {1 - Z‘E * ;} % QfC(Cf)) S —o0as ¢ — oo,

This is a contradiction. Hence [ = 0.This completes the proof.

[
Lemma 2.2. Suppose that w, > 0. If {y(()} is an eventually positive solution of (1.1),
then for any €, € (0, 1),

(i) A ( 95’(:”‘55 C)) < 0 eventually;
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(ll) €owp < 1;
(iii) o, < 0.
Proof. Pick (1 > (o withy(¢) > 0, y(C+&) > 0,and y(¢ + ) > 0for ¢ > (3. {w({)}

satisfies Lemma 2.1 for ¢ > (3, and (2.1) is true.
Applying Lemma 2.1 (iv) in (1.1), we get

Ala(O)(Aw(€)?) + (1 = po)’w’ (¢ + #)n(¢) <0, ¢ >,
which in view of (2.1) implies

W6<1 —p0)6
as (C+ RK)IH(C + K+ 1)

Aa(Q)(Aw(())’) + wW(C + k) < 0. (2.10)

(1) Summing (2.10) from (; to ¢ — 1 and applying Lemma 2.1 (ii), we see that

-1

'

5 5 _ Y 0 5
a(Q)(Aw(())” < a(G)(Aw(Gr))” — w(l — po) L T (s nt Y (s +x)
— )
5_ NG
< @) (Bw6))” = wll = pofw(C +5) 3—2421 as (s + k)0 (s + ks + 1)
5 5, 8 1 1
< al@) B0 ~ o1 =G+ ) | s~ e
2.11)
By Lemma 2.1 (v), there is (» > (; such that
1 —po)°w’ (¢ +
a(@)(du(e)) + LRI <o 2
Hence, using (2.11) and the non-decreasing nature of {w(()/0({)}, we obtain
5
AQAw(Q) < (1 =) g,
that is
6(C)as () Aw(¢) < —V/aw(1 = po)w(C) = —enww ((),
where ¢) = {/w/w,. Therefore,
A () ) 0(Q)as (QAw(Q) + epwow(€) _ |
(GEOWO(O = OIS+ 1) =0
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(ii) The result is based on the reality that {%} is increasing and {9;”+{fzo} is
decreasing.

(iii) Suppose that o, = co. By (i), for arbitrary fixed o € [1, 00), there exists (3 > (o

such that
w(( + k) > (%) w(( +2K) > o w((+26), (=G (212

Let us choose ¢ such that )
o — (2.13)
€oWo

Summing (2.10) from (3 to ( — x — 1 and using (2.12) we get

(—kr—1

e A < . 5 (1)) dw’(s + k)
((—r)(Aw(¢—k))" < a(C3)(Aw((s))’ —w(1—po) ZC b (s + R)0H (s + K+ 1)

Using the decreasing nature of {a/(¢)(Aw(¢))’}, we get

(—k—1

a(O)(Aw(Q))’ < al(és)(Aw(Gs))’ —w(l—po)*w’(¢) Y

s=(3

)
as(s+ k)P (s +r+1)

As in part (i) of the proof, we attained
0(¢ + m)a%(g + K)Aw(C + k) < =0 Yw(l — po)w(C + K) = =0 “Ceqwow(C + k),

which by virtue of (2.13) implies

=

0(C + r)ad (C+ k) Aw(( + k) < —w(C + k),

This contradicts the Lemma 2.1 (ii1) and hence the proof. L]

and therefore,

The following first main result of the paper has been proved using Lemma 2.2.
Theorem 2.3. If w, > 0 and o, = oo then (1.1) is oscillatory.

Lemma 2.4. Suppose that w, > 0 and {y(()} is an eventually positive solution of (1.1).

w(()
2 (i) <
- maz {p°(1 — p)o, ™ : 0 < p < 1}‘
B (1= po)°

Then, for any k € Ny, we have

eventually and

(2.14)

*
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Proof. Pick (; > (y such that y(¢) > 0, y(¢ + &) > 0, and y(¢ + k) > 0 for ¢ > (3,
{w(()} satisfies Lemma 2.1 for ¢ > (;, and (2.1) is true. The proof is split into two
portions.

First, we establish by means of introduction that for arbitrary ¢, € (0,1) and ( large
enough,

0(C)as (Q)Aw(C) < —exerw(C),

which implies

w(¢)
A 2.1
(96%(0) <0, kel (2.15)
where ¢, € (0,1) is defined by
w
€y - = 3 -,
Wi

1 —w, ok

. €pd

o= YT oo FEN
*

for 0 and w given by (2.1). The value of ¢ is arbitrary and depends on values of o and
w. Itis easy to verify that
lim € = 1.
(w,0)—= (wx,04)
By Lemma 2.1 (ii1) and (2.15), we have
1 —epwr > 0.

From Lemma 2.2 (i), (2.15) is true for £k = 0. Next, suppose that (2.15) for some k£ > 0
and ( > (; > (3. Summing (2.10) from (i to ¢ — x — 1, we have

(—r—1

a(¢ = ®)(Aw(¢ = ))* < alG)(Aw(G))’ = w(l =po)® Y nls)w’(s+x)
or o
a(Q)(Aw(())’ < a(G)(Aw(r))’
(1~ po) Cél 0O (s + gw(j(: - L)Tl(s)

or

a(Q)(Aw(())" < () (Aw(Gr))’

w(¢) )
—w(l=po)® (o 05k (s + ) (s)
(#%5) 2
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or

(O (Aw(())’ < a(G)(Aw(Gr))’

W) NS00+ 8) \
—w(l—p)° <9€kwk(o> SZC:IC <9(S n 2@) 0%k (5 + 2k)n(s + K)

where we applied the mathematical induction hypothesis (2.15) in the last two
inequalities and applying the decreasing nature of {a(¢)(Aw(¢))°}. Using (2.1) in
the last inequality, we arrive at

w(C) )4“ 5

b (s + 26)05H 10w (s + 26 + 1)

or

() (Aw(Q))? < alG)(Aw(G))?
_Wm(l_m)&( w<<>)>5{ 1 1 }

1— €LWE ferwr (C 95(1*51@‘%)(( + /ﬂl) - 05(1*%‘#/&)((]{: + /i)

Q) (Aw(())’ < a(Ge)(Aw(Gr))’

wo.éqc%(l _ p0)6 w(C) & 1 1
N 1 — epwy (8%%(()) |:96(1_€kwk)(<') N GO(I—exwon) (¢, + m)] . (2.16)

In view of (2.15), the sequence {9§+’9(C)} is bounded from above. We claim that

()
g~

To prove the assert, it is enough to show that there exists e > 0 with

A ( 9“;(2) <0. 2.17)
Indeed, if
w(¢) =c> 0,

(oo 05 (()
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then

wo
gote(Q) = 9(0)

which is a contradiction to (2.17). By lim._,5 #(¢) = 0, we see that there are

[ e [ gwr-1ler1-1) s iﬂ
I — ep—1wp—1

— 00 as ( — 00, (2.18)

and C,; > (} such that

! ! 1° ! > ¢
e (Q) P (G r) L e aa(g) =
Using the above estimate in (2.16), we obtain
léwaéskwk(l _]90)5 (w(<>>5 ,
a(O)(Aw(0))° < 7 > (.

that is

() () Aw(C) < (1L = po)o ™ ¢ —"—u(¢)

Simple computation shows that

w o€k g €k—1Wk—1
l(l —po)O'ekwk of —————— — €W — €gWo < 5 - .
1-— €W \/1 — €W \/1 — €p—_1WE—1

Since ¢, is arbitrary large, in view of (2.2), we see that

€xWr > Wk—1, (2.19)
and hence
5 ! gk—1Wk—1
(1 — €Wk s/ T > -
(1= po)o ™™ ¢ 1— epup ok = 00 ((71 —wp1 VI- €k1wk1)
=:¢> 0.
Therefore,

0(C)as (Q)Aw(Q) < —(egwr + €)w(C),

and (2.17) is true. Hence, we prove the claim and hence there is ,;/ > C ,; such that

wo® s (1 — po)® ( w(¢) >>5 1

1-— €Wk Qerwr (C Qd(l—ekwk)(gk + lﬁ)

<0, ¢>¢.
(2.20)

o) (Aw(Ge))* +
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Using (2.20) in (2.16) implies that

(QAw() < =(1 = po)o ™ i ——w(() = —arwew()  (2.21)
€rWi

which complete the induction step.

=

0(¢)a

and

Now, for some k € Ny, €,.41 € (0, 1) is arbitrary large, we assume that €, < i, where
[ 1s given by (2.3). Applying (2.19) in (2.21) , we have

0(C)as (O)AW(C) < —eppwrs1w(C) < —ermalporw(€) < wpw(C),

which immediate implies.
w(¢) )
A < 0.
(9%(( )

By Lemma 2 (iii), we derive that w; < 1 for any k£ € Nj. This fact together with (2.2),
we have {wy.} is bounded above and increasing sequence. So, limy_ ., wy = 1, where

1 1s the smallest positive root of
w1 = po)° = p’(1 = p)o ",
which implies (2.14) and hence the proof. []

Corollary 2.5. Assume w, > 0 and o, < oco. If {y(Q)} is an eventually positive
solutions of (1.1) with w(({) > 0 with Aw(¢) < 0, then for any i € (0,1)

w(¢)
) > %, k€N, 2.22
w(c + Ii) Z MO, 0 ( )
Proof. From Lemmas 2.1 (i) and 2.4, we have w(¢{) > 0 and A < ﬁ,ﬁ%) < 0 eventually.
Therefore,
w(¢) _ w(C+r)
> , 2.23
#(Q) () 22
which implies (2.22). O
Applying Lemma 2.4, we prove our second main result.
Theorem 2.6. Suppose that w, > 0 and o, < oco. If
(1 — p)o, " 1
_ maz{p’(l - po, ™0 <p <1} (2.24)

’ (1=po)° ’
then (1.1) is oscillatory.
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3. EXAMPLE

Example 3.1. Let us consider the second-order difference equation

A <<%<< #03 (a (30) + 506 - 1>))3> U =0 (22 @

2
3

Here, we have a(¢) = (3 (¢ + 1)3, p(¢) = % n(¢) = CL% §=-1k=1landé =13

We can easily show that 6(() = % < 00, Wy > 0, and o, < co. Also we can choose

Po = % We can easily check that

ol

(1—p):0<pu<l1
(2)°

So, all the assumptions of the Theorem 2.6 one verified and hence every solution of

i

Wx > max

i

(3.1) is oscillatory.

Example 3.2. Consider the following second-order neutral advanced difference

equation

(S

A (Cé(g+1)é (A (y(() +C—i1y(é+1)>> ) + Cléyé(CJr 1)=0; ¢>1

3.2)
Here, a(C) = ¢5(C+1)5, p(¢) = ar Q) = CL%’ §=1rk=1and = ;. Wecan
1

easily show that 6(¢) = ¢ < 00, wy = b, and o, = 1. Also, we can easily check that

rl=

I

(1—p):0<pu<l
(3)°

All the assumptions of the Theorem 2.6 are verified and hence every solution of (3.2) is

W > Maz

oscillatory.
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