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Abstract

We obtained oscillation criteria for the second-order half-linear neutral advanced
difference equations of the kind

∆(α(ζ)(∆w(ζ))δ) + η(ζ)yδ(ζ + κ) = 0; ζ ≥ ζ0,

where w(ζ) = y(ζ) + p(ζ)y(ζ + ξ). We provide a new oscillation condition,
which significantly improves the existing ones, by providing a new axiom bound
for a non-oscillatory solution. The derived oscillation constant is unimprovable in
a certain nonneutral case.
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1. INTRODUCTION

The goal of this research is to investigate the oscillation of the second-order neutral
difference equation of advanced argument of the type

∆(α(ζ)(∆z(ζ))δ) + η(ζ)yδ(ζ + κ) = 0; ζ ≥ ζ0. (1.1)

where w(ζ) = α(ζ)+ p(ζ)y(ζ + ξ) and ∆ is the forward difference operator defined by
∆y(ζ) = y(ζ + 1)− y(ζ). Without further mention, we will assume that

(C1) δ > 0 is a ratio of odd positive integers;

(C2) ξ is an integer and κ is a positive integer;

(C3) {α(ζ)}∞ζ=ζ0
is sequence of positive real numbers;

(C4) {η(ζ)}∞ζ=ζ0
is non-increasing, non-negative real numbers and η(ζ) ̸≡ 0 for

sufficiently large values of ζ;

(C5) {p(ζ)}∞ζ=ζ0
is a non-negative real sequence;

(C6) The equation (1.1) is in so-called non-canonical form,

i.e.,

θ(ζ) :=
∞∑
s=ζ

1

α
1
δ (s)

< ∞; (1.2)

(C7) there exists a constant p0 with 0 ≤ p0 < 1 and

p0(ζ) ≥

p(ζ) θ(ζ+ξ)
θ(ζ)

for ξ ≤ 0,

p(ζ) for ξ ≥ 0.
(1.3)

Let ϕ = min{0, ξ}. A solution of (1.1) is a real sequence {y(ζ)} which is defined for
all ζ ≥ ζ0 + ϕ and satisfies equation (1.1) for all ζ ∈ N(ζ0) = {ζ0, ζ0 + 1, ζ0 + 2, . . .}.
A nontrivial solution {y(ζ)} of equation (1.1) is said to be oscillatory if it a neither
eventually positive nor eventually negative and it is non-oscillatory otherwise.

A large number of authors have studied into second-order linear difference equations.
This is most likely due to the fact that such equations are functional relations using
three consecutive terms of sequences, which are the next most difficult after functional
relations involving two consecutive terms of sequences on the complexity scale.

Although there are a variety of dynamical behaviours for solutions to second-order
difference equations, we will only consider conditions that are sufficient for all solutions
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of [16] to be oscillatory in this paper. Several recent articles, particularly those by
Zhang and Cheng [19], Wong and Agarwal [17, 18] as well as Thandapani et. al [16]
have attracted our interest.

The study of oscillation for solutions of second-order neutral difference equations has
received much interest. Second-order neutral difference equations are discussed in the
articles [14, 15], whereas the second-order self-conjugate neutral difference equation is
discussed in the work [4].

The application of the difference equation with advanced argument is in the progression
of growth rate, which does not only rely on the present but also extends into the future.
Incorporating a more advanced argument persuades the activities that are immediately
available and useful for economic crises, population dynamics and decision-making, for
example, are phenomenal problems that are expected to exhibit [1, 6]. The following
equation can be used to describe the population of the future population growth limit

∆(a(ζ))∆y(ζ) + p(ζ)y(g(ζ)) = 0.

Despite the fact that delay difference equations have received a lot of attention, there
have been few investigations on equations with advanced arguments [8, 10, 12, 13, 20].

Murugesan et al. [10] derived sufficient conditions for oscillation to the second-order
advanced difference equation

∆(α(ζ)(∆y(ζ))δ) + η(ζ)yδ(ζ + κ) = 0, ζ ≥ ζ0.

Under the condition that
∑∞

ζ=ζ0
1

α
1
δ (ζ)

< ∞.

Dinakar et al. [5] derived sharp conditions for the oscillation of every solution of the
second-order advanced noncanonical difference equation

∆(a(ζ)(∆y(ζ))δ) + η(ζ)yδ(κ(ζ)) = 0, ζ ≥ ζ0.

In [8], we derived oscillatory conditions for the second-order noncanonical difference
equation of the delay and advanced type

∆(α(ζ)∆y(ζ)) + η(ζ)y(ζ + κ) = o; ζ ≥ ζ0.

In [7], we derived single-condition criteria for the oscillation to the equation (1.1) for
p(ζ) ≡ 0.

We shall enhance the lower bound of the quantity w(ζ)/w(ζ + κ) consecutively up to
its limit value in this study, using a different technique. The oscillation criteria for (1.1)
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is the major conclusion of the study, and it is a direct result of the observed lower and
upper bounds of a nonoscillatory solution.

2. MAIN RESULTS

All functional inequalities that occur in the following are assumed to hold eventually,
that is, they are satisfied for all ζ large enough. We only need to be concerned with
positive solutions of (1.1) in the argument of the major conclusions, as usual and
without compromising generality, because the proofs for eventually negative solutions
are comparable.

Our results are based on the assumption that ω∗ must be positive, where

ω∗ =
1

δ
lim inf
ζ→∞

α
1
δ (ζ + κ)θδ+1(ζ + κ+ 1)η(ζ).

Also, let us define

σ∗ := lim inf
ζ→∞

θ(ζ)

θ(ζ + κ)

and notice that σ∗ ≥ 1. We will frequently use the fact that there exists a ζ∗ ≥ ζ0,
sufficiently large,with the property that for arbitrary fixed σ ∈ [1, σ∗) and ω ∈ (0, ω∗),

η(ζ)α
1
δ (ζ + κ)θδ+1(ζ + κ+ 1) ≥ δω and

θ(ζ)

θ(ζ + κ)
≥ σ on ζ ≥ ζ∗. (2.1)

Let us define a sequence {ωk} by

ω0 := (1− p0) δ
√
ω∗,

ωζ+1 :=
ω0σ

ωk
∗

δ
√
1− ωk

, k ∈ N0.

By induction, it is easy to check that if for some k ∈ N0, ωi < 1, i = 0, 1, 2, . . . , k, then
ωk+1 exists and

ωk+1 = lkωk > ωk, (2.2)

where

l0 : =
σω0
∗

δ
√
1− ω0

,

lk+1 : = σω0(lk−1)
∗

δ

√
1− ωk

1− lkωk

, k ∈ N0. (2.3)

Lemma 2.1. Let ω∗ > 0 and {y(ζ)} be an eventually positive solution of (1.1). Then
{w(ζ)} satisfies the followings, eventually:
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(i) w(ζ) > 0, ∆(α(ζ)(∆w(ζ)))δ < 0, and y(ζ) ≥ w(ζ)− p(ζ)w(ζ + ξ);

(ii) ∆w(ζ) < 0;

(iii) ∆
(

w(ζ)
θ(ζ)

)
≥ 0;

(iv) y(ζ) ≥ (1− p0)w(ζ);

(v) limζ→∞ w(ζ) = 0.

Proof. Let {y(ζ)} be an eventually positive solution of (1.1). Then, we can find ζ1 ≥ ζ0
with y(ζ) > 0, y(ζ + ξ) > 0, and y(ζ + κ) > 0 for ζ ≥ ζ1.

(i) Obviously, for all ζ ≥ ζ1, w(ζ) ≥ y(ζ) > 0, and α(ζ)(∆w(ζ))δ is decreasing
sequence and of one sign because

∆(α(ζ)(∆w(ζ))δ) ≤ −η(ζ)yδ(ζ + κ) < 0.

Now,
y(ζ) = w(ζ)− p(ζ)y(ζ + τ) ≥ w(ζ)− p(ζ)w(ζ + τ), ζ ≥ ζ1. (2.4)

(ii) On the contrary, assume that ∆w(ζ) > 0 for ζ ≥ ζ1. First, we show that

y(ζ) ≥ µw(ζ), ζ ≥ ζ2 ≥ ζ1, (2.5)

where

µ :=

1− p0, ξ ≤ 0,

1− ϵp0, ξ > 0,

p0 is given by (1.3) and ϵ ∈ (1, 1
p0
) which is arbitrary fixed.

If ξ ≤ 0, (2.4) gives

y(ζ) ≥ w(ζ)(1− p(ζ)) ≥ w(ζ)

(
1− p(ζ)

θ(ζ + ξ)

θ(ζ)

)
≥ w(ζ)(1− p0) > 0, ζ ≥ ζ2,

where we made use of the fact that {θ(ζ)} is decreasing and {w(ζ)} is increasing.

Suppose that ξ > 0. Since, {α 1
δ (ζ)∆w(ζ)} is decreasing, we have

w(ζ) = w(ζ1)+

ζ−1∑
s=ζ1

1

α
1
δ (s)

α
1
δ (s)∆w(s) ≥ α

1
δ (ζ)∆w(ζ)

ζ−1∑
s=ζ1

1

α
1
δ (s)

= α
1
δ (ζ)∆w(ζ)R(ζ, ζ1),

where R(ζ, ζ1) =
∑ζ1

s=ζ1
1

α
1
δ (s)

, and hence

∆

(
w(ζ)

R(ζ, ζ1)

)
=

α
1
δ (ζ)∆w(ζ)R(ζ, ζ1)− w(ζ)

α
1
δ (ζ)R(ζ, ζ1)R(ζ + 1, ζ1)

≤ 0.
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Using this monotonicity in (2.4), we get

y(ζ) ≥ w(ζ)

(
1− R(ζ + ξ, ζ1)

R(ζ, ζ1)
p(ζ)

)
.

Now, we see that

lim
ζ→∞

R(ζ + ξ, ζ1)

R(ζ, ζ1)
= 1,

we have, for any ϵ ∈ (1, 1
p0
) and ζ2 ≥ ζ1 sufficiently large,

y(ζ) ≥ w(ζ)(1− ϵp0), ζ ≥ ζ2.

Thus, (2.5) is true in both cases. By using (2.5) in (1.1), we get

∆(α(ζ)(∆w(ζ))δ) + µδη(ζ)wδ(ζ + κ) ≤ 0, ζ ≥ ζ2

Summing the above inequality from ζ2 to ζ − 1, and using that {w(ζ)} is increasing
sequence, we obtain

α(ζ)(∆w(ζ))δ ≤ α(ζ2)(∆w(ζ2))
δ − µδ

ζ−1∑
s=ζ2

η(s)wδ(s+ κ)

≤ α(ζ2)(∆w(ζ2))
δ − µδwδ(ζ2 + κ)

ζ1∑
s=ζ2

η(s). (2.6)

For any ω ∈ (0, ω∗) satisfying (2.1), there exists ζ3 ≥ ζ2 such that

ζ−1∑
s=ζ3

η(s) ≥ ω

ζ−1∑
s=ζ3

δ

α
1
δ (s+ κ)θδ+1(s+ κ+ 1)

≥ ω

[
1

θδ(ζ + κ)
− 1

θδ(ζ3 + κ)

]
, ζ ≥ ζ3. (2.7)

Using (2.7) along with the fact that limζ→∞ θ(ζ) = 0 in (2.6), we see that

α(ζ)(∆w(ζ))δ ≤ α(ζ2)(∆w(ζ2))
δ

− µδωwδ(ζ2 + κ)

[
1

θδ(ζ + κ)
− 1

θδ(ζ3 + κ)

]
→ −∞ as ζ → ∞,

which contradicts the positivity of {∆w(ζ)}.

(iii) Since {α 1
δ (ζ)∆w(ζ)} is a negative and decreasing sequence, we have

w(ζ) ≥ −
∞∑
s=ζ

1

α
1
δ (s)

α
1
δ (s)∆w(s) ≥ −θ(ζ)α

1
δ (ζ)∆w(ζ). (2.8)
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Hence

∆

(
w(ζ)

θ(ζ)

)
=

α
1
δ (ζ)∆w(ζ)θ(ζ) + w(ζ)

α
1
δ (ζ)θ(ζ)θ(ζ + 1)

≥ 0.

(iv) This can be proved directly from (C7) and (2.5).

(v) From (i) and (ii), {w(ζ)} is positive and decreasing sequence and so,
limζ→∞ w(ζ) = l ≥ 0. On the contrary, suppose that w(ζ) ≥ l > 0 for ζ ≥ ζ2 ≥ ζ1.
Consequently, (1.1) becomes

∆(α(ζ)(∆w(ζ))δ) ≤ −lδ(1− p0)
δη(ζ), ζ ≥ ζ2. (2.9)

Summing (2.9) from ζ2 to ζ−1 and using (2.7) we have, for any ω ∈ (0, ω∗) and ζ3 ≥ ζ2
large enough,

α(ζ)(∆w(ζ))δ ≤ −lδ(1− p0)
δ

ζ−1∑
s=ζ2

η(s)

≤ −lδ(1− p0)
δω

[
1

θδ(ζ + κ)
− 1

θδ(ζ2 + κ)

]
∆w(ζ) ≤ − l(1− p0) δ

√
ω

α
1
δ (ζ)

[
1

θδ(ζ + κ)
− 1

θδ(ζ2 + κ)

] 1
δ

.

Summing the above inequality from ζ3 to ζ − 1, we obtain

w(ζ) ≤ w(ζ3)− l(1− p0)
δ
√
ω

ζ−1∑
s=ζ3

1

α
1
δ (s)

[
1

θδ(s+ κ)
− 1

θδ(ζ2 + κ)

] 1
δ

.

= w(ζ3)− l(1− p0)
δ
√
ω

ζ−1∑
s=ζ3

1

α
1
δ (s)θδ(s+ κ)

[
1− θδ(s+ κ)

θδ(ζ2 + κ)

] 1
δ

≤ w(ζ3)− l(1− p0)
δ
√
ω

[
1− θδ(ζ3 + κ)

θδ(ζ2 + κ)

] ζ−1∑
s=ζ3

1

α
1
δ (s)θδ(s+ κ)

w(ζ) ≤ w(ζ3)− l(1− p0)
δ
√
ω

[
1− θδ(ζ3 + κ)

θδ(ζ2 + κ)

] 1
δ R(ζ, ζ3)

θ(ζ3 + κ)
→ −∞ as ζ → ∞.

This is a contradiction. Hence l = 0.This completes the proof.

Lemma 2.2. Suppose that ω∗ > 0. If {y(ζ)} is an eventually positive solution of (1.1),
then for any ϵ0 ∈ (0, 1),

(i) ∆
(

w(ζ)
θϵ0ω0 (ζ)

)
< 0 eventually;
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(ii) ϵ0ω0 < 1;

(iii) σ∗ < ∞.

Proof. Pick ζ1 ≥ ζ0 with y(ζ) > 0, y(ζ + ξ) > 0, and y(ζ + κ) > 0 for ζ ≥ ζ1. {w(ζ)}
satisfies Lemma 2.1 for ζ ≥ ζ1, and (2.1) is true.
Applying Lemma 2.1 (iv) in (1.1), we get

∆(α(ζ)(∆w(ζ))δ) + (1− p0)
δwδ(ζ + κ)η(ζ) ≤ 0, ζ ≥ ζ0,

which in view of (2.1) implies

∆(α(ζ)(∆w(ζ))δ) +
ωδ(1− p0)

δ

α
1
δ (ζ + κ)θδ+1(ζ + κ+ 1)

wδ(ζ + κ) ≤ 0. (2.10)

(i) Summing (2.10) from ζ1 to ζ − 1 and applying Lemma 2.1 (ii), we see that

α(ζ)(∆w(ζ))δ ≤ α(ζ1)(∆w(ζ1))
δ − ω(1− p0)

δ

ζ−1∑
s=ζ1

δ

α
1
δ (s+ κ)θδ+1(s+ κ+ 1)

wδ(s+ κ)

≤ α(ζ1)(∆w(ζ1))
δ − ω(1− p0)

δwζ(ζ + κ)

ζ−1∑
s=ζ1

δ

α
1
δ (s+ κ)θδ+1(s+ κ+ 1)

≤ α(ζ1)(∆w(ζ1))
δ − ω(1− p0)

δwδ(ζ + κ)

[
1

θδ(ζ + κ)
− 1

θδ(ζ1 + κ)

]
.

(2.11)

By Lemma 2.1 (v), there is ζ2 ≥ ζ1 such that

α(ζ1)(∆w(ζ1))
δ +

ω(1− p0)
δwδ(ζ + κ)

θδ(ζ1 + κ)
< 0, ζ ≥ ζ2.

Hence, using (2.11) and the non-decreasing nature of {w(ζ)/θ(ζ)}, we obtain

α(ζ)(∆w(ζ)δ < −ω(1− p0)
δw

δ(ζ)

θδ(ζ)
,

that is
θ(ζ)α

1
δ (ζ)∆w(ζ) < − δ

√
ω(1− p0)w(ζ) = −ϵ0ω0w(ζ),

where ϵ0 =
δ
√
ω/ω∗. Therefore,

∆

(
w(ζ)

θϵ0ω0(ζ)

)
≤ θ(ζ)α

1
δ (ζ)∆w(ζ) + ϵ0ω0w(ζ)

α
1
δ (ζ)θ(ζ)θϵ0ω0(ζ + 1)

< 0, ζ ≥ ζ2.
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(ii) The result is based on the reality that {w(ζ)
θ(ζ)

} is increasing and { w(ζ)
θϵ0ω0 (ζ)

} is
decreasing.

(iii) Suppose that σ∗ = ∞. By (i), for arbitrary fixed σ ∈ [1,∞), there exists ζ3 ≥ ζ2
such that

w(ζ + κ) ≥
(

θ(ζ + κ)

θ(ζ + 2κ)

)ϵ0ω0

w(ζ + 2κ) ≥ σϵ0ω0w(ζ + 2κ), ζ ≥ ζ3. (2.12)

Let us choose σ such that
σϵ0ω0 >

1

ϵ0ω0

. (2.13)

Summing (2.10) from ζ3 to ζ − κ− 1 and using (2.12) we get

α(ζ−κ)(∆w(ζ−κ))δ ≤ α(ζ3)(∆w(ζ3))
δ−ω(1−p0)

δ

ζ−κ−1∑
s=ζ3

δwδ(s+ κ)

α
1
δ (s+ κ)θδ+1(s+ κ+ 1)

Using the decreasing nature of {α(ζ)(∆w(ζ))δ}, we get

α(ζ)(∆w(ζ))δ ≤ α(ζ3)(∆w(ζ3))
δ−ω(1−p0)

δwδ(ζ)

ζ−κ−1∑
s=ζ3

δ

α
1
δ (s+ κ)θδ+1(s+ κ+ 1)

.

As in part (i) of the proof, we attained

θ(ζ + κ)α
1
δ (ζ + κ)∆w(ζ + κ) < −σϵ0ω0 δ

√
ω(1− p0)w(ζ + κ) = −σϵ0ω0ϵ0ω0w(ζ + κ),

which by virtue of (2.13) implies

θ(ζ + κ)α
1
δ (ζ + κ)∆w(ζ + κ) < −w(ζ + κ),

and therefore,

∆

(
w(ζ + κ)

θ(ζ + κ)

)
< 0.

This contradicts the Lemma 2.1 (iii) and hence the proof.

The following first main result of the paper has been proved using Lemma 2.2.

Theorem 2.3. If ω∗ > 0 and σ∗ = ∞ then (1.1) is oscillatory.

Lemma 2.4. Suppose that ω∗ > 0 and {y(ζ)} is an eventually positive solution of (1.1).
Then, for any k ∈ N0, we have

∆

(
w(ζ)

θωk(ζ)

)
< 0

eventually and

ω∗ ≤
max

{
µδ(1− µ)σ−δω

∗ : 0 < µ < 1
}

(1− p0)δ
. (2.14)
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Proof. Pick ζ1 ≥ ζ0 such that y(ζ) > 0, y(ζ + ξ) > 0, and y(ζ + κ) > 0 for ζ ≥ ζ1,
{w(ζ)} satisfies Lemma 2.1 for ζ ≥ ζ1, and (2.1) is true. The proof is split into two
portions.

First, we establish by means of introduction that for arbitrary ϵk ∈ (0, 1) and ζ large
enough,

θ(ζ)α
1
δ (ζ)∆w(ζ) < −ϵkωkw(ζ),

which implies

∆

(
w(ζ)

θϵkωk(ζ)

)
< 0, k ∈ N0, (2.15)

where ϵk ∈ (0, 1) is defined by

ϵ0 : = δ

√
ω

ω∗
,

ϵk+1 : =
ϵ0δ

√
1− ωk

1− ϵkωk

σϵkωk

σωk
∗

, k ∈ N

for σ and ω given by (2.1). The value of ϵk is arbitrary and depends on values of σ and
ω. It is easy to verify that

lim
(ω,σ)→(ω∗,σ∗)

ϵk = 1.

By Lemma 2.1 (iii) and (2.15), we have

1− ϵkωk > 0.

From Lemma 2.2 (i), (2.15) is true for k = 0. Next, suppose that (2.15) for some k > 0

and ζ ≥ ζk ≥ ζ1. Summing (2.10) from ζk to ζ − κ− 1, we have

α(ζ − κ)(∆w(ζ − κ))δ ≤ α(ζk)(∆w(ζk))
δ − ω(1− p0)

δ

ζ−κ−1∑
s=ζk

η(s)wδ(s+ κ)

or

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ω(1− p0)
δ

ζ−κ−1∑
s=ζk

θδϵkωk(s+ κ)
wδ(s+ κ)

θδϵkωk(s+ κ)
η(s)

or

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ω(1− p0)
δ

(
w(ζ)

θϵkωk(ζ)

)δ ζ−κ−1∑
s=ζk

θδϵkωk(s+ κ)η(s)
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or

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ω(1− p0)
δ

(
w(ζ)

θϵkωk(ζ)

)δ ζ−κ−1∑
s=ζk

(
θ(s+ κ)

θ(s+ 2κ)

)δϵkωk

θδϵkωk(s+ 2κ)η(s+ κ)

where we applied the mathematical induction hypothesis (2.15) in the last two
inequalities and applying the decreasing nature of {α(ζ)(∆w(ζ))δ}. Using (2.1) in
the last inequality, we arrive at

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ωσδϵkωk(1− p0)
δ

(
w(ζ)

θϵkωk(ζ)

) ζ−κ−1∑
s=ζk

δ

α
1
δ (s+ 2κ)θδ+1−δϵkωk(s+ 2κ+ 1)

,

or

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ωσδϵkωk(1− p0)
δ

1− ϵkωk

(
w(ζ)

θϵkωk(ζ)

)δ [
1

θδ(1−ϵkωk)(ζ + κ)
− 1

θδ(1−ϵkωk)(ζk + κ)

]

α(ζ)(∆w(ζ))δ ≤ α(ζk)(∆w(ζk))
δ

− ωσδϵkωk(1− p0)
δ

1− ϵkωk

(
w(ζ)

θϵkωk(ζ)

)δ [
1

θδ(1−ϵkωk)(ζ)
− 1

θδ(1−ϵkωk)(ζk + κ)

]
. (2.16)

In view of (2.15), the sequence { w(ζ)
θϵkωk (ζ)

} is bounded from above. We claim that

lim
ζ→∞

w(ζ)

θϵkωk(ζ)
= 0.

To prove the assert, it is enough to show that there exists ϵ > 0 with

∆

(
w(ζ)

θϵkωk+ϵ

)
< 0. (2.17)

Indeed, if

lim
ζ→∞

w(ζ)

θϵkωk(ζ)
= c > 0,
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then
w(ζ)

θϵkωk+ϵ(ζ)
≥ c

θϵ(ζ)
→ ∞ as ζ → ∞, (2.18)

which is a contradiction to (2.17). By limζ→δ θ(ζ) = 0, we see that there are

l ∈

(
σωk−1(ϵk−1−1) δ

√
1− ωk−1

1− ϵk−1ωk−1

, 1

)
and ζ

′

k ≥ ζk such that

1

θδ(1−ϵkωk)(ζ)
− 1

θδ(1−ϵkωk)(ζk + κ)
> lδ

1

θδ(1−ϵkωk)(ζ)
, ζ ≥ ζ

′

k.

Using the above estimate in (2.16), we obtain

α(ζ)(∆w(ζ))δ <
lδωσδϵkωk(1− p0)

δ

1− ϵkωk

(
w(ζ)

θ(ζ)

)δ

, ζ ≥ ζ
′

k,

that is

θ(ζ)α
1
δ (ζ)∆w(ζ) < −l(1− p0)σ

ϵkωk δ

√
ω

1− ϵkωk

w(ζ).

Simple computation shows that

l(1− p0)σ
ϵkωk δ

√
ω

1− ϵkωk

− ϵkωk = ϵ0ω0

(
lσϵkωk

δ
√
1− ϵkωk

− σϵk−1ωk−1

δ
√
1− ϵk−1ωk−1

)
.

Since ϵk is arbitrary large, in view of (2.2), we see that

ϵkωk > ωk−1, (2.19)

and hence

l(1− p0)σ
ϵkωk δ

√
ω

1− ϵkωk

− ϵkωk ≥ ϵ0ω0

(
lσωk−1

δ
√
1− ωk−1

− σϵk−1ωk−1

δ
√
1− ϵk−1ωk−1

)
=: ϵ > 0.

Therefore,
θ(ζ)α

1
δ (ζ)∆w(ζ) < −(ϵkωk + ϵ)w(ζ),

and (2.17) is true. Hence, we prove the claim and hence there is ζ ′′

k ≥ ζ
′

k such that

α(ζk)(∆w(ζk))
δ +

ωσδϵkωk(1− p0)
δ

1− ϵkωk

(
w(ζ)

θϵkωk(ζ)

)δ
1

θδ(1−ϵkωk)(ζk + κ)
< 0, ζ ≥ ζ

′′

k .

(2.20)
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Using (2.20) in (2.16) implies that

θ(ζ)α
1
δ (ζ)∆w(ζ) < −(1− p0)σ

ϵkωk δ

√
ω

1− ϵkωk

w(ζ) = −ϵk+1ωk+1w(ζ) (2.21)

and

∆

(
w(ζ)

θϵk+1ωk+1(ζ)

)
< 0,

which complete the induction step.

Now, for some k ∈ N0, ϵk+1 ∈ (0, 1) is arbitrary large, we assume that ϵk+1 <
1
lk

, where
lk is given by (2.3). Applying (2.19) in (2.21) , we have

θ(ζ)α
1
δ (ζ)∆w(ζ) < −ϵk+1ωk+1w(ζ) < −ϵk+1lkωkw(ζ) < ωkw(ζ),

which immediate implies.

∆

(
w(ζ)

θωk(ζ)

)
< 0.

By Lemma 2 (iii), we derive that ωk < 1 for any k ∈ N0. This fact together with (2.2),
we have {ωk} is bounded above and increasing sequence. So, limk→∞ ωk = µ, where
µ is the smallest positive root of

ω∗(1− p0)
δ = µδ(1− µ)σ−δµ

∗ ,

which implies (2.14) and hence the proof.

Corollary 2.5. Assume ω∗ > 0 and σ∗ < ∞. If {y(ζ)} is an eventually positive
solutions of (1.1) with w(ζ) > 0 with ∆w(ζ) < 0, then for any µ ∈ (0, 1)

w(ζ)

w(ζ + κ)
≥ µσωk

∗ , k ∈ N0. (2.22)

Proof. From Lemmas 2.1 (i) and 2.4, we have w(ζ) > 0 and ∆
(

w(ζ)
θωk (ζ)

)
< 0 eventually.

Therefore,
w(ζ)

θωk(ζ)
>

w(ζ + κ)

θωk(ζ + κ)
, (2.23)

which implies (2.22).

Applying Lemma 2.4, we prove our second main result.

Theorem 2.6. Suppose that ω∗ > 0 and σ∗ < ∞. If

ω∗ >
max{µδ(1− µ)σ−δµ

∗ : 0 < µ < 1}
(1− p0)δ

, (2.24)

then (1.1) is oscillatory.
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3. EXAMPLE

Example 3.1. Let us consider the second-order difference equation

∆

(
ζ

1
3 (ζ + 1)

1
3

(
∆

(
y(ζ) +

1

2ζ
y(ζ − 1)

)) 1
3

)
+

1

ζ
2
3

y
1
3 (ζ + 1) = 0; ζ ≥ 2. (3.1)

Here, we have α(ζ) = ζ
1
3 (ζ + 1)

1
3 , p(ζ) = 1

2ζ
, η(ζ) = 1

ζ
2
3

, ξ = −1, κ = 1 and δ = 1
3
.

We can easily show that θ(ζ) = 1
ζ
< ∞, ω∗ > 0, and σ∗ < ∞. Also we can choose

p0 =
1
2
. We can easily check that

ω∗ > max

µ
1
3 (1− µ) : 0 < µ < 1(

1
2

) 1
3

 .

So, all the assumptions of the Theorem 2.6 one verified and hence every solution of
(3.1) is oscillatory.

Example 3.2. Consider the following second-order neutral advanced difference
equation

∆

(
ζ

1
5 (ζ + 1)

1
5

(
∆

(
y(ζ) +

1

ζ + 1
y(ζ + 1)

)) 1
5

)
+

1

ζ
4
5

y
1
5 (ζ + 1) = 0; ζ ≥ 1.

(3.2)
Here, α(ζ) = ζ

1
5 (ζ + 1)

1
5 , p(ζ) = 1

ζ+1
, η(ζ) = 1

ζ
4
5

, ξ = 1, κ = 1 and δ = 1
5
. We can

easily show that θ(ζ) = 1
ζ
< ∞, ω∗ = 5, and σ∗ = 1. Also, we can easily check that

ω∗ > max

µ
1
5 (1− µ) : 0 < µ < 1(

1
2

) 1
5

 .

All the assumptions of the Theorem 2.6 are verified and hence every solution of (3.2) is
oscillatory.

REFERENCES

[1] Agarwal, R. P., 2000, Difference Equations and Inequalities, Theory, Method and
Applications, CRC Press. ISBN: 9780824790073.

[2] Agarwal, R. P., Bohner, M., Grace, S. R., and D. O’Regan, 2005, Discrete
Oscillation Theory, Hindawi Publishing Corporation, New York.

[3] R. P. Agarwal, S. R. Grace and Regan, D. O’., 2000, Oscillation Theory for
Difference and Functional Differential Equations, Kluwer Academic, Dordrecht.



New Oscillation Criteria for Half-Linear Second-Order Neutral... 121

[4] Agarwal, R. P., Manuel M. M. S., and Thandapani, E., 1997, Oscillatory and
non-oscillatory behavior of second-order neutral delay difference equations Appl.
Math. Lett. 10(2), pp. 103-109.

[5] Dinakar, P., Selvarangam S., and Thandapani, E., 2019, New oscillation conditions
for second order half-linear advanced difference equations, International Journal
of Mathematical Engineering and Management Sciences, 4(6) , pp. 1459-1470 .

[6] Elsgolts L. E., and Norkin, S. B., 1973, Introduction to the theory and applications
of differential equations with deviating arguments. Academic Press, New York,
Vol. 105.

[7] Gopalakrishnan, P., Murugesan, A., Dafik and Ika Hesti Agustin, Oscillation
and Asymptotic Behavior of Second-Order Half-Linear Noncanonical Difference
Equations of Advanced Type, Journal of Physics: Conference Series IOP Science
(Accepted).

[8] Gopalakrishnan, P., Murugesan, A., and Jayakumar, C., 2021, Oscillation
conditions of the second order noncanonical difference equations, J. Math.
Computer Sci., Vol.25, pp. 351-360.

[9] Gyori, I., and Ladas, G., 1991, Oscillation Theory of Delay Differential Equations
with Applications, Clarendon press, Ox-ford.

[10] Murugesan, A., and Jayakumar, C., 2020, Oscillation condition for second
order half-linear advanced difference equation with variable coefficients, Malaya
Journal of Mathematik, 8(4), pp. 1872-1879.

[11] Mickens, R. E., 1990, Difference Equations, Theory and Applications, Van
Nostrand-Reinhold, New York.

[12] Ocalan, O., Akin, O., 2007, Oscillatory property for advanced difference
equations, Novi Sad J. Math., 37(1), pp. 39-47.

[13] Ping, B., and Han, M., 2003 Oscillation of second order difference equations
with advanced arguments, Conference Publications, American Institute of
Mathematical Sciences, pp. 108-112.

[14] Thandapani, E., and Arul, R., 1997, Oscillation properties of second-order non-
linear neutral delay difference equations, Indian J. pure. Appl. Math., 28(12).

[15] Thandapani, E., and Sanadarani, P., 1995, On the asymptotic and oscillatory
behavior of second-order non-linear neutral difference equations, Indian J. Pure.
Appl. Math., 26(19).

[16] Thandapani, E., Gyori, I., and Lalli, B. S., 1994, An application of discrete
inequality to second-order nonlinear oscillation, J. Math. Anal. Appl. Vol.186,
pp. 200-208.



122 P. Selvakumar, P. Gopalakrishnan and A. Murugesan

[17] Wong, P. J. Y., and Agarwal, R. P., 1996, Oscillation theorems for certain second
order nonlinear difference equations, J. Math. Anal Appl. Vol.204, pp. 813-829.

[18] Wong, P. J. Y., and Agarwal, R. P., 1996, Oscillation and monotone solutions
of second order quasilinear difference equations, Funkcialaj Ekvacioj Vol.39, pp.
491-517.

[19] Zhang, B. G., and Chen, G. D., 1996, Oscillation of certain second order nonlinear
difference equations, J. Math, Anal. Appl. Vol.199, pp. 827-841.

[20] Zhang and Li, Q., 1998, Oscillation theorems for second-order advanced
functional difference equations, Computers Math. Applic., 36(6), pp. 11-18.

[21] Zhang, Z., and Zhang, J., 1999, Oscillation criteria for second-order functional
difference equations with “summation small” coefficient. Comput. Math. Appl.,
38(1), pp. 25-31.


	Introduction
	Main Results
	Example



