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Abstract

In this study, the semigroup theory and the Schauder fixed point theorem are
applied to prove the existence and uniqueness of mild and strong solutions of
a nonlinear Volterra-Fredholm integro-differential equation of Sobolev type with
nonlocal condition.
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1 Introduction

Integro-differential equations arise in many areas of science and technology, specifically
whenever a deterministic relation involving some continuously varying quantities and
their rates of change in space and/or time are known or postulated [1–3,13,15–20]. The
problem of existence of solutions of evolution equations with nonlocal conditions in
Banach spaces has been studied first by Byszewski [10]. In that paper he has established
the existence and uniqueness of mild, strong and classical solutions of the following
nonlocal Cauchy problem: u′(t) = −Au(t) + f(t, u(t)), t ∈ (t0, t0 + a]

u(t0) + g(t1, t2, ..., tp, u(.)) = u0

(1)
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where −A is the infinitesimal generator of a C0 semigroup T (t) on a Banach space
X , 0 ≤ t0 < t1 < t2 < ... < tp ≤ t0 + a, a > 0, u0 ∈ X and f : [t0, t0 + a]×X −→
X, g : [t0, t0 + a]p × X −→ X are given functions. Subsequently several authors
have investigated the same type of problem to different classes of abstract differential
equations in Banach spaces [4–7,11,14,21–31]. Brill [9] and Showalter [30] established
the existence of solutions of semilinear evolution equations of Sobolev type in Banach
spaces. This type of equations arise in various applications such as in the flow of fluid
through fissured rocks [8], thermodynamics [12] and shear in second order fluids [22].

The purpose of this paper is to prove the existence of mild and strong solutions
for Volterra-Fredholm integro-differential equation of Sobolev type with nonlocal
condition of the form

(Bu(t))′ + Au(t) = f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds+

∫ a

0

h(t, s, u(s))ds, (2)

u(0) +

p∑
k=1

cku(tk) = u0 (3)

where 0 ≤ t1 < t2 < ... < tp ≤ a, B and A are linear operators with domains
contained in a Banach space X and ranges contained in a Banach space Y and the
nonlinear operators f : I × X −→ Y and g, h : ∆ × X −→ Y are given. Here
I = [0, a] and ∆ = {(s, t) : 0 ≤ s ≤ t ≤ a}, t ∈ J := (0, a].

2 Auxiliary results

In order to prove our main theorem we assume certain conditions on the operators A

and B. Let X and Y be Banach spaces with norm |.| and ∥.∥ respectively. The operators
A : D(A) ⊂ X −→ Y and B : D(B) ⊂ X −→ Y satisfy the following hypothesis:

(H1) A and B are closed linear operators,

(H2) D(B) ⊂ D(A) and B is bijective,

(H3) B−1 : Y −→ D(B) is bijective.

From the above fact and the closed graph theorem imply the boundedness of
the linear operator AB−1 : Y −→ Y. Further −AB−1 generates a uniformly
continuous semigroup T (t), t ≥ 0 and so maxt∈I ∥T (t)∥ is finite. We denote M =

maxt∈I ∥T (t)∥, R = ∥B−1∥. Let Br = {x ∈ X : |x| ≤ r} and c =
∑p

k=1 |ck|.
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In this paper, we assume that there exists an operator E on D(E) = X given by the
formula

E =
[
I +

p∑
k=1

ckB
−1T (tk)B

]−1

and Eu0 ∈ D(B)

E

∫ tk

0

B−1T (tk−s)
[
f(s, u(s))+

∫ s

0

g(s, τ, u(τ))dτ+

∫ a

0

h(s, τ, u(τ))dτ
]
ds ∈ D(B).

The existence of E can be observed from the following fact [11]. Suppose that
{T (t)} is a C0 semigroup of operators on X such that ∥B−1T (tk)B∥ ≤ Ce−δtk(k =

1, 2, ..., p) where δ is a positive constant and C ≥ 1. If
∑p

k=1 |ck|e−δtk < 1/C then
∥
∑p

k=1 ckB
−1T (tk)B∥ < 1. So such an operator E exists on X .

Definition 2.1 [28] A continuous solution u of the integral equation

u(t) = B−1T (t)BEu0 −
p∑

k=1

ckB
−1T (t)BE

∫ tk

0

B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]
ds+

∫ t

0

B−1T (t− s)

×
[
f(s, u(s)) +

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]
ds (4)

is said to be a mild solution of the problem (2)-(3) on I

Definition 2.2 [28] A function u is said to be a strong solution of the problem (2)-(3) on
I if u is differentiable almost everywhere on I, u′ ∈ L1(I,X), u(0) +

∑p
k=1 cku(tk) =

u0 and

(Bu(t))′ + Au(t) = f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds+

∫ a

0

h(t, s, u(s))ds, a.e on I.

Remark. A mild solution of the nonlocal Cauchy problem (2)-(3) satisfies the condition
(3). From (4)

u(0) = Eu0 −
p∑

k=1

ckE

∫ tk

0

B−1T (tk − s)
[
f(s, u(s))

+

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]

(5)
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and

u(ti) = B−1T (ti)BEu0 −
p∑

k=1

ckB
−1T (ti)BE

∫ tk

0
B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds+

∫ ti

0
B−1T (ti − s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds.

Therefore

u(0) +

p∑
i=1

ciu(ti)

=
[
I +

p∑
i=1

ciB
−1T (ti)B

]
Eu0

−
[
I +

p∑
i=1

ckB
−1T (ti)B

] p∑
k=1

ckE

∫ tk

0
B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds+

p∑
i=1

ci

×
∫ ti

0
B−1T (ti − s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

= u0 −
p∑

k=1

ck

∫ tk

0
B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds+

p∑
i=1

ci

×
∫ ti

0
B−1T (ti − s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

= u0.

Further assume that,

(H4) g, h : ∆×Br −→ Y is continuous in t and there exist two constants K1, K2 > 0

such that ∥g(t, s, u)∥ ≤ K1, ∥h(t, s, u)∥ ≤ K2 for (s, t) ∈ ∆ and u ∈ Br

(H5) f : I × Br −→ Y is continuous in t on I and there exists a constant L > 0 such
that ∥f(t, u)∥ ≤ L for t ∈ I, and u ∈ Br

(H6) RM∥BEu0∥+ (R2M2a∥BE∥c+RMa)(L+ (K1 +K2)a) ≤ r.
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3 Main Results

Theorem 3.1 If the assumptions (H1) ∼ (H6) hold, then the problem (2)-(3) has a
mild solution on I .

Proof. Let Z = C(I,X) and Z0 = {u ∈ Z : u(t) ∈ Br, t ∈ I}. Clearly, Z0 is a
bounded closed convex subset of Z. We define a mapping F : Z0 −→ Z0 by

(Fu)(t) = B−1T (t)BEu0 −
p∑

k=1

ckB
−1T (t)BE

∫ tk

0
B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds+

∫ t

0
B−1T (t− s)

×
[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds, t ∈ I.

Obviously F is continuous and maps Z0 into itself. Moreover, F maps Z0 into a
precompact subset of Z0. Note that the set Z0(t) = {(Fu)(t) : u ∈ Z0}is precompact
in X, for every fixed t ∈ I . We shall show that F (Z0) = S = {Fu : u ∈ Z0} is an
equicontinuous family of functions. For 0 < s < t, we have

∥(Fu)(t)− (Fu)(s)∥

≤ ∥B−1T (t)− T (s)BEu0∥+R2Ma∥BE∥(L+ (K1 +K2)a)

p∑
k=1

ck∥T (t)− T (s)∥

+

∫ t

0
∥B−1∥∥T (t− θ)− T (s− θ)∥

[
∥f(θ, u(θ))∥+

∫ θ

0
g(θ, τ, u(τ))dτ +

∫ a

0
h(θ, τ, u(τ))dτ

]
dθ

+

∫ t

0
∥B−1∥∥T (s− θ)∥

[
∥f(θ, u(θ))∥+

∫ θ

0
g(θ, τ, u(τ))dτ +

∫ a

0
h(θ, τ, u(τ))dτ

]
dθ

≤ (R∥BEu0∥+R2Ma∥BE∥(L+ (K1 +K2)a)c)∥T (t)− T (s)∥

+ R(L+ (K1 +K2)a)

∫ t

0
∥B−1∥∥T (t− θ)− T (s− θ)∥dθ +RM(L+ (K1 +K2)a)|t− s|.

The right hand side of the above inequality is independent of u ∈ Z0 and tends to zero
as s −→ t as a consequence of the continuity of T (t) in the uniform operator topology
for t > 0. It is also clear that S is bounded in Z. Thus by Arzela˘Ascoli′stheorem, S
is precompact. Hence by the Schauder fixed point theorem, F has a fixed point in Z0

and any fixed point of F is a mild solution of (2)-(3) on I such that u(t) ∈ X for t ∈ I.

Next we prove that the problem (2)-(3) has a strong solution.

Theorem 3.2 . Assume that

(i) Conditions (H1) ∼ (H6) hold;
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(ii) Y is a reflexive Banach space with norm ∥.∥;

(iii) f : I × Br −→ Y is Lipschitz continuous in t that is, there exists a constant
L1 > 0 such that
∥f(t, u)− f(s, v)∥ ≤ L1[|t− s|+ ∥u− v∥] for s, t ∈ I and u, v ∈ Br;

(iv) g, h : ∆ × Br −→ Y is Lipschitz continuous in t that is, there exists a constant
L2 > 0 such that
∥g(t, τ, u) − g(s, τ, u)∥ ≤ Lg|t − s|, ∥h(t, τ, u) − h(s, τ, u)∥ ≤ Lh|t − s| for
(t, τ), (s, t) ∈ ∆ and u ∈ Br;

(v) Eu0 ∈ D(AB−1) and

E

∫ tk

0

B−1T (tk−s)
[
f(s, u(s))+

∫ s

0

g(s, τ, u(τ))dτ+

∫ a

0

h(s, τ, u(τ))dτ
]
ds ∈ D(B);

(vi) u is the unique mild solution of the problem (2)-(3). Then u is a unique strong
solution of the problem (2)-(3) on I .

Proof. Since all the assumptions of Theorem 3.1 are satisfied, then the problem (2)-(3)
has a mild solution belonging to C(I, Br). By assumption (vi), u is the unique mild
solution of the problem (2)-(3). Now, we shall show that u is a unique strong solution
of the problem (2)-(3) on I .

For any t ∈ I , we have

u(t+ h)− u(t)

= B−1[T (t+ h)− T (t)]BEu0 −
p∑

k=1

ckB
−1[T (t+ h)− T (t)]BE

×
∫ tk

0
B−1T (tk − s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

+

∫ h

0
B−1T (t+ h− s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

+

∫ t+h

0
B−1T (t+ h− s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

−
∫ t

0
B−1T (t− s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds
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= B−1T (t)[T (h)− I]BEu0 −
p∑

k=1

ckB
−1[T (t+ h)− T (t)]BE

×
∫ tk

0
B−1T (tk − s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ

∫ a

0
h(s, τ, u(τ))dτ

]
ds

+

∫ h

0
B−1T (t+ h− s)

[
f(s, u(s)) +

∫ s

0
g(s, τ, u(τ))dτ +

∫ a

0
h(s, τ, u(τ))dτ

]
ds

+

∫ t

0
B−1T (t− s)[f(s+ h, u(s+ h))− f(s, u(s))]ds

+

∫ t

0
B−1T (t− s)

[ ∫ s+h

0
g(s+ h, τ, u(τ))dτ −

∫ s

0
g(s, τ, u(τ))dτ

]
ds

+

∫ t

0
B−1T (t− s)

[ ∫ a

0
h(s+ h, τ, u(τ))dτ −

∫ a

0
h(s, τ, u(τ))dτ

]
ds.

Using our assumptions we observe that

∥u(t+ h)− u(t)∥
≤ R∥BEu0∥Mh∥AB−1∥+ cM2R2a∥BE∥(L+ (K1 +K2)a)h∥AB−1∥

+ hRM(L+ (K1 +K2)a) +RM

∫ t

0
L1[h+ ∥u(s+ h)− u(s)∥]ds

+ RM

∫ t

0

[ ∫ s

0
∥g(s+ h, τ, u)− g(s, τ, u)∥dτ +

∫ s+h

0
∥g(s+ h, τ, u)∥dτ

]
ds

+ RM

∫ t

0

[ ∫ a

0
∥h(s+ h, τ, u)− h(s, τ, u)∥dτ +

∫ a

0
∥h(s+ h, τ, u)∥dτ

]
ds

≤ R∥BEu0∥Mh∥AB−1∥+ [cM2R2a∥BE∥h∥∥AB−1∥+ hRM ](L+ (K1 +K2)a)

+ RML1

∫ t

0
[h+ ∥u(s+ h)− u(s)∥]ds+RMah((K1 +K2) + (Lg + Lh)a)

≤ Ph+Q

∫ t

0
|u(s+ h)− u(s)∥ds,

where

P = R∥BEu0∥M∥AB−1∥+ cM2R2a∥BE∥∥AB−1∥+RM(L+ (K1 +K2)a)

+MRL1a+RM(K1 +K2)a+RM(Lg + Lh)a
2

and Q = RML1. By Gronwallis inequality

∥u(t+ h)− u(t)∥ ≤ PheQ, for t ∈ J.

Therefore, u is Lipschitz continuous on I . The Lipschitz continuity of u on I combined with
(iii) and (iv) imply that

t −→ f(t, u(t)), t −→
∫ t

0
g(t, s, u(s))ds and t −→

∫ a

0
h(t, s, u(s))ds, t ∈ (0, a]
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are Lipschitz continuous on I . Using the Corollary 2.11 [28] and the definition of
strong solution we observe that the linear Cauchy problem:

(Bv(t))′ + Av(t) = f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds+

∫ a

0

h(t, s, u(s))ds, t ∈ (0, a],

v(0) = u0 −
p∑

k=1

cku(tk),

has a unique strong solution v satisfying the equation

v(t) = B−1T (t)BEv(0) +

∫ t

0

B−1T (t− s) (6)

×
[
f(s, u(s)) +

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]
ds, t ∈ I

Now, we will show that v(t) = u(t) for t ∈ I . Observe that

v(0) = u(0) = Eu0 −
p∑

k=1

ckE

∫ tk

0

B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]
ds.

So

B−1T (t)BEv(0) = B−1T (t)BEu0 −
p∑

k=1

cKB
−1T (t)BE

∫ tk

0

B−1T (tk − s)

×
[
f(s, u(s)) +

∫ s

0

g(s, τ, u(τ))dτ +

∫ a

0

h(s, τ, u(τ))dτ
]
ds

Substituting this in the equation (6) we see that v(t) = u(t). Consequently, u is a strong
solution of the problem (2)-(3) on I .

4 Example

Consider the following differential equation

∂

∂t
(z(t, x)− zxx(t, x)) = µ(t, z(t, x)) +

∫ t

0

η1(t, s, z(t, x))ds+

∫ π

0

η2(t, s, z(t, x))ds,

(7)

z(t, 0) = z(t, π) = 0, t ∈ J,
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z(0, x) +

p∑
k=1

z(tk, x) = z0(x), x ∈ J := [0, π], 0 < t1 < t2 < ... < tp ≤ a. (8)

Let us take X = Y = L2[0, π]. Define the operators A : D(A) −→ X −→ Y ,
B : D(B) −→ X −→ Y by

Az = −zxx,

Bz = z − zxx,

respectively, where each domain D(A), D(B) is given by

{z ∈ X : z, zx are absolutely continuous, zxx ∈ X, z(0) = z(π) = 0}.

Define the operators f : J ×X −→ Y , g, h : ∆×X −→ Y by

f(t, z)(x) = µ(t, z(t, x)), g(t, s, z)(x) = η1(t, s, z(t, x)), h(t, s, z)(x) = η2(t, s, z(t, x)),

and satisfy the conditions (H4) and (H5) on a bounded closed set Br ⊂ X . Here r

satisfies the condition (H6) Then the above problem (7) can be formulated abstractly as

(Bz(t))′ + Az(t) = f(t, z) +

∫ t

0

g(t, s, z(s))ds+

∫ π

0

h(t, s, z(s))ds, a.e on J.

Also, A and B can be written as

Az =
∞∑
n=1

n2
〈
z, zn

〉
zn, z ∈ D(A)

Bz =
∞∑
n=1

(1 + n2)
〈
z, zn

〉
zn z ∈ D(B)

where zn(x) =
√

2/π sinnx, n = 1, 2, ... is the orthogonal set of eigenfunctions of A.
Furthermore, for z ∈ X we have

B−1z =
∞∑
n=1

1

(1 + n2)

〈
z, zn

〉
zn,

−AB−1z =
∞∑
n=1

−n2

(1 + n2)

〈
z, zn

〉
zn,

T (t)z =
∞∑
n=1

e−n2t/(1+n2)
〈
z, zn

〉
zn.

It is easy to see that −AB−1 generates a strongly continuous semigroup T (t) on Y

and T (t) is compact such that ∥T (t)∥ ≤ e−t for each t > 0. For this T (t), B,B−1

we assume that the operator E exists. So all the conditions of the above theorem are
satisfied. Hence the equation (7) with nonlocal condition (8) has a mild solution.
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