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Abstract 

The solvability of the problem of realizing operator functions of an invariant 
polylinear controller (IPL-controller) of a non-stationary differential system 
(D-system) of the second order, which allows for two bundles of dynamic 
processes of the “trajectory, control” type that are induced in this D-system by 
two different polylinear controllers, to unite these bundles, through the action 
of the IPL-controller, into a subfamily of admissible solutions of the given D-
system. The problem under consideration belongs to the type of nonstationary 
coefficient-operator inverse problems for evolution equations, including 
hyperbolic ones, in a separable Hilbert space and is solved on the basis of a 
qualitative study of the properties of continuity and semiadditivity of the 
RayleighRitz functional operator. The results obtained have applications in 
the theory of nonlinear infinite-dimensional adaptive dynamical systems for a 
class of higher-order polylinear differential models. 

Keywords: inverse problems of evolution equations, non-stationary second-
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1. INTRODUCTION 

Inverse problems of evolution equations (IPEE), as a section of the differential 
realization of dynamical systems, currently represent a fairly extensive area of 
research [110]. In this context, the proposed work continues research [2, 10], while 
understanding the nature of hyperbolic systems (in the technical sense) helps to clarify 
and motivate the entire discussion. Its main goal is to study the problem of existence 
of coefficient operator-functions of an invariant polylinear controller (IPL-controller) 
of a non-stationary differential system (D-system)1 of the second order; however, its 
results can be extended to stationary D-systems [11]. The IPL-controller assumes that 
the controllable D-system must contain in the class of its admissible solutions the 
union of two given bundles of dynamic processes, while each such bundle is 
unlimited in power (finite/countable/continual) and is induced in this system by its 
own “individual” polylinear controller. 

 

2. STATEMENT OF THE PROBLEM OF THE IPL-CONTROLLER 

Further, (X, ||||X), (Y, ||||Y), (Zi, ||||Z), i = 1, …, n are real separable Hilbert spaces (the 
pre-Hilbert property are defined by the norms ||||X, ||||Y, ||||Z), U: = Y × Z1 ×… × Zn is a 
Hilbert space-product with the norm ||(y, z1, …, zn)||U := (||y 2||Y +  i=1,…,n ||zi

2||Z )1/2, L(Y, 
X)  is a Banach space with the operator norm ||||L(Y,X)  of all linear continuous 
operators acting from Y to X (similarly to (L(X, X), ||||L(X,X)) и (L(Zi, X), ||||L(Z,X))), X i is 
the i-th Cartesian power of the space X, L(X i, Zi) is the space of all continuous i-linear 
(polylinear) mappings from X i to Zi. 

Let T := [t0, t1] be a segment of the number scale R with Lebesgue measure μ and  
be the -algebra of all μ-measurable subsets of T. If (B, ||||) is some Banach space, 
then by Lp(T, B), p[1, ) we denote the Banach quotient space of μ-equivalence 
classes of all Bochner integrable mappings f : T  B with the norm ||f

),(L|| BTp
:= (T 

||f()||pμ(d))1/p < , by L(T, B) denotes the space of all (equivalent classes) of μ-
measurable and μ-essentially bounded functions from T to B. 

Moreover, in what follows AC 1(T, X) is the set of all functions g: T  X whose first 
derivative ġ is an absolutely continuous function on T with respect to the measure μ. 

Now let us introduce auxiliary constructions related to the notation system. Through 

H2 := L2(T, Y)  L2(T, Z1)  …  L2(T, Zn) 

 

                                                           
1 The concepts “D-system”, “D-realization”, “D-model”, “D-equation” are synonyms for us. 
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we denote the product space with the topology induced by the norm 

||(h0, …, hn)||H := (T ||(h0(), …, hn()) 2||U μ(d))1/2,  (h0, …, hn)  H2; 

it is clear, that H2 is a Hilbert space (owing to the construction of the norm ||||H). 

     We also need a Banach product space 

L2 := L2(T, L(Y, X))  L2(T, L(Z1, X))  …  L2(T, L(Zn, X)) 

of μ-equivalence classes of ordered systems of operator functions with the norm: 

||(B0, …, Bn)||L := (T (||B0() 2

),(|| XYL +  i=1,…,n ||Bi() 2

),(|| XZL )μ(d))1/2. 

Now let us accept that the operator functions 

A0, A1  L1(T, L(X, X)), A2  L(T, L(X, X)), 

0)},(0)(:{μ 2  XXLtATt  

are given along with the related linear operator ),(L),(: 1

1 XTXTAC D  of the 
form: 

gAgAgAgx 012:)(   D . 

Further, we assume that by fixing (B01, …, Bn1), (B02, …, Bn2)  L2, Di  L(X i, Zi), i 
= 1, …, n, we define polylinear controllers PLj : AC1(T, X)  L2(T, Y)  L1(T, X), j = 
1, 2 of the form: 

(g, u)PLj(g, u): B0ju +  i=1,…,n BijDi(g, …, g), j = 1, 2, 

(B01, …, Bn1)  (B02, …, Bn2). 

Moreover, we accept (all other things being equal) a “behavioristic” agreement that 

N1  {(x, u, D1(x), …, Dn(x, …, x))  AC1(T, X)  H2},  Card N1  exp 0, 

N2  {(x, u, D1(x), …, Dn(x, …, x))  AC1(T, X)  H2},  Card N2  exp 0, 

N1 ∩ N2 = , 

are some given dynamic bundles (sometimes, roughly speaking, we will say “solution 
sets”), induced from two D-systems having the representation: 

D(x) = PL1(x, u),  (x, u, D1(x), …, Dn(x, …, x))  N1,                                            (1) 
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D(x) = PL2(x, u),  (x, u, D1(x), …, Dn(x, …, x))  N2; 

here, as well as below in D-equation (2), equalities are considered as identities in 
L1(T, X). 

     Let us further agree to distinguish in the notation the equivalence class (mod μ) 

(x, u, D1(x), …, Dn(x, …, x))  AC1(T, X)  H2 

from a specific representative of this class, namely, the “individual” vector function 

t (x(t), u(t), D1(x(t)), …, Dn(x(t), …, x(t))). 

     Consider the problem: define in terms of the bundle Ñ := N1  N2 the conditions 

for the existence of a tuple ( 0

~
B ,…, nB

~ )  L2 (operator coefficients of the IPL-
controller), for which the following takes place: 

D(x) = IPL(x, u) := 0

~
B u +  i=1,…,n iB

~
Di(x, …, x),  (x, u, D1(x), …, Dn(x, …, x))  Ñ.    

           (2) 

The solution of the inverse Problem (2) leads to theoretical schemes (see Theorems 1, 
2 below), explaining the physical nature of adaptive control systems, simultaneously 
developing mathematical intuition in IPEE for modeling nonlinear hyperbolic systems 
[1, 12], including number, for models with IPL-controllers possessing the minimal 
operator norm L(X i  Y, Zi) [13]. 

Remark 1. Note that there are no structural obstacles to the extension of the results 
obtained below to IPL-controllers that include polylinear operators from L(X i  Y, Zi) 
and contain k-times (k  i) derivative dx/dt and 1-time programmed control u as an 
additional variable; it is clear that in this formulation, D(x, …, dx/dt, …, u)  L2(T, 
Zi) for any D  L(X i  Y, Zi). Moreover, if within the framework of IPEE we pose the 
problem of solvability of the realization of polylinear operators themselves from L(X 

iY, Zi), i=1, …, n, then the basis of the mathematical apparatus can be the tensor 
product of separable Hilbert spaces [9], since its structure reduces the study of 
polylinear mappings to the study of linear mappings by introducing the operation of 
M2-extendability [6] on the category of special linear spaces. 

 

3. AROUND THE ANALYTICAL CONDITIONS OF THE EXISTENCE OF  

     THE IPL-CONTROLLER 

We denote by L(Т, R) the space of μ-equivalence classes of all real μ-measurable 
functions on T and let L be a quasi-ordering in L(Т, R) such that 1 L 2 if 1(t)  
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2(t) μ-almost everywhere in T. The smallest bound for the subset W  L(Т, R) is 
denoted by supLW if this bound exists for the subset W in the structure of the partial 
ordering L. 

Definition 1 [2, 8]. Consider on  := AC1(T, X)  H2 a nonlinear  

operator :   L(Т, R), constructed according to the following rule: 












,0)(,0

;0)(||)(||||))((||
:))(,(

1

UthifR

UthifthtgD
thgt UX                                      (3) 

where g  AC1(T, X), h  H2. Following [8], operator (3) will be called the 

RayleighRitz operator. 

     From the functional construction (3) it follows that the RayleighRitz operator 
satisfies the simple (but important [8, 9]) relations: 

 L(), (r) = (),    , 0  r  R, 

where   L(Т, R) is the characteristic function of the empty set  . 

Now, before going any further, let us introduce some additional terminology. 

Definition 2. A RayleighRitz operator is said to be semiadditive with weight p  R 

on the set E  , if for any pair (, )  EE the following L-inequality holds: 

( + ) L p() + p(). 

Lemma 1.2 Semiadditivity with a fixed weight of the RayleighRitz operator is a finite 

property for subsets of . 

Remark 2. The relationship between Lemma 1 and the classical TeichmüllerTukey3 
Lemma [14, p. 28] leads to an important geometric characteristic of the semiadditivity 
of the RayleighRitz operator, namely: in  there are maximal sets on which operator 
(3) is semiadditive with some weight p > 0, and these sets cannot be linear in the case 
of p  (0, 1); to make sure, it suffices to consider (when E    a linear set, that is, 
Span E = E) the action of  on the pair (, 0)  EE,   0 (here and below, 0 is a 
zero vector from ) except for the trivial variant E= {0}  . That is why in Lemma 
2 below (and by default, further) it is assumed that the semiadditivity weight of the 
operator  is some fixed number p  [1, ). 

 

                                                           
2 Recall that property P is a property of finite nature in  if the empty set has this property, and E   
has property P  if and only if every finite subset of E has it. 
3 The TeichmüllerTukey Lemma is an alternative form of the Axiom of Choice [14, p. 28]. 
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Lemma 2. Let   ,   0 и p  [1, ). Then there exists a linear set E   that is 

maximal with respect to a set-theoretic inclusion and contains a function , and the 

RayleighRitz functional operator will be semiadditive on E with weight p. 

Example. Let us construct a triple (, N , p), for which operator (3) is semiadditive 
with weight p = 1 on an infinite-dimensional linear manifold N   , closed in (L2(T, 
X), || ),(L2

|| XT )  (H2, ||||H) with the same product topology. Let T  be the characteristic 
function of the interval T, and let the operator functions A0, A1, A2 in the operator D() 
have the representations: A0 = A1 = 0  L1(T, L(X, X)), A2 = Γ  L(X, X), where the 
operator Γ implements a nonzero homothety on X. Further, let N  be the linear 
dynamical bundle (Span N  = N ) induced by all solutions of the D-system (2) with 
the operators A0, A1, A2 and B1 = idX, D1 = Γ, Di = 0  L(X i, Zi), i = 2, …, n, u() = 0 
 L2(T, Y). In this formulation, the operator  is semi-additive on N  with weight p = 
1, since () = T for any vector function   N . 

Now let us consider the continuity property of the RayleighRitz operator [8]. For 
this, on the linear space L(Т, R), consider the vector topology generated by the 
convergence in measure μ. It is well known (see [8]) that this topology is generated by 
a quasinorm of the form: 

  

T

dttftftftfff );(μ|)()(||))()(|1(:),(ρ 21

1

2121
 

in this context (L(Т, R), ) is a complete quasi-normed space. 

In what follows, for any function f  L(Т, R), we denote }0)(:{:supp  xfXxf  
its support defined up to a set of measure zero. 

Lemma 3. Let (, *) be a metric space with metric *:  .  R of the form: 

*((g, h), (ĝ, ĥ)) := (||g||X, ||ĝ||X) + (||h||U, ||ĥ||U) + 

+ μ(supp ||h||U  supp ||ĥ||U),  g, ĝ  AC1(T, X), h, ĥ  H2, 

where (supp ||h||U  supp ||ĥ||U)  is the symmetric difference of the supports supp 
||h||U and supp ||ĥ||U. 

     Then the following statements are true: 

     (i) the metric * is not a quasinorm, and the topology generated by * will not be 

vector (the operations of the vector space  are not continuous in this topology); 

     (ii) the RayleighRitz operator : (, *)  (L(Т, R), ) is continuous. 
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Corollary 1. Let * be a finite-dimensional linear manifold in . Then: 

     (i) the metric space (*, *) is incomplete, and the fundamental sequences from 

(*, *) are contained in the class of Cauchy’s sequences of the space (*, T), where 

T is the topology induced in * from the space (L2(T, X), || ),(L2
|| XT )  (H2, ||||H); 

     (ii) the metric * is a quasinorm, and the topology T * generated by *, is vector if 

f  *\{0}: supp || f ||U := T  (mod μ), 

moreover, T* = T, and the image of the RayleighRitz operator [*] is a -

quasinormal compactum. 

     Further, in the construction of an i-1-dense (i = 1, 2, …) subset in (*, *) we 
follow [14, p. 395]. 

     A necessary condition for the existence of an IPL-controller: 

Theorem 1. If Card Nj < 0, j = 1, 2 and supp || f ||U := T (mod μ), f  Span Ñ \{0}, 
then the following statement is true: 

inverse Problem (2) is solvable, i.e.  ( 0

~
B ,…, nB

~ )  L2  

  supL[Span Ñ]  ,0)sup,(supρ
,LL  

mnmn WW  

where Wn = {Vi: i = 1, …, n}, Vi (i = 1, 2, …) is a finite i-1-dense subset of ([Span 
Ñ], *). 

     It is easy to show that the bound supL Wn for Wn ={w(1),…,w(m)}L(Т, R) is equal 
to the function w(m), which can be calculated using the following recursive rule: 

w(1):= w(1), w(j+1):= 2-1(w(j)+ w(j+1) + |w(j)  w(j+1)|),  j = 2, …, m-1. 

     A sufficient condition for the existence of an IPL-controller: 

Theorem 2. D-model (2) exists if the RayleighRitz operator is semiadditive with 

some weight on the linear span Span Ñ. 

Corollary 2. Let N1, …, Nk  , Card Nj  exp 0, j = 1,…,k and for each index j the 

set of dynamic processes Nj (j = 1, …, k) has a D-realization of the form: 

 (B0j, …, Bnj)  L2 (x, u, D1(x), …, Dn(x, …, x))  Nj: 

D(x) = PLj(x, u)= B0ju +  i=1,…,n BijDi(x, …, x),                                           (4) 
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(B0j, …, Bnj)  (B0l, …, Bnl),  j  l  (j, l {1, …, k}). 

Then: N  :=  Nj is a family of solutions of the D-equation (2) for some tuple 

( 0

~
B ,…, nB

~ )  L2, if the operator  is semiadditive with some weight on Span N . 

 

4. CONCLUSION 

The current period of IPEE development in a separable Hilbert space is largely 
associated with the creation of a new language – the theory of extensions of 
nonstationary Mp-operators4 in an infinite-dimensional setting [15]. This theory 
substantially restructured and strengthened the system and theoretical foundations of 
IPEE methods in Hilbert space and provided a connection between the geometric 
ideas of the extendability of Mp-operators and the qualitative theory of nonlinear 
differential equations in infinite-dimensional spaces, with an emphasis on applications 
[16] rather than on achieving the maximum mathematical generality of presentation of 
this area of inverse problems of modern mathematical physics [12]. In general, it 
would not be an exaggeration to say that the “polylinear structures” of this geometric 

theory, which have been promoted above, provide at least aesthetic satisfaction, since 
the analyst pursuing (among other things) purely aesthetic goals, as a rule, contributes 
to the creation a new formal language, more adapted to maximally satisfy the 
mathematical needs of a physicist. 

In this context, Corollary 2 allows us to construct an algebra of sets [17] of dynamical 
processes with unit  Nj, all elements of which have a D-realization (2). In this case, 
the question of the “individual” characteristic feature of D-realization (4) for each 
individual sheaf Nj (j = 1, …, k)  is especially simply (constructively) solved for one-
element bundles Nj = {(x, u, D1(x), …, Dn(x, …, x))j} by checking (see Theorem 2 
[2]) the conditions: 

((x, u, D1(x), …, Dn(x, …, x))j)  L2(T, R),  j = 1, …, k. 

If these relations (or some of them) are not satisfied, then we can pose the problem of 
finding i-linear operators Di

#
  L(X i, Zi), i = 1, …, n, functions fil: X  X (i, l 

{1,…,n}), as well as a new “source of influence” t u#(t), which provide the above 
conditions, i.e. 

((x, u#, D1
#(f11(y1)), …, Dn

#(fn1(yn), …, fnn(yn)))j)  L2(T, R),  j = 1, …, k. 

 

                                                           
4 The geometric ideas of this theory for finite-dimensional spaces were proposed by A.V. Lakeev in 
[21]. 
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Methodologically, this problem can be interpreted as an adaptive adjustment of the 
structure of the polylinear components of equation (2), which is attractive in D-
modeling of nonlinear neurodynamic processes [18, 19]; in this context, see Examples 
14 [20]. 
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