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Abstract

The solvability of the problem of realizing operator functions of an invariant
polylinear controller (IPL-controller) of a non-stationary differential system
(D-system) of the second order, which allows for two bundles of dynamic
processes of the “trajectory, control” type that are induced in this D-system by
two different polylinear controllers, to unite these bundles, through the action
of the IPL-controller, into a subfamily of admissible solutions of the given D-
system. The problem under consideration belongs to the type of nonstationary
coefficient-operator inverse problems for evolution equations, including
hyperbolic ones, in a separable Hilbert space and is solved on the basis of a
qualitative study of the properties of continuity and semiadditivity of the
Rayleigh—Ritz functional operator. The results obtained have applications in
the theory of nonlinear infinite-dimensional adaptive dynamical systems for a
class of higher-order polylinear differential models.

Keywords: inverse problems of evolution equations, non-stationary second-
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1. INTRODUCTION

Inverse problems of evolution equations (IPEE), as a section of the differential
realization of dynamical systems, currently represent a fairly extensive area of
research [1-10]. In this context, the proposed work continues research [2, 10], while
understanding the nature of hyperbolic systems (in the technical sense) helps to clarify
and motivate the entire discussion. Its main goal is to study the problem of existence
of coefficient operator-functions of an invariant polylinear controller (IPL-controller)
of a non-stationary differential system (D-system)! of the second order; however, its
results can be extended to stationary D-systems [11]. The IPL-controller assumes that
the controllable D-system must contain in the class of its admissible solutions the
union of two given bundles of dynamic processes, while each such bundle is
unlimited in power (finite/countable/continual) and is induced in this system by its
own “individual” polylinear controller.

2. STATEMENT OF THE PROBLEM OF THE IPL-CONTROLLER

Further, (X, ||[|x), (Y, [l-II¥), (Zi, |I||lz), 1 = 1, ..., n are real separable Hilbert spaces (the
pre-Hilbert property are defined by the norms ||:||x, ||-|lv, [|:||z), U: =Y x Z1 X... x Znis a
Hilbert space-product with the norm ||(Y, z1, ..., Zo)[ju := (IYlF + X i=1,...n [1Zi]13 )2, L(Y,
X) is a Banach space with the operator norm ||-||cv,x) of all linear continuous
operators acting from Y to X (similarly to (L(X, X), ||-|lLoxx) u (L(Zi, X), ||-lLzx), X' is
the i-th Cartesian power of the space X, L(X', Zi) is the space of all continuous i-linear
(polylinear) mappings from X to Z;.

-----

Let T := [to, t1] be a segment of the number scale R with Lebesgue measure 1 and @
be the c-algebra of all u-measurable subsets of T. If (.5, ||-||) is some Banach space,

then by Lp(T, .B), pe[l, ) we denote the Banach quotient space of p-equivalence
classes of all Bochner integrable mappings f : T — .5 with the norm ||f||Lp(T' 5= (r

|If(7)||Pu(dt))’P < 0, by LT, B) denotes the space of all (equivalent classes) of p-
measurable and p-essentially bounded functions from T to .A.

Moreover, in what follows AC (T, X) is the set of all functions g: T — X whose first
derivative g is an absolutely continuous function on T with respect to the measure .

Now let us introduce auxiliary constructions related to the notation system. Through

Ha = Lo(T, Y) x La(T, Z1) x .. x La(T, Z0)

! The concepts “D-system”, “D-realization”, “D-model”, “D-equation” are synonyms for us.
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we denote the product space with the topology induced by the norm

Itho, -, )l := (FrlI(ho(®), ..., ha(D) 5 w@T)'>, (ho, ..., hn) € Ha;

it is clear, that H is a Hilbert space (owing to the construction of the norm ||-||n).
We also need a Banach product space

L2 := La(T, L(Y, X)) x Lo(T, L(Z1, X)) x ... x Lao(T, L(Zn, X))

of p-equivalence classes of ordered systems of operator functions with the norm:

1Bo, .., Bo)ll = (r (Bo(DIEy s+ Zit..on [Bi(D) [z ) (D) .
Now let us accept that the operator functions

Ao, A1 € Li(T, L(X, X)), Az € Lo(T, L(X, X)),

ufteT: A(t)=0eL(X,X)}=0

are given along with the related linear operator D: AC*(T,X) — L, (T, X) of the
form:

Xt D(g):= A +Ad+Ag.

Further, we assume that by fixing (Bo, ..., Bn1), (Boz, ..., Bn2) € Lz, Di e L(X ' Zi), i
=1, ..., n, we define polylinear controllers PL;j: ACY(T, X) x L(T, Y) = Li(T, X), j =
1, 2 of the form:

(g, Uy PLj(g, u): Boju + X i=1,...n BiiDi(g, ..., 9),j =1, 2,

(Bot, ..., Bn1) # (Boz, ..., Bn2).

Moreover, we accept (all other things being equal) a “behavioristic” agreement that

Ni < {(X, U, Di(X), ..., Dn(X, ..., X)) € AC!(T, X) x Hz}, Card N < exp No,

N2 < {(X, U, Di(X), ..., Dn(X, ..., X)) € AC!(T, X) x Hz}, Card N < exp No,
NiNN2=¢,

are some given dynamic bundles (sometimes, roughly speaking, we will say “solution
sets”), induced from two D-systems having the representation:

D(x) = PLi(x, u), (X, u, Di(x), ..., Dn(X, ..., X)) € N, (1)



4 V.A. Rusanov, A.V. Daneev, A.V. Lakeyev, Yu.E. Linke

D(x) = PLa(x, u), (x, u, Di(X), ..., Dn(X, ..., X)) € N2;

here, as well as below in D-equation (2), equalities are considered as identities in
Li(T, X).

Let us further agree to distinguish in the notation the equivalence class (mod p)
(X, U, Di(X), ..., Dn(X, ..., X)) € ACY(T, X) x Hz
from a specific representative of this class, namely, the “individual” vector function
t— (x(t), u(t), Di(x(t)), ..., Da(x(t), ..., x(1))).

Consider the problem: define in terms of the bundle N := N; U Na the conditions

for the existence of a tuple (I§O,...,I§n) € Lo (operator coefficients of the IPL-
controller), for which the following takes place:

D(X) = IPL(X, U) :=Byu + X1 B, Di(X, ..., X), (X, U, Di(X), .., Da(X, ..., X)) € K.
(2)

The solution of the inverse Problem (2) leads to theoretical schemes (see Theorems 1,
2 below), explaining the physical nature of adaptive control systems, simultaneously
developing mathematical intuition in IPEE for modeling nonlinear hyperbolic systems
[1, 12], including number, for models with IPL-controllers possessing the minimal
operator norm L(X'x Y, Zi) [13].

Remark 1. Note that there are no structural obstacles to the extension of the results
obtained below to IPL-controllers that include polylinear operators from L(X'x Y, Zj)
and contain k-times (k < i) derivative dx/dt and 1-time programmed control U as an
additional variable; it is clear that in this formulation, D(X, ..., dx/dt, ..., u) € Lx(T,
Zj) for any D e L(X'x Y, Zi). Moreover, if within the framework of IPEE we pose the
problem of solvability of the realization of polylinear operators themselves from L(X
XY, Zi), iI=1, ..., n, then the basis of the mathematical apparatus can be the tensor
product of separable Hilbert spaces [9], since its structure reduces the study of
polylinear mappings to the study of linear mappings by introducing the operation of
Mz-extendability [6] on the category of special linear spaces.

3. AROUND THE ANALYTICAL CONDITIONS OF THE EXISTENCE OF
THE IPL-CONTROLLER

We denote by L(7, R) the space of p-equivalence classes of all real p-measurable
functions on T and let < be a quasi-ordering in L(7, R) such that ¢1 <p ¢z if ¢i(t) <
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d2(t) p-almost everywhere in T. The smallest bound for the subset W < L(7, R) is
denoted by supLW if this bound exists for the subset W in the structure of the partial
ordering <i.

Definition 1 [2, 8]. Consider on II := ACK{T, X) x H, a nonlinear
operator W: IT — L(7, R), constructed according to the following rule:

ID(@)® Il xIIh@®) ll," if h(t)=0eU;

3
OeR, if h(t)=0eU, ©)

t— Y(g,h)(t) ::{

where g € ACYT, X), h e H.. Following [8], operator (3) will be called the
Rayleigh—Ritz operator.

From the functional construction (3) it follows that the Rayleigh—Ritz operator
satisfies the simple (but important [8, 9]) relations:

%2 SLE@), B(rg) =W(@),  cTLO=r e R,
where yz € L(T, R) is the characteristic function of the empty set & € g .
Now, before going any further, let us introduce some additional terminology.

Definition 2. A Rayleigh—Ritz operator is said to be semiadditive with weight p € R
on the set E I, if for any pair (¢’, ¢") € ExE the following <;-inequality holds:

F(o'+ ¢") <L pF(¢) + pF().

Lemma 1.2 Semiadditivity with a fixed weight of the Rayleigh-Ritz operator is a finite
property for subsets of IT.

Remark 2. The relationship between Lemma 1 and the classical Teichmiiller—Tukey?
Lemma [14, p. 28] leads to an important geometric characteristic of the semiadditivity
of the Rayleigh—Ritz operator, namely: in IT there are maximal sets on which operator
(3) is semiadditive with some weight p > 0, and these sets cannot be linear in the case
of p € (0, 1); to make sure, it suffices to consider (when E — I1 a linear set, that is,
Span E = E) the action of ¥ on the pair (¢, 0) € ExE, ¢ # O (here and below, O is a
zero vector from IT) except for the trivial variant E= {0} — II. That is why in Lemma
2 below (and by default, further) it is assumed that the semiadditivity weight of the
operator ¥ is some fixed number p € [1, ).

2 Recall that property 7 is a property of finite nature in IT if the empty set has this property, and E c TT
has property 7 if and only if every finite subset of E has it.
3 The Teichmiiller-Tukey Lemma is an alternative form of the Axiom of Choice [14, p. 28].
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Lemma 2. Let ¢ € ITI, $ 0 u p € [1, o0). Then there exists a linear set E — IT that is
maximal with respect to a set-theoretic inclusion and contains a function ¢, and the
Rayleigh—Ritz functional operator will be semiadditive on E with weight p.

Example. Let us construct a triple (¥, N, p), for which operator (3) is semiadditive

with weight p = 1 on an infinite-dimensional linear manifold N < IT, closed in (Lx(T,
X)s 1Nl ¢r.xy ) x (Hz, [[-]|H) with the same product topology. Let y1 be the characteristic

function of the interval T, and let the operator functions Ao, A1, A2 in the operator D(+)
have the representations: Ao = A1 = 0 € Li(T, L(X, X)), Ao = I" € L(X, X), where the
operator I’ implements a nonzero homothety on X. Further, let N be the linear
dynamical bundle (Span N = N ) induced by all solutions of the D-system (2) with
the operators Ao, A1, A2 and By =idx, D1=17, Di=0 e L(X', Zi),i=2, ...,n,u(-) =0
e La(T, Y). In this formulation, the operator ¥ is semi-additive on N with weight p =
1, since W(¢) = 1 for any vector function g € N .

Now let us consider the continuity property of the Rayleigh—Ritz operator [8]. For
this, on the linear space L(7, R), consider the vector topology generated by the
convergence in measure L. It is well known (see [8]) that this topology is generated by
a quasinorm of the form:

p(fy, £,) = [ (] (1) £, D £,0) - £, () [u(dt);

in this context (L(7, R), p) is a complete quasi-normed space.

In what follows, for any function f € L(7, R), we denote supp f :={xe X : f(x) =0}
its support defined up to a set of measure zero.

Lemma 3. Let (I, p*) be a metric space with metric p*: IT xTI — R of the form:
p'((9, h), (& 1) = p(llglx, [1g]x) + p(hllu, [I4]lu) +
+ pu(supp [lhlju A supp |IA]lu), g, & € AC'(T, X), h, & € H,

where (supp |lh[lu A supp I4]lu) € g is the symmetric difference of the supports supp
|Ih|ju and supp ||4||u.

Then the following statements are true:

(i) the metric p” is not a quasinorm, and the topology generated by p* will not be
vector (the operations of the vector space IT are not continuous in this topology);

(i) the Rayleigh—Ritz operator ¥: (IL, p*) — (L(T, R), p) is continuous.
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Corollary 1. Let IT" be a finite-dimensional linear manifold in I1. Then:

(i) the metric space (IT", p*) is incomplete, and the fundamental sequences from
(T, p") are contained in the class of Cauchy s sequences of the space (IT", ), where

T is the topology induced in IT" from the space (La(T, X), [-ll,r.x)) X (Ha, [[-I);

(i) the metric p” is a quasinorm, and the topology T * generated by p”, is vector if
vf e IT\{0}: supp || f|lu:=T (mod p),

moreover, §* = 7, and the image of the Rayleigh-Ritz operator W[II'] is a p-
quasinormal compactum.

Further, in the construction of an i'-dense (i = 1, 2, ...) subset in (IT', p*) we
follow [14, p. 395].

A necessary condition for the existence of an IPL-controller:

Theorem 1. If Card Nj < No, j=1, 2 and supp || f [Ju :== T (mod p), f € Span N \{0},
then the following statement is true:

inverse Problem (2) is solvable, i.e. 3 (§0,..., I§n) elL,=>

= 3 sup.¥P[Span N] < p(sup, W,,sup, W, ) ———0,

n, m—oo

where Wo=U{Vi:i=1,...,n}, Vi(i=1,2,...)is afinite i"*-dense subset of (¥[Span
NI, p").

It is easy to show that the bound supr Wn for Wn ={w),....wm)}cL(7, R) is equal
to the function W™, which can be calculated using the following recursive rule:

w®:= wipy, D= 27w+ wiigy + (WD — we)), j=2, ..., m-1.
A sufficient condition for the existence of an IPL-controller:

Theorem 2. D-model (2) exists if the Rayleigh-Ritz operator is semiadditive with
some weight on the linear span Span N.

Corollary 2. Let Ny, ..., N« IT, Card N; < exp No, j = 1,...,k and for each index j the
set of dynamic processes Nj (j = 1, ..., k) has a D-realization of the form:

3 (Boj, ..., Brj) € Lo V(x, u, D1(X), ..., Dn(X, ..., X)) € N;:

D(x) = PLj(x, u)= Boju + 2 i=1....n BijDi(x, ..., X), (4)
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(Boj, .-, Bnj) #(Bol, ..., Bn), J=1 (J, 1 €{1, ..., k}).

Then: N = U Nj is a family of solutions of the D-equation (2) for some tuple

(IRB'0 §n) e L., if the operator ¥ is semiadditive with some weight on Span N .

4. CONCLUSION

The current period of IPEE development in a separable Hilbert space is largely
associated with the creation of a new language — the theory of extensions of
nonstationary Mp-operators* in an infinite-dimensional setting [15]. This theory
substantially restructured and strengthened the system and theoretical foundations of
IPEE methods in Hilbert space and provided a connection between the geometric
ideas of the extendability of Mp-operators and the qualitative theory of nonlinear
differential equations in infinite-dimensional spaces, with an emphasis on applications
[16] rather than on achieving the maximum mathematical generality of presentation of
this area of inverse problems of modern mathematical physics [12]. In general, it
would not be an exaggeration to say that the “polylinear structures” of this geometric
theory, which have been promoted above, provide at least aesthetic satisfaction, since
the analyst pursuing (among other things) purely aesthetic goals, as a rule, contributes
to the creation a new formal language, more adapted to maximally satisfy the
mathematical needs of a physicist.

In this context, Corollary 2 allows us to construct an algebra of sets [17] of dynamical
processes with unit U Nj, all elements of which have a D-realization (2). In this case,
the question of the “individual” characteristic feature of D-realization (4) for each
individual sheaf Nj (j =1, ..., k) is especially simply (constructively) solved for one-
element bundles Nj= {(x, u, Di(X), ..., Dn(X, ..., X))j} by checking (see Theorem 2
[2]) the conditions:

P((X, U, Di(X), ..., Da(X, ..., X)) € Lo(T,R), j=1, ..., k.

If these relations (or some of them) are not satisfied, then we can pose the problem of
finding i-linear operators Di* € L(X ', Z), i = 1, ..., n, functions fi: X — X (i, |
e{l,...,n}), as well as a new “source of influence” t—u*(t), which provide the above
conditions, i.€.

\P((X, U#, Dl#(fll(yl)), ceey Dn#(fnl(yn), ceey fnn(yn)))J) € L2(T, R), J = 1, ceey k

4 The geometric ideas of this theory for finite-dimensional spaces were proposed by A.V. Lakeev in
[21].
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Methodologically, this problem can be interpreted as an adaptive adjustment of the
structure of the polylinear components of equation (2), which is attractive in D-
modeling of nonlinear neurodynamic processes [18, 19]; in this context, see Examples
1-4 [20].
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