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Abstract

In this paper we propose a finite difference scheme for temporal discretization
of the time-fractional thermistor problem, which is obtained from the so-called
thermistor problem by replacing the first-order time derivative with a fractional
derivative of order α (0 ≤ α ≤ 1). An existence result is established for the semi-
discrete problem. Stability and error analysis are then provided, showing that the
temporal accuracy is of order 2− α.
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1 Introduction
Thermistor is a generic name for a device made from materials whose electrical conduc-
tivity is highly dependently on temperature. The thermistor problem consists of a system
of nonlinear parabolic-elliptic partial differential equations with quadratic growth in the
gradient and with appropriate boundary conditions,

∂u

∂t
−4u = σ(u)|∇ϕ|2 in Ω× (0, T ), (1.1)

div(σ(u)∇ϕ) = 0 in Ω× (0, T ), (1.2)
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which model the coupling of the thermistor to its surroundings. To complete the model,
we prescribe the boundary conditions and the initial condition for the temperature:

∂u

∂n
= 0 or u = 0, on ∂Ω× (0, T ),

ϕ = ϕ0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1.3)

where Ω ⊆ Rn(n ≥ 1) is a bounded open domain with Lipschitz boundary, u(x) is
the temperature inside the conductor, ϕ(x) is the electrical potential, and σ(u) is the
temperature dependent electrical conductivity. Here n denotes the outward unit normal

and
∂

∂n
= n · ∇ is the normal derivative on ∂Ω. The first equation describes the

diffusion of heat in the presence of Joule effect due to the electrical current, while the
second equation represents the conservation of electrical charges [6,8,17]. Joule heating
is generated by the resistance of materials to electrical current and is present in any
electrical conductor operating at normal temperatures. The advantages of thermistors as
temperatures measurement devices include their low cost, high resolution, and flexibility
in size and shape. For their concrete applications we refer the interested reader to [11,
14].

Theoretical analysis of both steady-state and time dependent thermistor equations,
with various aspects and with different types of boundary and initial conditions, has
received a lot of interest. For existence of weak solutions, uniqueness and related reg-
ularity results in several settings with different assumptions on the coefficients, we can
see [2,18,19]. Existence of weak solutions to the stationary problem of (1.1)–(1.2) with
Dirichlet boundary conditions was proven in [4]. Cimatti [5] was the first to consider
the time dependent case in two dimensions. In [17], the problem without restrictions
on the space dimension was considered. Asymptotic results for (1.1)–(1.2) were estab-
lished in [6]. Optimal control problem for the time-dependent thermistor problem can
be found in [12], where the source is taken to be the control. A result on optimal control
of the thermistor problem for the steady-state case can be found in [9], where a connec-
tive boundary coefficient is taken as the control. Recently, [20] was concerned with the
optimal control problem of the nonlocal thermistor problem.

In recent years, it has been shown that fractional differential equations can be used
successfully to model many phenomena in various fields, such as fluid mechanics, vis-
coelasticity, chemistry and engineering [1,10,15,16]. In [19], existence and uniqueness
of a positive solution to a generalized nonlocal thermistor problem with fractional-order
derivatives was proved. Our aim here is to study the time fractional thermistor system.
We are not aware of any similar result, and we believe that this work provides the first
results on the time-dependent thermistor problem with fractional order derivatives.

The outline of the paper is as follows. In Section 2 we formulate the fractional prob-
lem, and we specify the hypotheses under consideration. In Section 3, a finite difference
scheme for the temporal discretization of the problem in consideration is given. We ob-
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tain existence of weak solutions to the discretized problem. In Section 4, stability results
are derived and error estimates are provided for the semi-discrete problem, showing that
the temporal accuracy is of order 2− α.

2 Formulation and Statement of the Problem
We consider the following time-fractional thermistor problem, which is obtained from
(1.1)–(1.2) by replacing the first-order time derivative with a fractional derivative of
Caputo type:

∂αu(x, t)

∂tα
−4u = σ(u)|∇ϕ|2 in Ω× (0, T ),

div(σ(u)∇ϕ) = 0 in Ω× (0, T ),
(2.1)

subject to the initial and boundary conditions (1.3) and where α, 0 ≤ α ≤ 1, is the order

of the time-fractional derivative,
∂αu(x, t)

∂tα
denotes the Caputo fractional derivative of

order α as defined in [7] and given by

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
, 0 < α < 1.

Problem (2.1) covers (1.1)–(1.2) and extends it to more general cases. When α = 1,
the system (2.1) is the classical parabolic-elliptic thermistor problem. In fact the time
derivative of integer order in (1.1)–(1.2) can be obtained by taking the limit α → 1
in (2.1). The case α = 0 corresponds to the steady state thermistor problem. In the
case 0 < α < 1, the Caputo fractional derivative depends on and uses the information
of the solutions at all previous time levels (non-Markovian process). In this case the
physical interpretation of fractional derivative is that it represents a degree of memory
in the diffusing material [21].

In the analysis of the numerical method, we will assume that problem (2.1) has a
unique and sufficiently smooth solution, which can be established by assuming more
hypotheses and regularity on the data (see [2,20]). We need the following assumptions:

(H1) σ(·) is a continuous function such that there exists σ2 > σ1 > 0 such that 0 <
σ1 ≤ σ(·) ≤ σ2.

(H2) u0, ϕ0 ∈ W 1,∞(Ω) ∩ C(Ω).

(H3) σ(·) is a continuous Lipschitzian function.

We define some functional spaces endowed with standard norms and inner products that
will be used hereafter:

Hm(Ω) =

{
v ∈ L2(Ω),

dkv

dxk
∈ L2(Ω) for all positive integers k ≤ m

}
,
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H1
0 (Ω) = {v ∈ H1(Ω), v/∂Ω = 0}.

The inner product of L2(Ω) is defined by

(u, v) =

∫
Ω

uvdx.

The norm ‖ · ‖m of the space Hm(Ω) is defined by

‖v‖m =

(
m∑
k=0

‖d
kv

dxk
‖2

2

) 1
2

.

It can be shown that the quantity

‖v‖∗ =

(
‖v‖2

2 + α0

∥∥∥∥dudx
∥∥∥∥2

2

) 1
2

, (2.2)

where α0 is given below, defines a norm on H1(Ω) that is equivalent to the ‖ · ‖H1(Ω)

norm (see, e.g., [3, 22]).

3 Time Discretization: A Finite Difference Scheme

We introduce a finite difference approximation to discretize the time-fractional deriva-

tive. Let δ =
T

N
be the length of each time step, for some large N , tk = kδ, k =

0, 1, . . . , N . We use the following formulation: for all 0 ≤ k ≤ N − 1,

∂αu(x, t)

∂tα
=

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

∂u(x, s)

∂s

ds

(tk+1 − s)α

=
1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

δ

∫ tj+1

tj

ds

(tk+1 − s)α
+ rk+1

δ ,

(3.1)

where rk+1
δ is the truncation error. It can be seen from [13] that the trunction error

verifies

rk+1
δ . cuδ

2−α, (3.2)
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where cu is a constant depending only on u. On the other hand, by a change of variables,
we have

1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

δ

∫ tj+1

tj

ds

(tk+1 − s)α

=
1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)

δ

∫ tk+1−j

tk−j

dt

tα

=
1

Γ(1− α)

k∑
j=0

u(x, tk+1−j)− u(x, tk−j)

δ

∫ tj+1

tj

dt

tα

=
1

Γ(2− α)

k∑
j=0

u(x, tk+1−j)− u(x, tk−j)

δα
{

(j + 1)1−α − (j)1−α} .
Let us denote bj = (j + 1)1−α − j1−α, j = 0, 1, . . . k, and define the discrete fractional
differential operator Lαt by

Lαt u(x, tk+1) =
1

Γ(2− α)

k∑
j=0

bj
u(x, tk+1−j)− u(x, tk−j)

δα
.

Then (3.1) becomes

∂αu(x, tk+1)

∂tα
= Lαt u(x, tk+1) + rk+1

δ .

Using this approximation, we arrive to the following finite difference scheme to (1.1)–
(1.2): for k = 1, . . . , N − 1,

Lαt u
k+1(x)−4uk+1 = σ(uk+1)|∇ϕk+1|2 in Ω,

div(σ(uk+1)∇ϕk+1) = 0 in Ω,
(3.3)

where uk+1(x) and ϕk+1(x) are approximations to u(x, tk+1) and ϕ(x, tk+1), respec-
tively. The scheme (3.3) can be reformulated to the form

b0u
k+1−Γ(2− α)δα4uk+1

= b0u
k −

k∑
j=1

bj{uk+1−j − uk−j}+ Γ(2− α)δασ(uk+1)|∇ϕk+1|2

= b0u
k −

k−1∑
j=0

bj+1u
k−j +

k∑
j=1

bju
k−j + Γ(2− α)δασ(uk+1)|∇ϕk+1|2

= b0u
k +

k−1∑
j=0

(bj − bj+1)uk−j + Γ(2− α)δασ(uk+1)|∇ϕk+1|2,

(3.4)
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div(σ(uk+1)∇ϕk+1) = 0. (3.5)

To complete the semi-discrete problem, we consider the boundary conditions

∂uk+1

∂n
= 0, or uk+1 = 0 on ∂Ω,

ϕk+1 = ϕ0 on ∂Ω,

(3.6)

and the initial condition u0 = u0. Note that

bj > 0, j = 0, 1, . . . k,

1 = b0 > b1 > . . . > bk, bk → 0 as k →∞,
k∑
j=1

(bj − bj+1) + bk+1 = (1− b1) +
k−1∑
j=1

(bj − bj+1) + bk = 1.

(3.7)

If we set
α0 = Γ(2− α)δα,

then (3.4) can be rewritten in the form

uk+1−α04uk+1 = (1−b1)uk+
k−1∑
j=1

(bj−bj+1)uk−j+bku
0 +α0σ(uk+1)|∇ϕk+1|2 (3.8)

for all k ≥ 1. When k = 0, scheme (3.4) reads

u1 − α04u1 = u0 + α0σ(u1)|∇ϕ1|2.

When k = 1, scheme (3.4) becomes

u2 − α04u2 = (1− b1)u1 + b1u
0 + α0σ(u2)|∇ϕ2|2.

We define the error term rk+1 by

rk+1 = α0

{
∂αu(x, tk+1)

∂tα
− Lαt u(x, tk+1)

}
.

Then we get from (3.2) that

|rk+1| = Γ(2− α)δα|rk+1
δ | ≤ cuδ

2. (3.9)

3.1 Existence: The Semi-discrete Scheme
One of the interesting points of the problem is the quadratic term |∇ϕ|2. Since two
is a critical exponent, this term creates a difficulty and makes the usual compactness
arguments to fail, which makes the necessary estimates on the time discretized sequence
of solutions, stability results and error analysis technical and somehow delicate. We are
able to overcome this difficulty thanks to the following lemma.
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Lemma 3.1. Let u ∈ L1(Ω) and ϕ− ϕ0 ∈ H1
0 (Ω). If the pair (u, ϕ) satisfies∫

Ω

σ(u)∇ϕ · ∇ψ dx = 0 for all ψ ∈ H1
0 (Ω),

then ∀v ∈ H1(Ω) ∩ L∞(Ω)∫
Ω

σ(u)|∇ϕ|2v dx =

∫
Ω

(ϕ0 − ϕ)σ(u)∇ϕ.∇v dx+

∫
Ω

(σ(u)∇ϕ · ∇ϕ0) v dx. (3.10)

Moreover, ϕ ∈ H1(Ω) ∩ L∞(Ω), and the following estimates hold:

‖ϕ‖L∞(Ω) ≤ sup
x∈∂Ω
|ϕ0|, (3.11)

‖∇ϕ‖2 ≤
(
σ2

σ1

) 1
2

‖∇ϕ0‖2. (3.12)

Proof. Equation (3.10) follows by choosing ψ = (ϕ − ϕ0)v, v ∈ C1(Ω) as the test
function. The estimate (3.11) comes from the weak maximum principle [17]. On the
other hand, (3.12) is obtained by choosing ψ = ϕ − ϕ0 ∈ H1

0 (Ω). By the Cauchy–
Schwartz inequality,

σ1

∫
Ω

|∇ϕ|2dx ≤
∫

Ω

σ(u)|∇ϕ|2dx

≤
∣∣∣∣∫

Ω

σ(u)∇ϕ∇ϕ0dx

∣∣∣∣
≤ σ2

∫
Ω

|∇ϕ||∇ϕ0|dx

≤ σ2‖∇ϕ‖2‖∇ϕ0‖2.

Then,

‖∇ϕ‖2 ≤
(
σ2

σ1

) 1
2

‖∇ϕ0‖2.

This concludes the proof.

Definition 3.2. We say that a couple (uk+1, ϕk+1) is a weak solution of (3.3) if

〈uk+1, v〉+ α0

∫
Ω

∇uk+1∇v dx

= (fk, v) + α0

∫
Ω

σ(uk+1)∇ϕk+1∇ϕ0v dx (3.13)

− α0

∫
Ω

σ(uk+1)(ϕk+1 − ϕ0)∇ϕk+1∇v dx, for all v ∈ V ∩ C1(Ω),
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and ∫
Ω

σ(uk+1)∇ϕk+1∇ψ dx = 0, for all ψ ∈ H1
0 (Ω), (3.14)

where fk = (1− b1)uk +
k−1∑
j=1

(bj − bj+1)uk−j + bku
0.

At each time step we solve a discretized fractional thermistor problem.

Theorem 3.3. If hypotheses (H1)–(H2) are satisfied, then there exists at least a weak
solution (uk, ϕk) of (3.4)–(3.5) such that

uk ∈ H1(Ω), ϕk ∈ H1(Ω) ∩ L∞(Ω).

Before beginning the proof of Theorem 3.3, we proceed with the derivation of a
priori estimates. From now on we denote by c a generic constant, which may not be the
same at different occurrences.

3.2 A Priori Estimates
We search a priori estimates for solutions.

Lemma 3.4. One has
‖uk+1‖H1(Ω) ≤ c,

where c is a positive constant independent of k.

Proof. We prove this result by recurrence. When k = 0, we have for v ∈ H1
0 (Ω) that∫

Ω

u1vdx+ α0

∫
Ω

∇u1∇vdx =

∫
Ω

u0vdx+ α0

∫
Ω

σ(u1)|∇ϕ1|2vdx.

Note that u0 ∈ L∞(Ω) ⊂ L2(Ω), ϕ0 ∈ W 1,∞(Ω) and by Lemma 3.1 we have ϕk ∈
H1(Ω) ∩ L∞(Ω) ∀ k ≥ 1. Taking v = u1 and using Lemma 3.1,

‖u1‖2
2 + α0‖∇u1‖2

2 =

∫
Ω

u0u1dx+ α0

∫
Ω

σ(u1)|∇ϕ1|2u1dx

≤ ‖u1‖2‖u0‖2 + α0

∫
Ω

(ϕ0 − ϕ1)σ(u1)∇ϕ1.∇u1dx

+ α0

∫
Ω

σ(u1)∇ϕ1.∇ϕ0 u
1dx

≤ c‖u1‖2 + c‖∇ϕ1‖2‖∇u1‖2 + +c‖∇ϕ1‖2‖u1‖2

≤ c‖u1‖2 + c‖∇u1‖2 + c‖u1‖2

≤ c‖u1‖2 + c‖∇u1‖2

≤ 1

2
‖u1‖2

2 + c+
α0

2
‖∇u1‖2

2 + c.
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Then,
‖u1‖2

2 + α0‖∇u1‖2
2 ≤ c.

Hence, since the standard H1-norm and the norm ‖ · ‖∗ defined by (2.2) are equivalent,
we have

‖u1‖H1(Ω) ≤ c.

Suppose now that we have

‖uj‖H1(Ω) ≤ c, j = 1, 2, . . . , k,

and prove that ‖uk+1‖H1(Ω) ≤ c. Multiplying (3.8) by v = uk+1, and using the fact that
fk ∈ H1(Ω), we obtain

‖uk+1‖2
2+α0‖∇uk+1‖2

2 =

∫
Ω

fkuk+1dx+ α0

∫
Ω

σ(uk+1)|∇ϕk+1|2uk+1dx

≤ ‖fk‖2‖uk+1‖2 + α0

∫
Ω

(ϕ0 − ϕk+1)σ(uk+1)∇ϕk+1.∇uk+1dx

+ α0

∫
Ω

(σ(uk+1)∇ϕk+1 · ∇ϕ0)uk+1dx

≤ c‖uk+1‖2 + c‖∇ϕk+1‖2‖∇uk+1‖2 + c‖∇ϕk+1‖2‖uk+1‖2

≤ c‖uk+1‖2 + c‖∇uk+1‖2 + c‖uk+1‖2

≤ c‖uk+1‖2 + c‖∇uk+1‖2

≤ 1

2
‖uk+1‖2

2 + c+
α0

2
‖∇uk+1‖2

2 + c.

Then,
‖uk+1‖2

2 + α0‖∇uk+1‖2
2 ≤ c

and therefore
‖uk+1‖H1(Ω) ≤ c.

This concludes the proof.

3.3 Proof of Theorem 3.3

The proof uses Schauder’s fixed point theorem. We construct an appropriate mapping
whose fixed points will be solutions to (3.13)–(3.14). Let z ∈ H1(Ω) and let ϕk+1

z be
the unique solution of∫

Ω

σ(z)∇ϕk+1
z ∇ψ dx = 0 for all ψ ∈ H1

0 (Ω).
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Recall that by Lemma 3.1 we have ϕk+1
z ∈ L∞(Ω) and ‖ϕk+1

z ‖H1(Ω) ≤ c, independent
of z. For the sake of simplicity, let us define the functional F k

z ∈ H−1(Ω) by

〈F k
z , v〉 = (1−b1)(uk, v)+

k−1∑
j=1

(bj−bj+1)(uk−j, v)+bk(u
0, v)+α0

(
σ(z)|∇ϕk+1

z |2, v
)
.

For the special k = 0, we have

〈F 0
z , v〉 = (u0, v) + α0

(
σ(z)|∇ϕ1

z|2, v
)
.

When k = 1,

〈F 1
z , v〉 = (1− b1)(u1, v) + b1(u0, v) + α0(σ(z)|∇ϕ2

z|2, v).

We show that F k
z is well defined. Indeed, by Lemma 3.1, we easily show that there

exists a constant c > 0, independent of z and k, such that

‖F k
z ‖H1(Ω) ≤ c,∀z ∈ H1(Ω).

Then we define the operator A : H1(Ω)→ H1(Ω) as follows: Az = wz = uk+1 if wz is
the unique solution in H1(Ω) of∫

Ω

wzv + α0

∫
Ω

∇wz∇vdx = 〈F k
z , v〉. (3.15)

Similarly, there exists a constant c > 0, independent of z and k, such that

‖Az‖H1(Ω) = ‖wz‖H1(Ω) ≤ c,∀z ∈ H1(Ω). (3.16)

Then the operator A is also well defined. In order to prove that A has a fixed point wz
in the ball Bc of center 0 and radius c in H1(Ω) defined by

Bc = {z ∈ H1(Ω); ‖z‖H1(Ω) ≤ c},

for c large enough, it remains to prove that the operator A is continuous in the weak
topology of H1(Ω). Then it is sufficient to show that

z → F k
z is weakly continuous from Bc to H−1(Ω) (3.17)

and
F k
z → wz is weakly continuous from H−1(Ω) to Bc. (3.18)

To proceed with the proof of (3.17), we assume that

(zn) ⊂ Bc and zn → z weakly in H1(Ω).
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Since Bc is bounded, there exists a 2 < p <
2N

N − 2
, N ≥ 2, such that

zn → z strongly in Lp(Ω) (3.19)

on a subsequence. By Lemma 3.1, we have that (ϕk+1
zn ) is bounded in H1(Ω) indepen-

dently of z. Then, for a subsequence of (zn), we have

ϕk+1
zn → ϕk+1 in H1(Ω) and ϕk+1

zn → ϕk+1 in Lp(Ω), 2 < p <
2N

N − 2
(N > 2) .

(3.20)
On the other hand, since σ is continuous and bounded, it follows from (3.19) a subse-
quence (znk

) such that

σ(znj
)→ σ(z) strongly in Lp(Ω),∀p ≥ 1. (3.21)

Passing to the limit as j →∞ in∫
Ω

σ(znj
)∇ϕk+1

znj
∇ψ dx = 0 for all ψ ∈ C1(Ω) ∩H1

0 (Ω),

and using (3.20)–(3.21), it follows that∫
Ω

σ(z)∇ϕk+1∇ψ dx = 0 for all ψ ∈ H1
0 (Ω).

Since ϕk+1
z is unique, we conclude that

ϕk+1 = ϕk+1
z .

This implies that

z → ϕk+1
z is weakly continuous from H1(Ω) to H1(Ω).

To prove (3.18), it is sufficient to show that F k
zn → F k

z weakly in H−1(Ω). For v ∈
C1(Ω) ∩H1(Ω), we have

〈F k
zn , v〉 =

∫
Ω

σ(zn)(ϕ0 − ϕk+1
zn )∇ϕk+1

zn · ∇vdx+

∫
Ω

σ(zn)∇ϕk+1
zn · ∇ϕ0vdx

+ (1− b1)(uk, v) +
k−1∑
j=1

(bj − bj+1)(uk−j, v) + bk
(
u0, v

)
.

Using again (3.20)–(3.21), we may pass to the limit as n→∞ and obtain

lim
n→∞
〈F k

zn − F
k
z , v〉 = 0,∀v ∈ C1(Ω) ∩H1(Ω).
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It follows from the boundedness of F k
zn and the density of C1(Ω) ∩ H1(Ω) in H1(Ω)

that
F k
zn → F k

z in H−1(Ω).

We have from (3.16) and the weak compactness of Bc in H1(Ω) that

Azn → wz in H1(Ω),

which proves the continuity of A. Then∫
Ω

wzvdx+ α0

∫
Ω

∇wz∇vdx = 〈F k
z , v〉, ∀v ∈ H1(Ω).

By the unique solvability of (3.15), we obtain that Az = wz = uk+1. This ends the
proof. We point out that uniqueness can be shown by strengthening the hypotheses on
the data (see, e.g., [2, 20]).

In the next section we prove a stability result and obtain some error estimates.

4 Stability and Error Analysis
The weak formulation of equation (3.8) is, ∀k ≥ 1 and v ∈ H1(Ω),

(uk+1, v) + α0(−4uk+1, v)

= (1− b1)(uk, v) +
k−1∑
j=1

(bj − bj+1)(uk−j, v) + bk(u
0, v) +α0

(
σ(uk+1)|∇ϕk+1|2, v

)
.

(4.1)

We have the following unconditionally stability result.

Theorem 4.1. The semi-discretized problem (3.13)–(3.14) is stable, in the sense that
for all δ > 0 the following inequality holds:

‖uk+1‖H1(Ω) ≤ ‖u0‖2 + c.

Proof. We prove the result by recurrence. When k = 0, we have for v ∈ H1(Ω) that

(u1, v) + α0(−4u1, v) = (u0, v) + α0

(
σ(u1)|∇ϕ1|2, v

)
.

In other terms,∫
Ω

u1vdx+ α0

∫
Ω

∇u1∇vdx =

∫
Ω

u0vdx+ α0

∫
Ω

σ(u1)|∇ϕ1|2vdx. (4.2)
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Taking v = u1 in (4.2), and using Lemma 3.1, we have

α0

∫
Ω

σ(u1)|∇ϕ1|2u1dx

= α0

∫
Ω

(ϕ0 − ϕ1)σ(u1)∇ϕ1∇u1dx+ α0

∫
Ω

σ(u1)∇ϕ1∇ϕ0u
1dx

≤ c‖ϕ0 − ϕ1‖∞‖∇ϕ1‖2‖∇u1‖2 + c‖∇ϕ0‖∞‖∇ϕ1‖2‖u1‖2

≤ c‖∇u1‖2 + c‖u1‖2

≤ c‖u1‖H1(Ω).

We also have

∫
Ω

u0u1dx ≤ ‖u0‖2‖u1‖2 ≤ ‖u0‖2‖u1‖2 ≤ ‖u0‖2‖u1‖H1(Ω) .

We then obtain by (2.2) and (4.2) that

∥∥u1
∥∥2

H1(Ω)
≤
(∥∥u0

∥∥
2

+ c
)
‖u1‖H1(Ω). (4.3)

Dividing both sides of the above inequality (4.3) by ‖u1‖H1(Ω), we get

‖u1‖H1(Ω) ≤ ‖u0‖2 + c.

Suppose now that we have

‖uj‖H1(Ω) ≤ ‖u0‖2 + c, j = 1, 2, . . . , k, (4.4)

and prove that ‖uk+1‖H1(Ω) ≤ ‖u0‖2 + c. Choosing v = uk+1 in (4.1), we obtain

(uk+1, uk+1) + α0(−4uk+1, uk+1)

= (1− b1)(uk, uk+1) +
k−1∑
j=1

(bj − bj+1)(uk−j, uk+1) + bk(u
0, uk+1)

+ α0

(
σ(uk+1)|∇ϕk+1|2, uk+1

)
.
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Then, using the recurrence hypothesis (4.4), we obtain

‖uk+1‖2
H1(Ω) ≤ (1− b1)‖uk‖2‖uk+1‖2 +

k−1∑
j=1

(bj − bj+1)‖uk−j‖2‖uk+1‖2

+ bk‖u0‖2‖uk+1‖2 + α0(σ(uk+1)|∇ϕk+1|2, uk+1)

≤

{
(1− b1) +

k−1∑
j=1

(bj − bj+1) + bk

}(
‖u0‖2 + c

)
‖uk+1‖2

+ α0

(
σ(uk+1)|∇ϕk+1|2, uk+1

)
≤

{
(1− b1) +

k−1∑
j=1

(bj − bj+1) + bk

}(
‖u0‖2 + c

)
‖uk+1‖H1(Ω)

+ α0

(
σ(uk+1)|∇ϕk+1|2, uk+1

)
≤
(
‖u0‖2 + c

)
‖uk+1‖H1(Ω) + α0

(
σ(uk+1)|∇ϕk+1|2, uk+1

)
,

since (1− b1) +
k−1∑
j=1

(bj − bj+1) + bk = 1. Similarly to the case k = 0, we have

∫
Ω

σ(uk+1)|∇ϕk+1|2uk+1dx =

∫
Ω

(ϕ0 − ϕk+1)σ(uk+1)∇ϕk+1∇uk+1dx

+

∫
Ω

σ(uk+1)∇ϕk+1∇ϕ0u
k+1dx

≤ c‖uk+1‖H1(Ω).

Then,
‖uk+1‖H1(Ω) ≤ ‖u0‖2 + c.

This concludes the proof.

We have the following error analysis for the solution of the semi-discretized problem
(3.13)–(3.14).

Theorem 4.2. Let u be the exact solution of (2.1), (uj)j be the time-discrete solution
of problem (3.13) with the initial condition u0(x) = u(x, 0). If we suppose further to
hypotheses (H1)–(H3) that

(H4) ∇u(x, tk+1),∇ϕ(x, tk+1) for q > max(N, 2),

then we have the following error estimates:

(a) ‖u(tj)− uj‖H1(Ω) ≤ cu,αT
αδ2−α, j = 1, . . . , N , where 0 ≤ α < 1 and

cu,α =
cu

1− α
with cu a constant depending on u.
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(b) when α→ 1,
‖u(tj)− uj‖H1(Ω) ≤ cuTδ, j = 1, . . . , N.

Proof. Let ek = u(x, tk) − uk(x) be the difference between the exact solution of (2.1)
and uk, the time-discrete solution of (3.13). Obviously, e0 = 0.

(a) We will prove the result by induction. We begin with 0 ≤ α < 1. For j = 1, by
gathering (2.1) and (3.13), the error equation reads:

(e1,v) + α0

∫
Ω

∇e1∇vdx

= (e0, v) + (r1, v) + α0(σ(u(x, t2))|∇ϕ(x, t2)|2, v)− α0(σ(u2)|∇ϕ2|2, v
= (r1, v) + α0

(
σ(u(x, t2))|∇ϕ(x, t2)|2, v

)
− α0

(
σ(u2)|∇ϕ2|2, v

)
.

Choosing v = e1 in the above equation, it yields that

‖e1‖2
2 + α0‖∇e1‖2

2 ≤ ‖r1‖2‖e1‖2

+ α0

(
σ(u(x, t2))|∇ϕ(x, t2)|2 − σ(u2)|∇ϕ2|2, e2

)
. (4.5)

To continue the proof, we shall need the following lemma.

Lemma 4.3. Let (ui, ϕi), i = 1, 2, be two weak solutions of (1.1)–(1.2). Assume
that (H1)–(H4) hold. Then,

σ(u1)|∇ϕ1|2 − σ(u2)|∇ϕ2|2 ≤ (ε+ ccε)‖w‖2
H1(Ω) +

1

2
‖∇w‖2

2,

where w = u1 − u2 and ε, c, cε are positive constants.

Proof. Set w = u1 − u2 and ϕ = ϕ1 − ϕ2. It is easy to see that σ(u)|∇ϕ|2 =
div(σ(u)ϕ∇ϕ) (see [2, 17]). Then, we have

σ(u1)|∇ϕ1|2 − σ(u2)|∇ϕ2|2

= div (σ(u1)ϕ1∇ϕ1)− div (σ(u2)ϕ2∇ϕ2)

= div (σ(u1)ϕ1∇ϕ1 − σ(u2)ϕ2∇ϕ2)

= div ((σ(u1)− σ(u2))ϕ1∇ϕ1 + σ(u2)(ϕ1 − ϕ2)∇ϕ1 + σ(u2)ϕ2(∇ϕ1 −∇ϕ2))

= div ((σ(u1)− σ(u2))ϕ1∇ϕ1 + σ(u2)ϕ∇ϕ1 + σ(u2)ϕ2∇ϕ) .

If we multiply by w and integrate over Ω, we get

(div (σ(u1)ϕ1∇ϕ1)− div (σ(u2)ϕ2∇ϕ2) , w) ≤ I1 + I2 + I3, (4.6)
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where

I1 = −
∫

Ω

(σ(u1)− σ(u2))ϕ1∇ϕ1 · ∇wdx,

I2 = −
∫

Ω

σ(u2)ϕ∇ϕ1 · ∇wdx,

I3 = −
∫

Ω

σ(u2)ϕ2∇ϕ · ∇wdx.

Using (H3), since σ and the ϕi’s are bounded, we obtain by Hölder’s inequality

|I1| ≤ c

∫
Ω

|∇ϕ1||∇w||w|ds ≤ c‖∇ϕ1‖q‖∇w‖2‖w‖ 2q
q−2
,

|I2| ≤ c

∫
Ω

|ϕ||∇ϕ1||∇w|dx ≤ c‖∇ϕ1‖q‖∇w‖2‖ϕ‖ 2q
q−2
,

|I3| ≤ c

∫
Ω

|ϕ2||∇ϕ||∇w|dx ≤ c‖∇ϕ‖2‖∇w‖2.

Since q > N from the Sobolev imbedding theorem, we have

|I2| ≤ c‖∇ϕ1‖q‖∇w‖2‖∇ϕ‖2.

Note that from the equation satisfied by ϕ1, ϕ2 we have

0 = div (σ(u2)∇ϕ2) = div (σ(u2)∇(ϕ2 − ϕ1)) + div ((σ(u2)− σ(u1))∇ϕ1) .

Then,
div(σ(u2)∇ϕ) = div ((σ(u1)− σ(u2))∇ϕ1) .

If we multiply by ϕ and integrate on Ω, we get

σ1‖∇ϕ‖2
2 ≤

∫
Ω

σ(u2)|∇ϕ|2dx =

∫
Ω

(σ(u1)− σ(u2))∇ϕ1 · ∇ϕdx.

Using again Hölder’s inequality and (H3), we obtain

‖∇ϕ‖2
2 ≤ c

∫
Ω

|w||∇ϕ1||∇ϕ||dx ≤ c‖∇ϕ1‖q‖∇ϕ‖2‖w‖ 2q
q−2
.

Thus,
‖∇ϕ‖2 ≤ c‖∇ϕ1‖q‖w‖ 2q

q−2
.

From (4.6) we have

σ(u1)|∇ϕ1|2 − σ(u2)|∇ϕ2|2

≤ c
{
‖∇ϕ1‖q‖∇w‖2‖w‖ 2q

q−2
+ ‖∇ϕ1‖2

q‖∇w‖2‖w‖ 2q
q−2

}
.
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A use of Young’s inequality in the right-hand side of the above inequality allows
us to obtain(
σ(u1)|∇ϕ1|2 − σ(u2)|∇ϕ2|2, w

)
≤ c

{
‖∇ϕ1‖2

q + ‖∇ϕ1‖4
q

}
‖w‖2

2q
q−2

+
1

2
‖∇w‖2

2.

Applying Gagliardo’s inequality [2],

‖w‖2
2q
q−2

≤ ‖w‖
1−n

q

2

(
‖w‖2

2 + ‖∇w‖2
2

)n
q ,

and Young’s inequality, we obtain

(σ(u1)|∇ϕ1|2 − σ(u2)|∇ϕ2|2, w)

≤ c
{
‖∇ϕ1‖2

q + ‖∇ϕ1‖4
q

}
‖w‖

1−n
q

2 ·
(
‖w‖2

2 + ‖∇w‖2
2

)n
q +

1

2
‖∇w‖2

2

≤ ε
(
‖w‖2

2 + ‖∇w‖2
2

)
+ cε

{
‖∇ϕ1‖

2q
q−n
q + ‖∇ϕ1‖

4q
q−n
q

}
‖w‖2

2 +
1

2
‖∇w‖2

2

≤ (ε+ ccε)
(
‖w‖2

2 + ‖∇w‖2
2

)
+

1

2
‖∇w‖2

2

= (ε+ ccε) ‖w‖2
H1(Ω) +

1

2
‖∇w‖2

2.

This concludes the proof of Lemma 4.3.

Now, we continue the proof of Theorem 4.2. Using (4.5), it follows that

‖e1‖2
2 + α0‖∇e1‖2

2 ≤ ‖r1‖2‖e1‖2 + α0(ε+ ccε)‖e1‖2
H1(Ω) +

α0

2
‖∇e1‖2

2.

Then, by (2.2), we have

‖e1‖2
H1(Ω) ≤ ‖r1‖2‖e1‖2 + α0(ε+ ccε)‖e1‖2

H1(Ω).

It follows that

(1− α0(ε+ ccε))‖e1‖2
H1(Ω) ≤ ‖r1‖2‖e1‖2 ≤ ‖r1‖2‖e1‖H1(Ω).

For a good choice of ε and dividing both sides by ‖e1‖H1(Ω), and using (3.9) and
b0 = 1, we obtain

‖u(t1)− u1‖1 ≤ cub
−1
0 δ2.

Then point (a) is verified for j = 1. Suppose now we have proved (a) for all
k = 1, . . . , j, and prove it also for k = j+ 1. Collecting (2.1) and (3.13), we have(
ek+1, v

)
+α0

(
−4ek+1, v

)
= (1− b1)(ek, v) +

k−1∑
j=1

(bj − bj+1) (ek−j, v) + bk(e
0, v) + (rk+1, v)

+ α0

(
σ(u(x, tk+1))|∇ϕ(x, tk+1)|2, v

)
− α0

(
σ(uk+1)|∇ϕk+1|2, v

)
.

(4.7)
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Taking v = ek+1 in (4.7), then

‖ek+1‖2
2 + α0‖∇ek+1‖2

2

≤ (1− b1)‖ek‖2‖ek+1‖2 +
k−1∑
j=1

(bj − bj+1)‖ek−j‖2‖ek+1‖2 + bk‖e0‖2‖ek+1‖2

+‖rk+1‖2‖ek+1‖2+α0

(
σ (u(x, tk+1)) |∇ϕ(x, tk+1)|2 − σ(uk+1)|∇ϕk+1|2, ek+1

)
.

By Lemma 4.3,

α0

(
σ(u(x, tk+1))|∇ϕ(x, tk+1)|2 − σ(uk+1)|∇ϕk+1|2, ek+1

)
≤ α0(ε+ ccε)‖ek+1‖2

H1(Ω) +
α0

2
‖∇ek+1‖2

2.

Using the induction assumption and the fact that
b−1
k

b−1
k+1

< 1 for a positive integer

k, we have

‖ek+1‖2
2 + α0‖∇ek+1‖2

2

≤

{
(1− b1)b−1

k−1 +
k−1∑
j=1

(bj − bj+1)b−1
k−j−1

}
cuδ

2‖ek+1‖2

+ α0(ε+ ccε)‖ek+1‖2
H1(Ω) +

α0

2
‖∇ek+1‖2

2

≤

{
(1− b1) +

k−1∑
j=1

(bj − bj+1) + bk

}
cub
−1
k−1δ

2‖ek+1‖H1(Ω)

+ α0(ε+ ccε)‖ek+1‖2
H1(Ω) +

α0

2
‖∇ek+1‖2

2.

We then have

‖ek+1‖2
2 + α0‖∇ek+1‖2

2 ≤ cub
−1
k−1δ

2‖ek+1‖H1(Ω) + α0(ε+ ccε)‖ek+1‖2
H1(Ω),

since (1− b1) +
k−1∑
j=1

(bj − bj+1) + bk = 1. Then,

‖ek+1‖2
H1(Ω) ≤ cub

−1
k−1δ

2‖ek+1‖H1(Ω) + α0(ε+ ccε)‖ek+1‖2
H1(Ω).

Therefore,

(1− α0(ε+ ccε))‖ek+1‖2
H1(Ω) ≤ cub

−1
k−1δ

2‖ek+1‖H1(Ω).

For a suitable choice of ε and dividing both sides by ‖ek+1‖H1(Ω), we get

‖ek+1‖H1(Ω) ≤ cub
−1
k−1δ

2.
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One can show easily that

k−αb−1
k−1 ≤

1

1− α
, k = 1, . . . , N.

Hence we have, for all k such that kδ ≤ T , that

‖u(tk)− uk‖H1(Ω) ≤ cub
−1
k−1δ

2 = cuk
−αb−1

k−1k
αδ2

≤ cu
1

1− α
(kδ)αδ2−α

≤ cu
1− α

Tαδ2−α.

(b) We are now interested in the case α → 1. We will derive again the following
estimation by induction:

‖u(tj)− uj‖1 ≤ cujδ
2, j = 1, 2, . . . , N. (4.8)

The above inequality is obvious for j = 1. Suppose now that (4.8) holds for all
j = 1, 2, . . . , k and we need to prove that it holds also for j = k + 1. Similarly
to the previous case, by combining (2.1) and (3.13) and taking v = ek+1 as a test
function, we derive

‖ek+1‖2
2 + α0‖∇ek+1‖2

2

≤ (1− b1)‖ek‖2‖ek+1‖2 +
k−1∑
j=1

(bj − bj+1)‖ek−j‖2‖ek+1‖2

+ bk‖e0‖2‖ek+1‖2 + ‖rk+1‖2‖ek+1‖2 + α0(ε+ ccε)‖ek+1‖H1(Ω)

≤

{
(1− b1)(cukδ

2) +
k−1∑
j=1

(bj − bj+1)(cu(k − j)δ2) + cuδ
2

}
‖ek+1‖2

+ α0(ε+ ccε)‖ek+1‖H1(Ω)

≤

{
(1− b1)

k

k + 1
+

k−1∑
j=1

(bj − bj+1)
k − j
k + 1

+
1

k + 1

}
cu(k + 1)δ2‖ek+1‖2

+ α0(ε+ ccε)‖ek+1‖H1(Ω)

≤

{
(1− b1) +

k−1∑
j=1

(bj − bj+1)− (1− b1)
1

k + 1

−
k−1∑
j=1

(bj − bj+1)
j + 1

k + 1
+

1

k + 1

}
cu(k + 1)δ2‖ek+1‖2

+ α0(ε+ ccε)‖ek+1‖H1(Ω).



96 M. R. Sidi Ammi and A. Taakili

Note that

(1− b1)
1

k + 1
+

k−1∑
j=1

(bj − bj+1)
j + 1

k + 1
+ bk

≥ 1

k + 1
{(1− b1) +

k−1∑
j=1

(bj − bj+1) + bk} =
1

k + 1
.

Then,

(1− α0(ε+ ccε))‖ek+1‖2
H1(Ω)

≤

{
(1− b1) +

k−1∑
j=1

(bj − bj+1) + bk

}
cu(k + 1)δ2‖ek+1‖H1(Ω)

= cu(k + 1)δ2‖ek+1‖H1(Ω)

and it follows, for an εwell chosen such that 1−α0(ε+ccε) > 0 and after dividing
by ‖ek+1‖H1(Ω), that ‖ek+1‖H1(Ω) ≤ cu(k + 1)δ2. The estimate (b) is proved.

The proof is complete.
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