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Abstract

Various dynamic equations have been used extensively in modeling many im-
portant natural phenomena, such as the population or epidemic growth with unpre-
dictable jump sizes, motion control of impulsive robot movements, and prediction
of irregular option markets. Since dynamic derivatives are basic building blocks
of most dynamic equations, it has been crucial to approximate the derivatives to
yield computable discrete equations for numerical solutions. This motivates our
investigations. This paper proposes a class of feasible approximation methods for
the first and second order noncrossed dynamic derivatives. Applicable local error
estimates are derived and discussed. Numerical experiments are given to illustrate
our results.

AMS Subiject Classifications:34A45, 39A13, 74H15, 74S20.
Keywords: Dynamic derivatives, time scales, approximations, finite differences, hybrid
grids, local error estimates.

1 Introduction

A one-dimensional time scalkis a nonempty closed subset of the real numBgi, 7.
We denoter = sup T, b = inf T anda, b € T. Thus,T can be viewed as a closed set
of real numbers superimposed over the intefwab] from an approximation point-of-
view. Based oIT, we may define théorward-jumpandbackward-jumgunctionso, p
fort € T. We may writef?(t) = f(a(t)), f°(t) = f(p(t)), wheref is a function
defined onT. We may further define thiarward-stepandbackward-stegunctions

andn. Denote
A(t) = u(t)/n(t)
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whenevenm(t) # 0. We say that a time scalgis uniformif for all ¢t € T, u(t) = n(t)
[14,15]. A uniform time scale is either an intervalift) = 0 or a uniform difference
grid if u(t) > 0 for all ¢ € T. In our study, we also need the following sets [1, 14-17]:

= {teT:tisleft-denseé,

= {t e T:tis left-scattered,
{t € T : tis right-denseg,

{t € T : tisright-scatterefl

€ Q& >
|

Without loss of generality, we may assume that A andb € C.

Different types of dynamic derivatives, includidg V and the combined,, deriva-
tives, have been introduced on different time scales [3, 4,17]. Based on them, lin-
ear and nonlinear dynamic equations become possible. The most distinguished fea-
tures of the dynamic derivatives from an application point-of-view include their mixed
continuous and discrete structures, flexibilities in approximating hybrid natural pro-
cesses [9,11-13,18,19], and great potentials in adaptive simulations [6,17]. Numerous
recent publications can be found in the literature. For details, the reader is referred
to [4, 6, 8, 14-17] and references therein. It has been difficult to establish executable
numerical formulas for approximating the dynamic derivatives due to their hybrid fea-
tures.

Let the functionsf andg be defined oi$ C T, andg be an approximation of. If

[f(t) = g(t)] = O (max{p"(t),n"(1)}), t €S, (1.1)

where0 < u, n < 1, then we say that the approximation is accurate tatder ~ with
respect to the step functions on the time s&le T. From an approximation point of
view, the approximatiom is consistentf and only if v > 0 [11, 14].

This paper intends to discuss feasible numerical treatments of the most frequently
used dynamic derivatives on time scales, including the first order and second\grder
V, and{, derivatives. Our discussions will be organized as follows. In Section 2, we
will focus on approximations of the first order dynamic derivatives. Section 3 will be de-
voted to the study of the second order noncrossed dynamic derivatives approximations.
Convergence properties of the approximation formulas will be obtained. The method of
asymptotic expansions are utilized to construct acceptable estimates of the local numer-
ical errors. Finally, in Section 4, numerical experiments will be carried out to illustrate
our conclusions. A minimal experience with the time scales and approximation theories
are assumed.
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2 First Order Dynamic Difference Approximations

Let the functionf be defined orfl. For valuesh; > u(t), he > n(t) we define the
forward, backwardandcentral dynamic differences gfas

f(t+hy) — f(2)

fi) = » , ift,t+h €T, (2.1)

) = f(t)_gt_h”, it £ —ho, t €T, (2.2)

o) = f(t+h]2 J_r ]J;(t — h2), if t —ho, t, t+hy €T, (2.3)
respectively.

Theorem 2.1.1f fis A differentiable and is right-dense, then

lim f (t) = fA(t), teT"

h1—u(t)
Further, if f is twice differentiable oria, b) then we have the local error estimate
A = 2O <ha|f ()], t<&<t+hy, teT (2.4)
Proof. According to (2.1), for any € T*,

. F _ f(t+h) = f(1)
hllgf}(t) o) = t+h11Ho(t) t+hy —t

P, i) =0,
= () - f) e = A,

e , otherwise

Further, lett € C N T*. According to the above discussioff, (¢) approacheg’(t") as

hy — 0. This indicates thaf”(¢) is a conventional forward difference formula for the
directional derivative ifT* and therefore (2.4) is true. On the other hand,&fD N T*,

by Taylor’'s remainder theorem,

FE) = FA() = f(t+h}2 —f)  flo (t;)(t; f(t)
= f(&) = (&) = (& = &)1 (6),

in which [§; — &| < hy sinceéy, & € (t,t + hy), o(t) < hy; and

§ € (min{&y, §o}, max{&y, §a}) C (¢t + h).

Therefore (2.4) holds. We note th@t &, £ may not necessarily be if. O
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Similarly, we have the following.

Theorem 2.2.1f f is V differentiable and is left-dense, then

lim )fB(t) = fY(t), teT..

ha—n(t
Further, if f is twice differentiable oria, b) then we have the local error estimate
[FP) = YO < ho |f(Q], t=ha <C <t t € Ty (2.5)
Proof. According to (2.2), for any € T,,
f(t) = f{t = hy)

lim f5() = lim

ha—n(t) t—ha—p(t) t— (t — hg)
(), if n(t) =0,
= 3 HO-T60)  ensise | = /7O
nt)

We further notice that when ¢ A N T,, fZ(t) approacheg’(t") ash, — 0. This
indicates thatf®(¢) is a standard backward difference approximation of the directional
derivative. Therefore (2.5) must be true in this circumstance. On the other hand, if
te BNT,,

p S0 =S —hy) T = (1)
R N

= f(G) = (&) = (G — &) (),
inwhich|¢; — (| < he, (1, G € (t — ho,t), p(t) < hy; and

¢ € (min{Cy, G2}, max{(y, (2}) C (t — hq,1).
Therefore (2.5) holds. We note again that >, ¢ may not necessarily be if,. [

Theorem 2.3. Let f be {,, differentiable and be left-dense and right-dense. If

lim fu =a, O<a<l,
hl N u(t) hl + h2
ha — n(t)
then
lim  fO(t) = foo(t), teT"
hy — u(t)
hy — n(t)
Further, if f is differentiable or(a, b) then we have the local error estimate
FE@) = £ ()] < max {hy, ho} max {|f"(€)],1/"(O]} (2.6)

t<&<t4+hy, t—ho<(<t teT;.
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Proof. Recall by (2.3) and Theorems 2.1 and 2.2,#er T we have
f(s+h) = f(s) + f(s) = f(s — ha)

lim  f(t)=  lim
h’l — I[,L(t) h‘l — Iu(t) hl -+ h2
ha — 1(t) ha = n(t)
_ I hy f(t+h1)_f(t>+ hy  f(t) — f(t —ho)
hy — p(t) hy + heo hy hi+ ho hs
ha — n(t)
s o LEERISIO G SO )
t+hi—o(t) t+hy —t t—ha—p(t) Tt — (t — hg)
= [ (),
provided that the limit exists. The error estimate (2.6) can be obtained readily by
combining (2.4), (2.5), and utilizing a triangular inequality. O

Remark2.4. Theorem 2.3 implies that, by choosing different ratios of the nonuniform
grid stepsh, /hs, (2.3) converges to any desiréd, derivative value. A sensible choice
of such step ratios in practical computations mayhbe= sh; with a scaling factor

s > 0. In the circumstance we have

h h 1
0O<a= lim L~ lim — = <1.
hl N M<t> h1 + h2 h1—pu(t) hl + Shl 14+s
ha — n(t)

In a further special case when= 1, we haveh; = hy = h, andfc(t) reduces to the
conventional central difference formula which approximates the arithmetic average of
A1), fY(t) ast+h — o(t) andt — h — p(t).

We note that, however, such a limitmay not exist in general. A typical example is
that when the step sequences are chosen as

1 . . .
hin = —, ha, = sp,h1, With variable scaling factors,, = 1 + (—1)".
n

In the case the limit of

1
Oy = ——F————, N — 00,
2+ (-1)n
does not exist, althoughm h; = lim Ay = 0.

Remark2.5. Theorems 2.1 and 2.2 ensure that the dynamic differences (2.1), (2.2) are
not only first order approximations to the corresponding dynamic derivatives, respec-
tively, but also first order approximations to the derivative functfit(n) if it exists. On

the other hand, although (2.3) may provide a first order approximation of the dynamic
derivative £ (¢) and f'(t), if they exist, on an uniform mesh superimposedTrit
approximates neither the diamondderivative, norf’(t) on an arbitrary subset &f.
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3 Second Order Dynamic Difference Approximations

Lett € Tandt — hy — hy, t — ho, t, t + hy, t + hy + hg, Whereh, = hy(t) # 0, { =
1,2, 3,4, are positive values which are distinct in general. Based on (2.1)—(2.3), we
propose the following second order dynamic difference formulas:

FPE) = hif(t+ hy + hs) — (hflﬁ—};hg)f(t +hi) + h3f(t)7 (3.1)

ift, t+hy,t+h+h3 €T,

BB = haf(t) — (ha + h4)f<thghz2) + ho f(t — hy — h4), (3.2)

ift—hg—h4, t—hg,tGT.
Theorem 3.1.1f f is twice A differentiable and, ¢ + h, are right-dense, then

lim FIT() = f28(1), teT”. (3.3)
hs — p(o(t))

Further, if f is continuously differentiable ofa, b) then we have the local error estimate

h h2
\fFF<t)—fM(t)|§¢1h—3+0<h1+h3+h—3), te T, (3.4)
1 1
where ) ur
Gi=s)M AT, o) e DT
S1
1 Bh
=y (5= 5) teent
3
M
R teDNT, o(t) e CNT,
h "t
8= lim TS,M:sup |f()|,0<51,53§1.
hy — p(t)  2M a<t<b

hs — p(o(t))
Proof. First, we lett e DN T, o(¢) € DN T*. Itis observed that
lim FEE ()
hy — u(t)
hs — p(o(t))

= lim

hif(t+hy + hg) — (h1 + hs) f(t + hy) + hs f(1)

t+ hy — o(t) hihs
t+ hy + hy — o*(t)
) = () + OV pT () aa
- 20 () - &)
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according to [2]. Secondly, fare CNT*, we haver(t) = ¢ and thereforer?(t) = ¢.
It follows subsequently that

lim R
hi — p(t)
hs — u(o(t))
[f(t+ ki + hg) — f{t+ M)l hs — [f(t+ ha) — f(D)]/ 1

hi, h3—0+ hy

fA(E+h) — [f(E+ha) — F(B)]/ I

h1—0t hl
Thirdly, in the case thate D N T* ando(s) € C N T*, we find that

lim FEE)
hy — u(t)
hs — p(o(t))

= f23(1). (3.6)

o Wt he) = fE4 R Ry — [+ ) — f()]/ I
by — p(t) i
h3 — 0+
_ SUe@)T) =21 aa
= ) = [72() (3.7)
according to [14—16]. Combining (3.5)—(3.7), we acquire immediately (3.3).
To show the error estimate (3.4), we first expgid (¢) at¢ € T,

hi+h h: h h
FFgpy _ T3y BAC I A W
O e G RRSTR <Y
For the case if e DN'T™, o(t) € DN T", from (3.5) we deduce that
+u7 (n)? o W
AAt::u—//t Ind [l "t 3.9
A0 =y (e s ) o (3.9)

Subtracting (3.9) from (3.8) we obtain

hi+h o+
FF £ — AA 1 = 1 3 "t
IR = 2 ) '
h% hl h3 (/1'0)2 % NJ 7
Byt 2 N 2B ... (3.1
+(6h1+3+2 6. 3 2 f"(t) + -+ (3.10)
Recall thatd < u < hy, 0 < p? < hs. We define positive parametess = p/h; <

1, s3 = u/hg < 1. Substitute them into (3.10) to yield

R I e 0

2
81 — 83 hs 1—5; I —s3 m
h — h h t)+---
+|:3( 681 >h1+ 3 1+ 2 3:|f()+
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Thus, (3.4) is clear. Further, ife CNT" theno(t) = o2(t) = t. From (3.9), we
observe that

20 = (3+8) 1160
Thus,

hi +h 2 h h
fFF(t)—fAA<t> — %fﬁ(fr)_i_((s_}i_i_?l_i_;) fm(tJr)—i—-n

]' "
— (5 + 5) fr(tr)
hs 1

h2
= (2—111 - 6) TORS <h—j +2hy + 3h3> ) 4

Therefore (3.4) is proved. Finally, ife DN T, theno(t) € CNT*". Based on (3.7)
and Theorem 2.1 we acquire that

fAA(t) _ f’((t + Iu)JF) _ fA(t) _ f’(t) + Mf//(t) 4 %Qf///(t) NI %
#lt) g
= %f”(t) - B2 fp F(t) +

Recalling (3.8), we have

AA _ hs h3 hy  hs  u(t)\ L.
fFF(t)_f (t) = 2_h1f (t)+(6—h1+§+?—7)f (t)+---

which completes our proof. O
By the same token, we may prove the following.
Theorem 3.2.1f f is twiceV differentiable and, ¢ — h, are left-dense, then

lim BB = YV (), teT,e.
hy — (1)
hy — n(p(t))

Further, if f is continuously differentiable ofa, b) then we have the local error estimate

h h?
1FBB () — YY) < ¢2h—4 +0 (hz + hy + h—4) , teT,e, (3.11)
2 2
where ) o
(52 = s)M t e BN T, oft) € BNT,,
S2
_ 1 Bh
G2 = (§—h—4>M, te ANT,2,

teBNT,e, o(t) e ANT,,
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/()]

s O<82,S4§1.

a<t<b

Proof. The proof is similar to that for Theorem 3.1. Firsttie B N T,. andp(t) €

BNT, then

lim BE(t)
hy — n(t)
hy — n(p(t))

hof(t — ho — ha) — (ho + ha) f(t — ho) + haf(t)

= lim
t —hy — p(t)
t— hg — h4 — pQ(t)

_ nPOf () = (P(8) + () fo(8) +n(t)f7 (1)

h2hy

(3.12)

n?()ne (1)

which is consistent with results in [9, 14-16]. On the other hand gfA N T,.» then
p(t) = t and subsequently’(t) = ¢. It follows readily that

lim BE(t)

hy — (1)
hy — n(p(t))
t

[f(t) = f(t = ho)l/ha = [f(t = ha) = f(t — hy — h4)] /Py

ha, hg—0*t h2

Now, if t € BN T,z andp(t) € A N T,. According to [15],

lim fBE(t)
hy — n(t)
hs — n(p(t))

[f(t) = f{t = P1)]/ 1 —

[f(t = h1) = f(t =1 = hs)]/hs

= lim

hy — (1)

h3 - 0+

YO = f(e®)) _ £V
n(t)

Similar to (3.8), we arrive at

(t)-

_ ho + hy hj

o)

o, fr(t) — (6_112 +

hy

(3.14)

ho  hy

_+_) FUE) A+

7+ (3.15)
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To derive the error estimate, we first consider the cagecoB N Tz, p(t) € BN T,.
Recall (3.12). We have

vy N, @) 0 0"\
YY) = 2 () — ( 61 +3+ 2>f &)+ (3.16)
A subtraction of (3.16) from (3.9) yields

o h2+h4 7]+77p "
RO - 170 = (M= 1)

h?l h2 h4 (ﬁp)z n 77p "
S T T A A A t - (3.17
<6h2+3+2 6 T3 3 fr) £ .3.17)

Note that) < 1 < hy, 0 < 1 < hy. Define positive parametess = n/hy < 1, s4 =
n’/hy < 1. Substitute them into (3.17), we acquire that

RO -1 = (25 R

282

2
So — Sy h4 1-— S9 1-— "
—|h — h Ly s
|:4( 682)h2+ 3 2+ 2 4:|f<)+
Thus the estimate is affirmative.fifc A N T, thenp(t) = p*(t) = t. Based on (3.13),
(3.16) we obtain

0 = (548) 1100

Hence,
o h2+h’4 mig—\ _ h4 h @ "y —
I e Ik
- (1 - B) f(t)

hy 2 h2 1"
= (g 8) 20— g (3 + 2t 3m) 7)o+

which leads to our estimate. Our last case istfer B N T2, p(t) € ANT,. Due to
(3.14) and Theorem 2.2,

R R AUES (/) O _(f1(5) —nf"(t) + % f(t) + )
n(t) ")
= f”(t) T](t) ///( )+ o

Recall (3.15). We deduce that

_ hy o, hi hy | ha  mt)\ .
RO 10 = g0 - (g g g - I o e
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which again indicates our error estimate.
A combination of the above discussions completes our proof. O

Remark3.3. While Theorems 3.1 and 3.2 provide solid evidences that the second order
dynamic differences (3.1), (3.2) converge to their corresponding dynamic derivatives,
respectively, the error estimates (3.4), (3.11) offer applicable (probably not the best)
local error estimates in the literature. The estimates provide safeguards in some sense
in computations of the solution of dynamic equations whenever necessary.

Remark3.4. From the above investigations we may conclude readily that neither of the
second order dynamic differences, nor the second order dynamic derivatives, should
be considered as natural approximations of the conventional derivative furf€{ion
should it exists in the domain considered. The arbitrary nonuniform mesh/steps-

1,2, 3, 4, often complicate the approximation desires [9, 18].

Remark3.5. Investigations of the second order central dynamic difference,

fEC) = [(ho+ ha)f(t+ hi + hs) — (hy + ha + hy + hy) f(2)
+(hy + h3) f(t — ha — ha)]/[(h1 + h2)(hy + hs)(he + hy)],
ift—hg—h4, t_hQ, t, t+h1,t+h1—|—h3 ET,
as well as crossed second order dynamic difference formulae can be very promising but

lengthy. We prefer to leave its discussions, together with those for crossed dynamic
difference approximations, to our forthcoming papers.

4 Numerical Experiments

Figure 4.1: LEFT: Plot of the jump functions @h RIGHT: Plot of the nonuniform step
size funqtions ovel” C T.

05 T T T i 05T

For a given positive integet, we consider the time scale := {t, = 0; t; 1 =
ti—1/(i—n+2), i=n,n—1,...,2:t;s1 =t;+1/(j—n+3), j=n,n+1,...,2n—2}.
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The left end ofT, a, can be viewed as right dense while the right end ob, can be
viewed as left dense for largefrom computational point-of-view. Set = 100. The

layout of the corresponding jump functioat), or p(t), is plotted in the first frame of
Figure 4.1. The second frame of Figure 4.1 shows a discretg getl' on which the
dynamic differences approximations are constructed. We let the nonuniform steps used
in T" be bounded below by 0.018 and above by 0.033. Irregular computational steps are
used to replace the small jumps near the left and right en@iaif studying properties

of the approximations. We only show results related to the dynamic differgiides

and fF(t).

Figure 4.2: LEFT: The dynamic derivative* (t) and dynamic differencé’ (¢) on set

T. A low frequency is used. The difference between the functions are hard to see.
RIGHT: An enlarged image of the functions 813 < ¢t < 4.2. The functions become
distinguishable.

08—

derivatives

Figure 4.3: LEFT: The dynamic derivativé®(¢) and dynamic differencé” () on set
T. RIGHT: A local image of the functions when3 < ¢t < 4.2.

8

6

4

2k

the derivatives
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In the experiments, we consider the wave function

£(t) = sin {w (t 0 3 “)] , (4.1)

wherew is the wave number involved [13, 18]. In the first case a low frequency with

w = 27/(b — a) is used. The dynamic derivativg*(¢) and f7(¢) are plotted in
Figure 4.2. The solid curve is for the dynamic derivative while the dotted curve is for
the dynamic difference. The second frame in Figure 4.2 offers an enlarged image of the
functions in the most turbulent area. The numerical error is significantly small compared
with the magnitudes of the functions (Figure 4.4). In fact, most of the central part of
T is overlapped withl' based on the step size bounds. The maximal error appears in
areas where steps used i (t) on 7" are significantly larger than the corresponding
jump functions onT. This can be clearly observed in Figure 4.4. Our second set of
experiments are designed with a high frequency wave with 207/(b — a) in (4.1).

The numerical results of*(t) and £ (¢) are given in Figure 4.3, where the second
frame is again for an enlarged picture. It is found that the approximation is excellent
and acceptable, even with the relatively large irregular steps used near the two ends of
T. The maximal relative error of " (¢) is less thar).7/8 ~ 8.5% in computations
(Figure 4.4).

Figure 4.4: LEFT: Distributions of the computational error’Bn A low frequency is
used. RIGHT: Distributions of the computational errorBnA high frequency is used.

X 10
T

We now consider approximations of the dynamic derivaji¥€' (¢) with function
(4.1) onT andT'. Figure 4.5 provides curves of the dynamic derivative (solid curve)
and dynamic difference (dotted curve). It can be observed that the latter is overlapped
with the former in most of the domains, except in areas near the two ends, Where
significantly different fromT. In the more detailed right frame, we may see that the
maximal relative error of the numerical approximation is almost 25%. This suggests
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Figure 4.5: LEFT: The dynamic derivative*~ (¢) and dynamic differencg’” (¢) on
setT. A low frequency is used. The differences between the functions are hard to
observe. RIGHT: A locally enlarged image of the functions3as < ¢ < 4.2. The
functions become distinguishable.

0.8

L I I I I I I I I L L L L L L L L
: -4 -3 -2 -1 0 1 2 3 4 33 34 35 36 37 38 3.9 4 41 42

Figure 4.6: LEFT: The dynamic derivative*~ (¢) and dynamic difference’” (¢) on
setT. A high frequency is used. The difference between the functions are hard to
observe. RIGHT: An locally enlarged image of the functiong&s< ¢t < 4.2. The
functions become distinguishable.

601
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the derivatives
d
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that approximations of the second order dynamic derivatives can be far more difficult
than the first order dynamic derivatives [9, 15].

Corresponding curves via the high frequency wave function (4.1) are given in Fig-
ure 4.6. It is again found that the approximation works satisfactorily except in the areas
near the two ends df, where irregular mesh points are used/inOscillations of the
dynamic difference values indicate a relatively poor approximation on the mesh. The
maximal relative error reaches about 25% in this scenario. The phenomenon observed
supports the common practice for not using “nonsmooth” grids during adaptive compu-
tations [9, 13,17].

Finally, in Figure 4.7, we present more precise numerical errors. Though the error
curve associated with the high frequency function seems to be more violent, the max-
imal relative errors are still around 25% in both low and high frequency cases. The
oscillations are more significant than that in the first order dynamic derivative approxi-
mations.

Figure 4.7: Numerical error oft. LEFT: A low frequency is used. RIGHT: A high
frequency is used.

5 5
ol 0 1s

Experiments involving other dynamic derivatives, dynamic differences and testing
functions are similar. All numerical experiments suggest that approximations of the sec-
ond and higher order dynamic derivatives need to be extremely careful. The irregularity
of the time scale structures may bring in tremendous amount of numerical uncertain-
ties [9,12,16,17]. Optimization procedures may need to be imposed to assure more
effective approximations.
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