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Abstract

Various dynamic equations have been used extensively in modeling many im-
portant natural phenomena, such as the population or epidemic growth with unpre-
dictable jump sizes, motion control of impulsive robot movements, and prediction
of irregular option markets. Since dynamic derivatives are basic building blocks
of most dynamic equations, it has been crucial to approximate the derivatives to
yield computable discrete equations for numerical solutions. This motivates our
investigations. This paper proposes a class of feasible approximation methods for
the first and second order noncrossed dynamic derivatives. Applicable local error
estimates are derived and discussed. Numerical experiments are given to illustrate
our results.

AMS Subject Classifications:34A45, 39A13, 74H15, 74S20.
Keywords: Dynamic derivatives, time scales, approximations, finite differences, hybrid
grids, local error estimates.

1 Introduction

A one-dimensional time scaleT is a nonempty closed subset of the real numbersR [2,7].
We denotea = sup T, b = inf T anda, b ∈ T. Thus,T can be viewed as a closed set
of real numbers superimposed over the interval[a, b] from an approximation point-of-
view. Based onT, we may define theforward-jumpandbackward-jumpfunctionsσ, ρ
for t ∈ T. We may writefσ(t) = f(σ(t)), fρ(t) = f(ρ(t)), wheref is a function
defined onT. We may further define theforward-stepandbackward-stepfunctionsµ
andη. Denote

λ(t) = µ(t)/η(t)
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wheneverη(t) 6= 0. We say that a time scaleT is uniform if for all t ∈ Tκ
κ, µ(t) = η(t)

[14, 15]. A uniform time scale is either an interval ifµ(t) = 0 or a uniform difference
grid if µ(t) > 0 for all t ∈ T. In our study, we also need the following sets [1,14–17]:

A : = {t ∈ T : t is left-dense},
B : = {t ∈ T : t is left-scattered},
C : = {t ∈ T : t is right-dense},
D : = {t ∈ T : t is right-scattered}.

Without loss of generality, we may assume thata ∈ A andb ∈ C.

Different types of dynamic derivatives, including∆,∇ and the combined♦α deriva-
tives, have been introduced on different time scales [3, 4, 17]. Based on them, lin-
ear and nonlinear dynamic equations become possible. The most distinguished fea-
tures of the dynamic derivatives from an application point-of-view include their mixed
continuous and discrete structures, flexibilities in approximating hybrid natural pro-
cesses [9,11–13,18,19], and great potentials in adaptive simulations [6,17]. Numerous
recent publications can be found in the literature. For details, the reader is referred
to [4, 6, 8, 14–17] and references therein. It has been difficult to establish executable
numerical formulas for approximating the dynamic derivatives due to their hybrid fea-
tures.

Let the functionsf andg be defined onS ⊆ T, andg be an approximation off . If

|f(t)− g(t)| = O (max{µγ(t), ηγ(t)}) , t ∈ S, (1.1)

where0 ≤ µ, η < 1, then we say that the approximation is accurate to theorder γ with
respect to the step functions on the time scaleS ⊆ T. From an approximation point of
view, the approximationg is consistentif and only if γ > 0 [11,14].

This paper intends to discuss feasible numerical treatments of the most frequently
used dynamic derivatives on time scales, including the first order and second order∆,
∇, and♦α derivatives. Our discussions will be organized as follows. In Section 2, we
will focus on approximations of the first order dynamic derivatives. Section 3 will be de-
voted to the study of the second order noncrossed dynamic derivatives approximations.
Convergence properties of the approximation formulas will be obtained. The method of
asymptotic expansions are utilized to construct acceptable estimates of the local numer-
ical errors. Finally, in Section 4, numerical experiments will be carried out to illustrate
our conclusions. A minimal experience with the time scales and approximation theories
are assumed.
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2 First Order Dynamic Difference Approximations

Let the functionf be defined onT. For valuesh1 ≥ µ(t), h2 ≥ η(t) we define the
forward, backwardandcentral dynamic differences off as

fF (t) =
f(t + h1)− f(t)

h1

, if t, t + h1 ∈ T, (2.1)

fB(t) =
f(t)− f(t− h2)

h2

, if t− h2, t ∈ T, (2.2)

fC(t) =
f(t + h1)− f(t− h2)

h1 + h2

, if t− h2, t, t + h1 ∈ T, (2.3)

respectively.

Theorem 2.1. If f is ∆ differentiable andt is right-dense, then

lim
h1→µ(t)

fF (t) = f∆(t), t ∈ Tκ.

Further, if f is twice differentiable on(a, b) then we have the local error estimate∣∣fF (t)− f∆(t)
∣∣ ≤ h1 |f ′′(ξ)| , t < ξ < t + h1, t ∈ Tκ. (2.4)

Proof. According to (2.1), for anyt ∈ Tκ,

lim
h1→µ(t)

fF (t) = lim
t+h1→σ(t)

f(t + h1)− f(t)

t + h1 − t

=

 f ′(t+), if µ(t) = 0,
f(σ(t))− f(t)

µ(t)
, otherwise,

 = f∆(t).

Further, lett ∈ C ∩ Tκ. According to the above discussion,fF (t) approachesf ′(t+) as
h1 → 0. This indicates thatfF (t) is a conventional forward difference formula for the
directional derivative inTκ and therefore (2.4) is true. On the other hand, ift ∈ D∩Tκ,
by Taylor’s remainder theorem,

fF (t)− f∆(t) =
f(t + h1)− f(t)

h1

− f(σ(t))− f(t)

µ(t)

= f ′(ξ1)− f ′(ξ2) = (ξ1 − ξ2)f
′′(ξ),

in which |ξ1 − ξ2| ≤ h1 sinceξ1, ξ2 ∈ (t, t + h1), σ(t) ≤ h1; and

ξ ∈ (min{ξ1, ξ2}, max{ξ1, ξ2}) ⊆ (t, t + h1).

Therefore (2.4) holds. We note thatξ1, ξ2, ξ may not necessarily be inTκ.
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Similarly, we have the following.

Theorem 2.2. If f is∇ differentiable andt is left-dense, then

lim
h2→η(t)

fB(t) = f∇(t), t ∈ Tκ.

Further, if f is twice differentiable on(a, b) then we have the local error estimate∣∣fB(t)− f∇(t)
∣∣ ≤ h2 |f ′′(ζ)| , t− h2 < ζ < t, t ∈ Tκ. (2.5)

Proof. According to (2.2), for anyt ∈ Tκ,

lim
h2→η(t)

fB(t) = lim
t−h2→ρ(t)

f(t)− f(t− h2)

t− (t− h2)

=

 f ′(t−), if η(t) = 0,
f(t)− f(ρ(t))

η(t)
, otherwise,

 = f∇(t).

We further notice that whent ∈ A ∩ Tκ, fB(t) approachesf ′(t−) ash2 → 0. This
indicates thatfB(t) is a standard backward difference approximation of the directional
derivative. Therefore (2.5) must be true in this circumstance. On the other hand, if
t ∈ B ∩ Tκ,

fB(t)− f∇(t) =
f(t)− f(t− h2)

h2

− f(t)− f(ρ(t))

η(t)

= f ′(ζ1)− f ′(ζ2) = (ζ1 − ζ2)f
′′(ζ),

in which |ζ1 − ζ2| ≤ h2, ζ1, ζ2 ∈ (t− h2, t), ρ(t) ≤ h2; and

ζ ∈ (min{ζ1, ζ2}, max{ζ1, ζ2}) ⊆ (t− h1, t).

Therefore (2.5) holds. We note again thatζ1, ζ2, ζ may not necessarily be inTκ.

Theorem 2.3.Letf be♦α differentiable andt be left-dense and right-dense. If

lim
h1 → µ(t)
h2 → η(t)

h1

h1 + h2

= α, 0 < α < 1,

then
lim

h1 → µ(t)
h2 → η(t)

fC(t) = f♦α(t), t ∈ Tκ
κ.

Further, if f is differentiable on(a, b) then we have the local error estimate∣∣fC(t)− f♦α(t)
∣∣ ≤ max {h1, h2}max {|f ′′(ξ)| , |f ′′(ζ)|} , (2.6)

t < ξ < t + h1, t− h2 < ζ < t, t ∈ Tκ
κ.
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Proof. Recall by (2.3) and Theorems 2.1 and 2.2, fort ∈ Tκ
κ we have

lim
h1 → µ(t)
h2 → η(t)

fC(t) = lim
h1 → µ(t)
h2 → η(t)

f(s + h1)− f(s) + f(s)− f(s− h2)

h1 + h2

= lim
h1 → µ(t)
h2 → η(t)

[
h1

h1 + h2

f(t + h1)− f(t)

h1

+
h2

h1 + h2

f(t)− f(t− h2)

h2

]

= α lim
t+h1→σ(t)

f(t + h1)− f(t)

t + h1 − t
+ (1− α) lim

t−h2→ρ(t)

f(t)− f(t− h2)

t− (t− h2)

= f♦α(t),

provided that the limitα exists. The error estimate (2.6) can be obtained readily by
combining (2.4), (2.5), and utilizing a triangular inequality.

Remark2.4. Theorem 2.3 implies that, by choosing different ratios of the nonuniform
grid stepsh1/h2, (2.3) converges to any desired♦α derivative value. A sensible choice
of such step ratios in practical computations may beh2 = sh1 with a scaling factor
s > 0. In the circumstance we have

0 < α = lim
h1 → µ(t)
h2 → η(t)

h1

h1 + h2

= lim
h1→µ(t)

h1

h1 + sh1

=
1

1 + s
< 1.

In a further special case whens ≡ 1, we haveh1 = h2 = h, andfC(t) reduces to the
conventional central difference formula which approximates the arithmetic average of
f∆(t), f∇(t) ast + h → σ(t) andt− h → ρ(t).

We note that, however, such a limitα may not exist in general. A typical example is
that when the step sequences are chosen as

h1,n =
1

n
, h2,n = snh1,n with variable scaling factorssn = 1 + (−1)n.

In the case the limit of

αn =
1

2 + (−1)n
, n →∞,

does not exist, althoughlim
n→∞

h1 = lim
n→∞

h2 = 0.

Remark2.5. Theorems 2.1 and 2.2 ensure that the dynamic differences (2.1), (2.2) are
not only first order approximations to the corresponding dynamic derivatives, respec-
tively, but also first order approximations to the derivative functionf ′(t) if it exists. On
the other hand, although (2.3) may provide a first order approximation of the dynamic
derivativef♦α(t) andf ′(t), if they exist, on an uniform mesh superimposed onT, it
approximates neither the diamond-α derivative, norf ′(t) on an arbitrary subset ofT.
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3 Second Order Dynamic Difference Approximations

Let t ∈ T andt− h2 − h4, t− h2, t, t + h1, t + h1 + h3, whereh` = h`(t) 6= 0, ` =
1, 2, 3, 4, are positive values which are distinct in general. Based on (2.1)–(2.3), we
propose the following second order dynamic difference formulas:

fFF (t) =
h1f(t + h1 + h3)− (h1 + h3)f(t + h1) + h3f(t)

h2
1h3

, (3.1)

if t, t + h1, t + h1 + h3 ∈ T,

fBB(t) =
h4f(t)− (h2 + h4)f(t− h2) + h2f(t− h2 − h4)

h2
2h4

, (3.2)

if t− h2 − h4, t− h2, t ∈ T.

Theorem 3.1. If f is twice∆ differentiable andt, t + h1 are right-dense, then

lim
h1 → µ(t)

h3 → µ(σ(t))

fFF (t) = f∆∆(t), t ∈ Tκ2

. (3.3)

Further, iff is continuously differentiable on(a, b) then we have the local error estimate∣∣fFF (t)− f∆∆(t)
∣∣ ≤ φ1

h3

h1

+ O

(
h1 + h3 +

h2
3

h1

)
, t ∈ Tκ2

, (3.4)

where

φ1 =



(s1 − s3)M

s1

, t ∈ D ∩ Tκ2

, σ(t) ∈ D ∩ Tκ,(
1

2
− βh1

h3

)
M, t ∈ C ∩ Tκ2

,

M

2
, t ∈ D ∩ Tκ2

, σ(t) ∈ C ∩ Tκ,

β = lim
h1 → µ(t)

h3 → µ(σ(t))

h3

2h1

, M = sup
a<t<b

|f ′′(t)|
2

, 0 < s1, s3 ≤ 1.

Proof. First, we lett ∈ D ∩ Tκ2

, σ(t) ∈ D ∩ Tκ. It is observed that

lim
h1 → µ(t)

h3 → µ(σ(t))

fFF (t)

= lim
t + h1 → σ(t)

t + h1 + h3 → σ2(t)

h1f(t + h1 + h3)− (h1 + h3)f(t + h1) + h3f(t)

h2
1h3

=
µ(t)fσ2

(t)− (µ(t) + µσ(t))fσ(t) + µσ(t)f(t)

µ2(t)µσ(t)
= f∆∆(t) (3.5)
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according to [2]. Secondly, fort ∈ C ∩ Tκ2

, we haveσ(t) = t and thereforeσ2(t) = t.
It follows subsequently that

lim
h1 → µ(t)

h3 → µ(σ(t))

fFF (t)

= lim
h1, h3→0+

[f(t + h1 + h3)− f(t + h1)]/h3 − [f(t + h1)− f(t)]/h1

h1

= lim
h1→0+

f∆(t + h1)− [f(t + h1)− f(t)]/h1

h1

= f∆∆(t). (3.6)

Thirdly, in the case thatt ∈ D ∩ Tκ2

andσ(s) ∈ C ∩ Tκ, we find that

lim
h1 → µ(t)

h3 → µ(σ(t))

fFF (t)

= lim
h1 → µ(t)
h3 → 0+

[f(t + h1 + h3)− f(t + h1)]/h3 − [f(t + h1)− f(t)]/h1

h1

=
f ′((σ(t))+)− f∆(t)

µ(t)
= f∆∆(t) (3.7)

according to [14–16]. Combining (3.5)–(3.7), we acquire immediately (3.3).
To show the error estimate (3.4), we first expandfFF (t) at t ∈ Tκ2

,

fFF (t) =
h1 + h3

2h1

f ′′(t) +

(
h2

3

6h1

+
h1

3
+

h3

2

)
f ′′′(t) + · · · . (3.8)

For the case ift ∈ D ∩ Tκ2

, σ(t) ∈ D ∩ Tκ, from (3.5) we deduce that

f∆∆(t) =
µ + µσ

2µ
f ′′(t) +

(
(µσ)2

6µ
+

µ

3
+

µσ

2

)
f ′′′(t) + · · · . (3.9)

Subtracting (3.9) from (3.8) we obtain

fFF (t)− f∆∆(t) =

(
h1 + h3

2h1

− µ + µσ

2µ

)
f ′′(t)

+

(
h2

3

6h1

+
h1

3
+

h3

2
− (µσ)2

6µ
− µ

3
− µσ

2

)
f ′′′(t) + · · · .(3.10)

Recall that0 < µ ≤ h1, 0 < µσ ≤ h3. We define positive parameterss1 = µ/h1 ≤
1, s3 = µσ/h3 ≤ 1. Substitute them into (3.10) to yield

fFF (t)− f∆∆(t) =

(
s1 − s3

2s1

)
h3

h1

f ′′(t)

+

[
h3

(
s1 − s2

3

6s1

)
h3

h1

+
1− s1

3
h1 +

1− s3

2
h3

]
f ′′′(t) + · · · .
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Thus, (3.4) is clear. Further, ift ∈ C ∩ Tκ2

thenσ(t) = σ2(t) = t. From (3.9), we
observe that

f∆∆(t) =

(
1

2
+ β

)
f ′′(t+).

Thus,

fFF (t)− f∆∆(t) =
h1 + h3

2h1

f ′′(t+) +

(
h2

3

6h1

+
h1

3
+

h3

2

)
f ′′′(t+) + · · ·

−
(

1

2
+ β

)
f ′′(t+)

=

(
h3

2h1

− β

)
f ′′(t) +

1

6

(
h2

3

h1

+ 2h1 + 3h3

)
f ′′′(t+) + · · · .

Therefore (3.4) is proved. Finally, ift ∈ D ∩ Tκ2

, thenσ(t) ∈ C ∩ Tκ. Based on (3.7)
and Theorem 2.1 we acquire that

f∆∆(t) =
f ′((t + µ)+)− f∆(t)

µ(t)
=

f ′(t) + µf ′′(t) + µ2

2
f ′′′(t) + · · · − f(σ(t))−f(t)

µ(t)

µ(t)

=
1

2
f ′′(t)− µ(t)

3
f ′′′(t) + · · · .

Recalling (3.8), we have

fFF (t)− f∆∆(t) =
h3

2h1

f ′′(t) +

(
h2

3

6h1

+
h1

3
+

h3

2
− µ(t)

3

)
f ′′′(t) + · · ·

which completes our proof.

By the same token, we may prove the following.

Theorem 3.2. If f is twice∇ differentiable andt, t− h2 are left-dense, then

lim
h2 → η(t)

h4 → η(ρ(t))

fBB(t) = f∇∇(t), t ∈ Tκ2 .

Further, iff is continuously differentiable on(a, b) then we have the local error estimate

|fBB(t)− f∇∇(t)| ≤ φ2
h4

h2

+ O

(
h2 + h4 +

h2
4

h2

)
, t ∈ Tκ2 , (3.11)

where

φ2 =



(s2 − s4)M

s2

, t ∈ B ∩ Tκ2 , σ(t) ∈ B ∩ Tκ,(
1

2
− β̃h2

h4

)
M, t ∈ A ∩ Tκ2 ,

M

2
, t ∈ B ∩ Tκ2 , σ(t) ∈ A ∩ Tκ,
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β̃ = lim
h2 → η(t)

h4 → η(ρ(t))

h4

2h2

, M = sup
a<t<b

|f ′′(t)|
2

, 0 < s2, s4 ≤ 1.

Proof. The proof is similar to that for Theorem 3.1. First, ift ∈ B ∩ Tκ2 andρ(t) ∈
B ∩ Tκ then

lim
h2 → η(t)

h4 → η(ρ(t))

fBB(t)

= lim
t− h2 → ρ(t)

t− h2 − h4 → ρ2(t)

h2f(t− h2 − h4)− (h2 + h4)f(t− h2) + h4f(t)

h2
2h4

=
ηρ(t)f(t)− (ηρ(t) + η(t))fρ(t) + η(t)fρ2

(t)

η2(t)ηρ(t)
(3.12)

which is consistent with results in [9, 14–16]. On the other hand, ift ∈ A ∩ Tκ2 then
ρ(t) = t and subsequentlyρ2(t) = t. It follows readily that

lim
h2 → η(t)

h4 → η(ρ(t))

fBB(t)

= lim
h2, h4→0+

[f(t)− f(t− h2)]/h2 − [f(t− h2)− f(t− h2 − h4)]/h4

h2

= lim
h2→0+

[f(t)− f(t− h2)]/h2 − f∇(t− h2)

h2

= f∇∇(t). (3.13)

Now, if t ∈ B ∩ Tκ2 andρ(t) ∈ A ∩ Tκ. According to [15],

lim
h1 → η(t)

h3 → η(ρ(t))

fBB(t)

= lim
h1 → η(t)
h3 → 0+

[f(t)− f(t− h1)]/h1 − [f(t− h1)− f(t− h1 − h3)]/h3

h1

=
f∇(t)− f ′((ρ(t))−)

η(t)
= f∇∇(t). (3.14)

Similar to (3.8), we arrive at

fBB(t) =
h2 + h4

2h2

f ′′(t)−
(

h2
4

6h2

+
h2

3
+

h4

2

)
f ′′′(t) + · · · . (3.15)
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To derive the error estimate, we first consider the case oft ∈ B ∩ Tκ2, ρ(t) ∈ B ∩ Tκ.
Recall (3.12). We have

f∇∇(t) =
ηρ + η

2η
f ′′(t)−

(
(ηρ)2

6η
+

η

3
+

ηρ

2

)
f ′′′(t) + · · · . (3.16)

A subtraction of (3.16) from (3.9) yields

fBB(t)− f∇∇(t) =

(
h2 + h4

2h2

− η + ηρ

2η

)
f ′′(t)

−
(

h2
4

6h2

+
h2

3
+

h4

2
− (ηρ)2

6η
− η

3
− ηρ

2

)
f ′′′(t) + · · · .(3.17)

Note that0 < η ≤ h2, 0 < ηρ ≤ h4. Define positive parameterss2 = η/h2 ≤ 1, s4 =
ηρ/h4 ≤ 1. Substitute them into (3.17), we acquire that

fBB(t)− f∇∇(t) =

(
s2 − s4

2s2

)
h4

h2

f ′′(t)

−
[
h4

(
s2 − s2

4

6s2

)
h4

h2

+
1− s2

3
h2 +

1− s4

2
h4

]
f ′′′(t) + · · · .

Thus the estimate is affirmative. Ift ∈ A ∩ Tκ2 thenρ(t) = ρ2(t) = t. Based on (3.13),
(3.16) we obtain

f∇∇(t) =

(
1

2
+ β̃

)
f ′′(t−).

Hence,

fBB(t)− f∇∇(t) =
h2 + h4

2h2

f ′′(t−)−
(

h2
4

6h2

+
h2

3
+

h4

2

)
f ′′′(t−) + · · ·

−
(

1

2
+ β̃

)
f ′′(t−)

=

(
h4

2h2

− β̃

)
f ′′(t)− 1

6

(
h2

4

h2

+ 2h2 + 3h4

)
f ′′′(t−) + · · ·

which leads to our estimate. Our last case is fort ∈ B ∩ Tκ2 , ρ(t) ∈ A ∩ Tκ. Due to
(3.14) and Theorem 2.2,

f∇∇(t) =
f∇(t)− f ′((ρ(t))−)

η(t)
=

f(t)−f(ρ(t))
η(t)

− (f ′(t)− ηf ′′(t) + η2

2
f ′′′(t) + · · · )

η(t)

=
1

2
f ′′(t)− η(t)

3
f ′′′(t) + · · · .

Recall (3.15). We deduce that

fFF (t)− f∇∇(t) =
h4

2h2

f ′′(t)−
(

h2
4

6h2

+
h2

3
+

h4

2
− η(t)

3

)
f ′′′(t) + · · ·
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which again indicates our error estimate.
A combination of the above discussions completes our proof.

Remark3.3. While Theorems 3.1 and 3.2 provide solid evidences that the second order
dynamic differences (3.1), (3.2) converge to their corresponding dynamic derivatives,
respectively, the error estimates (3.4), (3.11) offer applicable (probably not the best)
local error estimates in the literature. The estimates provide safeguards in some sense
in computations of the solution of dynamic equations whenever necessary.

Remark3.4. From the above investigations we may conclude readily that neither of the
second order dynamic differences, nor the second order dynamic derivatives, should
be considered as natural approximations of the conventional derivative functionf ′′(t),
should it exists in the domain considered. The arbitrary nonuniform mesh stepsh`, ` =
1, 2, 3, 4, often complicate the approximation desires [9,18].

Remark3.5. Investigations of the second order central dynamic difference,

fCC(t) = [(h2 + h4)f(t + h1 + h3)− (h1 + h2 + h3 + h4)f(t)

+(h1 + h3)f(t− h2 − h4)]/[(h1 + h2)(h1 + h3)(h2 + h4)],

if t− h2 − h4, t− h2, t, t + h1, t + h1 + h3 ∈ T,

as well as crossed second order dynamic difference formulae can be very promising but
lengthy. We prefer to leave its discussions, together with those for crossed dynamic
difference approximations, to our forthcoming papers.

4 Numerical Experiments

Figure 4.1: LEFT: Plot of the jump functions onT. RIGHT: Plot of the nonuniform step
size functions overT ⊂ T.
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For a given positive integern, we consider the time scaleT := {tn = 0; ti−1 =
ti−1/(i−n+2), i = n, n−1, . . . , 2; tj+1 = tj+1/(j−n+3), j = n, n+1, . . . , 2n−2}.
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The left end ofT, a, can be viewed as right dense while the right end ofT, b, can be
viewed as left dense for largen from computational point-of-view. Setn = 100. The
layout of the corresponding jump functionsσ(t), or ρ(t), is plotted in the first frame of
Figure 4.1. The second frame of Figure 4.1 shows a discrete setT ⊂ T on which the
dynamic differences approximations are constructed. We let the nonuniform steps used
in T be bounded below by 0.018 and above by 0.033. Irregular computational steps are
used to replace the small jumps near the left and right ends ofT for studying properties
of the approximations. We only show results related to the dynamic differencesfF (t)
andfFF (t).

Figure 4.2: LEFT: The dynamic derivativef∆(t) and dynamic differencefF (t) on set
T . A low frequency is used. The difference between the functions are hard to see.
RIGHT: An enlarged image of the functions for3.3 ≤ t ≤ 4.2. The functions become
distinguishable.
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Figure 4.3: LEFT: The dynamic derivativef∆(t) and dynamic differencefF (t) on set
T . RIGHT: A local image of the functions when3.3 ≤ t ≤ 4.2.
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In the experiments, we consider the wave function

f(t) = sin

[
ω

(
t− b− a

2

)]
, (4.1)

whereω is the wave number involved [13, 18]. In the first case a low frequency with
ω = 2π/(b − a) is used. The dynamic derivativesf∆(t) and fF (t) are plotted in
Figure 4.2. The solid curve is for the dynamic derivative while the dotted curve is for
the dynamic difference. The second frame in Figure 4.2 offers an enlarged image of the
functions in the most turbulent area. The numerical error is significantly small compared
with the magnitudes of the functions (Figure 4.4). In fact, most of the central part of
T is overlapped withT based on the step size bounds. The maximal error appears in
areas where steps used forfF (t) on T are significantly larger than the corresponding
jump functions onT. This can be clearly observed in Figure 4.4. Our second set of
experiments are designed with a high frequency wave withω = 20π/(b − a) in (4.1).
The numerical results off∆(t) andfF (t) are given in Figure 4.3, where the second
frame is again for an enlarged picture. It is found that the approximation is excellent
and acceptable, even with the relatively large irregular steps used near the two ends of
T . The maximal relative error offF (t) is less than0.7/8 ≈ 8.5% in computations
(Figure 4.4).

Figure 4.4: LEFT: Distributions of the computational error onT . A low frequency is
used. RIGHT: Distributions of the computational error onT . A high frequency is used.
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We now consider approximations of the dynamic derivativef∆∆(t) with function
(4.1) onT andT . Figure 4.5 provides curves of the dynamic derivative (solid curve)
and dynamic difference (dotted curve). It can be observed that the latter is overlapped
with the former in most of the domains, except in areas near the two ends, whereT is
significantly different fromT. In the more detailed right frame, we may see that the
maximal relative error of the numerical approximation is almost 25%. This suggests
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Figure 4.5: LEFT: The dynamic derivativef∆∆(t) and dynamic differencefFF (t) on
setT . A low frequency is used. The differences between the functions are hard to
observe. RIGHT: A locally enlarged image of the functions as3.3 ≤ t ≤ 4.2. The
functions become distinguishable.
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Figure 4.6: LEFT: The dynamic derivativef∆∆(t) and dynamic differencefFF (t) on
set T . A high frequency is used. The difference between the functions are hard to
observe. RIGHT: An locally enlarged image of the functions as3.3 ≤ t ≤ 4.2. The
functions become distinguishable.

−4 −3 −2 −1 0 1 2 3 4
−60

−40

−20

0

20

40

60

80

t

th
e 

de
riv

at
iv

es

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2
−60

−40

−20

0

20

40

60

80

t

th
e 

de
riv

at
iv

es



Dynamic Difference Approximations 151

that approximations of the second order dynamic derivatives can be far more difficult
than the first order dynamic derivatives [9,15].

Corresponding curves via the high frequency wave function (4.1) are given in Fig-
ure 4.6. It is again found that the approximation works satisfactorily except in the areas
near the two ends ofT, where irregular mesh points are used inT . Oscillations of the
dynamic difference values indicate a relatively poor approximation on the mesh. The
maximal relative error reaches about 25% in this scenario. The phenomenon observed
supports the common practice for not using “nonsmooth” grids during adaptive compu-
tations [9,13,17].

Finally, in Figure 4.7, we present more precise numerical errors. Though the error
curve associated with the high frequency function seems to be more violent, the max-
imal relative errors are still around 25% in both low and high frequency cases. The
oscillations are more significant than that in the first order dynamic derivative approxi-
mations.

Figure 4.7: Numerical error onT . LEFT: A low frequency is used. RIGHT: A high
frequency is used.
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Experiments involving other dynamic derivatives, dynamic differences and testing
functions are similar. All numerical experiments suggest that approximations of the sec-
ond and higher order dynamic derivatives need to be extremely careful. The irregularity
of the time scale structures may bring in tremendous amount of numerical uncertain-
ties [9, 12, 16, 17]. Optimization procedures may need to be imposed to assure more
effective approximations.
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