[1,2]-COMPLEMENTARY CONNECTED DOMINATION IN GRAPHS

G.Mahadevan¹, K.Renuka², C.Sivagnanam³

¹,² Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram, Dindigul-624302, India.
³ Department of General Requirements, College of Applied Sciences, Ibri, Sultanate of Oman.

Abstract

A set \(S \subseteq V(G) \) in a graph \(G \) is said to be \([1,2]\)-complementary connected dominating set if for every vertex \(v \in V - S \), \(1 \leq |N(v) \cap S| \leq 2 \) and \(< V - S > \) is connected. The minimum cardinality of \([1,2]\)-complementary connected dominating set is called \([1,2]\)-complementary connected domination number and is denoted by \(\gamma_{[1,2]}(G) \). In this paper, we initiate the study of this parameter.

Keywords: complementary connected domination, \([1,2]\)-sets, \([1,2]\)-domination, \([1,2]\)-complementary connected domination

AMS Subject Classification: 05C69

1 Introduction

The graph \(G = (V, E) \) we mean a finite, undirected, connected graph with neither loops nor multiple edges. The order and size of \(G \) are denoted by \(n \) and \(m \) respectively. The degree of a vertex \(u \) in \(G \) is the number of edges incident with \(u \) and is denoted by \(d_G(u) \), simply \(d(u) \). The minimum and maximum degree of a graph \(G \) is denoted by \(\delta(G) \) and \(\Delta(G) \), respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2].

A set \(S \subseteq V(G) \) is a dominating set if every vertex in \(V(G) - S \) is adjacent to atleast one vertex in \(S \). The minimum cardinality of a dominating set is called the domination number and is denoted by \(\gamma(G) \). In [7], T.Tamizh Chelvam and B.Jayaprasad introduced the concept of

E-mail address: drgmaha2014@gmail.com(G.Mahadevan), math.renuka@gmail.com(K.Renuka), choshi71@gmail.com(C.Sivagnanam).
This research work was supported by Departmental Special Assistance, University grant Commission, New Delhi and UGC-BSR Research fellowship in Mathematical Sciences- 2014-2015.
complementary connected domination in graphs. A dominating set \(S \) is a complementary connected dominating set if it induces a connected subgraph in \(G \). The minimum cardinality of a complementary connected dominating set of \(G \) is called the complementary connected domination number and is denoted as \(\gamma_{cc} (G) \). In [6], V.R.Kulli and B.Janakiraman introduced the concept of nonsplit domination number of a graph. In [4],[5], Paulraj Joseph.J and Arumugam.S proved that \(\gamma(G) + \chi(G) \leq n + 1 \) and \(\gamma(G) + \kappa(G) \leq n \). Also they characterized the corresponding extremal graphs.

In [3], Mustapha Chellali et.al first studied the concept of \([1,2]\)-sets. A subset \(S \subseteq V \) in a graph \(G \) is a \([j,k]\)-set if, for every vertex \(v \in V \setminus S \), \(j \leq |N(v) \cap S| \leq k \) for any non-negative integer \(j \) and \(k \). In [9], Xiaojing Yang and Baoyindureng Wu, extended to the study of the parameter. A vertex set \(S \) of a graph \(G \) is a \([1,2]\)-set if, \(1 \leq |N(v) \cap S| \leq 2 \) for every vertex \(v \in V \setminus S \), that is, every vertex \(v \in V \setminus S \) is adjacent to either one or two vertices in \(S \). The minimum cardinality of a \([1,2]\)-set of \(G \) is denoted by \(\gamma_{[1,2]}(G) \) and is called \([1,2]\)-domination number of \(G \).

Motivated by the above, in this paper we introduce the concept of \([1,2]\)-complementary connected domination number of graphs.

2 Main Result

Definition 2.1 A set \(S \subseteq V(G) \) in a graph \(G \) is said to be \([1,2]\)-complementary connected dominating set if for every vertex \(v \in V \setminus S \), \(1 \leq |N(v) \cap S| \leq 2 \) and \(\langle V \setminus S \rangle \) is connected. The minimum cardinality of \([1,2]\)-complementary connected dominating set is called \([1,2]\)-complementary connected domination number and is denoted as \(\gamma_{[1,2]cc}(G) \).

Figure 2.1

In figure 1.1, \(S=\{v_1,v_3\} \) be the \([1,2]\)-complementary connected dominating set and the
complement $V - S = \{v_2, v_3, v_4, v_6, v_7\}$ is connected. Hence $\gamma_{[1,2]c}(G) = 2$.

Observation 2.1

1. For P_n, $\gamma_{[1,2]c}(P_n) = \begin{cases} n - 1 & \text{if } n \leq 3; \\ n - 2 & \text{otherwise}; \end{cases}$
2. For C_n, $\gamma_{[1,2]c}(C_n) = n - 2$, for any $n \geq 3$
3. If G is K_n, W_n for any $n \geq 2$, then $\gamma_{[1,2]c}(G) = 1$.
4. For $K_{m,n}$, $\gamma_{[1,2]c}(K_{m,n}) = 2$, for any $n, m \geq 2$.

Observation 2.2 For any connected graph of order n, $1 \leq \gamma_{[1,2]c}(G) \leq n - 1$ and the bounds are sharp. For $K_{1,n}$ the bound is sharp.

Observation 2.3 For any graph G, $\gamma(G) \leq \gamma_{cc}(G) \leq \gamma_{[1,2]c}(G)$

In figure 2.2, the dominating set $S = \{v_1, v_3, v_4\}$ and hence $\gamma(G) = 3$, the complementary connected dominating set $S = \{v_1, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}\}$ and hence $\gamma_{cc}(G) = 8$ and the $[1,2]$-complementary connected dominating set $S = \{v_2, v_3, v_4, v_1, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}\}$ and hence $\gamma_{[1,2]c}(G) = 10$. Hence $\gamma(G) \leq \gamma_{cc}(G) \leq \gamma_{[1,2]c}(G)$.

Theorem 2.1 For any graph G, $\left\lfloor \frac{n}{\Delta + 1} \right\rfloor \leq \gamma_{[1,2]c}(G)$

Proof. Since G be a connected graph, by observation 2.3 $\gamma(G) \leq \gamma_{[1,2]c}(G)$. Hence $\left\lfloor \frac{n}{\Delta + 1} \right\rfloor \leq \gamma_{[1,2]c}(G) \leq n - \Delta$.

283
In figure 2.3, the maximum degree is three. The number of vertices is ten. The $[1,2]$ complementary connected dominating set is $S = \{v_1, v_4, v_9, v_7\}$ and $\gamma_{[1,2]cc}(G) = 4$.

$$\left\lceil \frac{n}{\Delta + 1} \right\rceil \leq \gamma_{[1,2]cc}(G) \leq n - \Delta,$$

here $\left\lceil \frac{10}{3 + 1} \right\rceil \leq 4 \leq 10 - 4 \Rightarrow 3 \leq 4 \leq 6$.

Observation 2.4 Complement of $[1,2]–$ complementary connected dominating set need not be $[1,2]–$ complementary connected dominating set.

In figure 2.4, the $[1,2]$ complementary connected dominating set is $S = \{v_5, v_2\}$ and $\gamma_{[1,2]cc}(G) = 2$.

And the complement of the set S is not $[1,2]$ complementary connected dominating set.

Observation 2.5 Every $[1,2]–$ complementary connected dominating set is a dominating set but not conversely. Figure 2 shows that every $[1,2]–$ complementary connected dominating set is a dominating set but not conversely.
Observation 2.6 Every \([1,2]-\)complementary connected dominating set is a connected dominating set but the converse is not necessarily true.

Theorem 2.2 Let \(G\) be a connected cubic graph. Then \(\gamma_{[1,2c]}(G) = \chi(G) = 2\) if and only if \(G \cong C_4\).

Theorem 2.3 There does not exist a connected 3-regular graph on six vertices, whose chromatic number equal to \([1,2]-\)complementary connected domination number equal to 3.

Theorem 2.4 There does not exist a connected 3-regular graph on eight vertices, whose chromatic number equal to \([1,2]-\)complementary connected domination number equal to 3.

3 Relationship with other domination parameter

Theorem 3.1 Let \(G\) be a graph. Then \(\gamma_{[1,2c]}(G) + \kappa(G) \leq 2n - 2\) and the equality holds if and only if \(G \cong K_2\).

Proof. Let \(\gamma_{[1,2c]}(G) + \kappa(G) \leq 2n - 2\). Assume that \(\gamma_{[1,2c]}(G) + \kappa(G) = 2n - 2\). Then the only possible case is \(\gamma_{[1,2c]}(G) = n\) and \(\kappa(G) = n - 1\). If \(\kappa(G) = n - 1\), then \(G\) is Complete graph. But for Complete graph \(\gamma_{[1,2c]}(G) = 1\) therefore \(n = 2\) and hence \(G \cong K_2\). Converse is obvious.

Theorem 3.2 Let \(G\) be a graph. Then \(\gamma_{[1,2c]}(G) + \kappa(G) = 2n - 3\) if and only if \(G \cong K_3\).

Proof. Let \(\gamma_{[1,2c]}(G) + \kappa(G) = 2n - 3\). Then there are two possible cases to consider.

(i) \(\gamma_{[1,2c]}(G) = n - 1\) and \(\kappa(G) = n - 2\)

(ii) \(\gamma_{[1,2c]}(G) = n - 2\) and \(\kappa(G) = n - 1\)

Case 1. \(\gamma_{[1,2c]}(G) = n - 1\) and \(\kappa(G) = n - 2\)

If \(\kappa(G) = n - 2\), then we have \(n - 2 \leq \delta(G)\). If \(\delta(G) = n - 1\), then \(G\) is \(K_n\) which is a contradiction. Hence \(\delta(G) = n - 2\). Then \(G\) is \(K_n - Q\), where \(Q\) is the matching in \(G\) is \(C_4\). Therefore \(\gamma_{[1,2c]}(G) = 2 \leq 3\) which is a contradiction.

Case 2. \(\gamma_{[1,2c]}(G) = n - 2\) and \(\kappa(G) = n - 1\)

Since \(\kappa(G) = n - 1\), \(G\) is a Complete graph and \(\gamma_{[1,2c]}(K_n) = 1\) we have \(n = 3\) therefore \(G \cong K_3\).

The converse is obvious.

Theorem 3.3 Let \(G\) be a graph. Then \(\gamma_{[1,2c]}(G) + \chi(G) \leq 2n - 1\) and the equality holds if and only if \(G \cong K_2\).
Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 1$. Therefore the only possible case is $\gamma_{[1,2]c}(G) = n - 1$ and $\chi(G) = n$. If $\chi(G) = n$, then G is Complete. But for Complete graph $\gamma_{[1,2]c}(G) = 1$ and $n = 2$ therefore $G \cong K_2$. Converse is obvious.

Theorem 3.4 Let G be a graph. Then $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 2$ if and only if $G \cong P_3$ or K_2.

Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 2$. Then the possible cases are, (i) $\gamma_{[1,2]c}(G) = n - 1$ and $\chi(G) = n - 1$ or (ii) $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n$.

Case 1 $\gamma_{[1,2]c}(G) = n - 1$ and $\chi(G) = n - 1$

Since $\chi(G) = n - 1$, G is contains a clique K on $n - 1$ vertices or does not contains a clique K on $n - 1$ vertices. Let G is contains a clique K on $n - 1$ vertices. Let u be the vertex other than clique. Since G is connected, u be adjacent to some v_i in the clique. Here $\{u, v_i\}$ forms $[1,2]cc$-set. Therefore $\gamma_{[1,2]c}(G) = 2$ so that $n = 3$ and hence $K = K_2$. Let $\{v_1, v_2\}$ be the vertices of K_2. Without loss of generality let u be adjacent to v_1 in the clique. Then G is P_3.

Case 2 $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n$

Since $\chi(G) = n$, G is Complete. But for a complete graph $\gamma_{[1,2]c}(G) = 1$ and hence $n = 3$. Thus G is K_3.

The converse is obvious.

Theorem 3.5 Let G be a graph. Then $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 3$ if and only if $G \in K_4$ or $K_{1,3}$.

Proof. Let $\gamma_{[1,2]c}(G) + \chi(G) = 2n - 3$. Then the possible cases are

(i) $\gamma_{[1,2]c}(G) = n - 1$ and $\chi(G) = n - 2$, (ii) $\gamma_{[1,2]c}(G) = n - 2$ and $\chi(G) = n - 1$,

(iii) $\gamma_{[1,2]c}(G) = n - 3$ and $\chi(G) = n$.

Case 1 $\gamma_{[1,2]c}(G) = n - 1$ and $\chi(G) = n - 2$

Since $\chi(G) = n - 2$, G contains a clique K on $n - 2$ vertices or G does not contain a clique K on $n - 2$ vertices. Suppose G contains a clique K on $n - 2$ vertices. Let $S = V - V(K) = \{v_1, v_2\}$. Then either $< S > = K_2$ or $< S > = K_2$

Subcase 1 $< S > = K_2$

Since G is connected either v_1 or v_2 is adjacent to a vertex in K. Let v_1 be adjacent to $u_1 \in V(K)$. Then $\{v_1, v_2, u_1\}$ is a $[1,2]$-complementary connected dominating set of G. Hence $\gamma_{[1,2]c}(G) \leq 3$ so
that $n \leq 4$. If $n = 4$, then G is P_4 which is a contradiction.

Subcase: 2 $\langle S \rangle = \overline{K}_2$

Since G is connected, we have two cases to consider.

Subcase: 2.1 $N(v_1) \cup N(v_2) \neq \emptyset$

Let $u \in N(v_1) \cup N(v_2)$. Then $\{v_1, v_2, u\}$ is a $\gamma_{[1,2]cc}(G)$-set of G and hence $\gamma_{[1,2]cc}(G) = 3$ which gives $n = 4$. Thus G is isomorphic to $K_{1,3}$. On increasing the degree of v_i we get contradiction.

Subcase: 2.2 $N(v_1) \cup N(v_2) = \emptyset$

Let $v_1 u_1, v_2 u_2 \in E(G)$ for some $u_1, u_2 \in V(K)$. Then $\{u_1 v_1, v_1, u_2\}$ is a $\gamma_{[1,2]cc}(G)$-set of G. Thus $\gamma_{[1,2]cc}(G) = 3$ and hence $n = 4$. Thus $K = K_2$ which gives $G = P_4$ which is a contradiction.

Case: 2 $\gamma_{[1,2]cc}(G) = n - 2$ and $\chi(G) = n - 1$

Since $\chi(G) = n - 1$, G contains a clique K on $n - 1$ vertices or does not contain a clique K on $n - 1$ vertices. Let G contains a clique K on $n - 1$ vertices and let $v \in V(K)$. Since G is connected, without loss of generality we may assume that v be adjacent to $u \in V(K)$. Then $\{u, v\}$ is a $\gamma_{[1,2]cc}(G)$-set of G which gives $\gamma_{[1,2]cc}(G) = 2$ and hence $n = 3$. Thus $K = K_1$ and hence G is P_2 which is a contradiction.

Case: 3 $\gamma_{[1,2]cc}(G) = n - 3$ and $\chi(G) = n$

Since $\chi(G) = n$, G is Complete and hence $\gamma_{[1,2]cc}(G) = 1$. Thus $n = 4$ so that $G = K_4$.

The converse is obvious.

Conclusion:

In this paper, we introduced the concept of $[1,2]$-connected domination number of graphs and characterized its bounds. We also showed the relation between $[1,2]cc$ sets with connectivity and chromatic number of graphs. The authors characterize the results related to sum of connectivity and $[1,2]$-complementary connected domination number, chromatic number and $[1,2]$-complementary connected domination number of order $2n-4, 2n-5, \ldots$ in subsequent papers.

References

