Convergence of a Third-order family of methods in Banach spaces

Gagandeep
Department of Mathematics,
Hans Raj Mahila Mahavidyalaya,
Jalandhar-144008, India.

R. Sharma¹
Department of Applied Sciences,
DAV Institute of Engineering and Technology,
Jalandhar-144008, India.

Abstract
In this paper, we study the semilocal convergence of a family of third-order methods for solving nonlinear equations in Banach spaces using recurrence relations. Recurrence relations for the family of methods are derived and finally an existence-uniqueness theorem is derived along with a priori error bounds.

Keywords: Nonlinear equations, Banach spaces, Recurrence relations, Semilocal convergence, Iterative methods.

1. Introduction
The most well known Newton’s method and its variants are used to solve nonlinear operator equations $F(x) = 0$. The convergence of these second order methods was established by Kantorovich Theorem ([15], [16]). The convergence of sequences obtained by these methods is derived from convergence of majorizing sequences [21]. Rall in [18] established the convergence of Newton’s method by using recurrence relations. With the same approach, various researchers established semilocal convergence of higher order

¹Corresponding author.
methods in Banach spaces (see [3, 2, 13, 12, 7, 11, 17, 14, 10, 9, 20, 5, 22, 8, 1, 4, 6] and references there in). In this paper, we shall use recurrence relations to establish the semilocal convergence of a family of third-order methods [19] in Banach spaces. Based on these recurrence relations, an existence-uniqueness theorem is given and a priori error bounds are obtained for the method.

2. Recurrence relations

In this section, we discuss a third order method [19] for solving nonlinear operator equations

\[F(x) = 0, \]

where \(F : \Omega \subseteq X \to Y \) is a nonlinear operator on an open convex subset \(\Omega \) of a Banach space \(X \) with values in a Banach space \(Y \). The third order method is defined as follows:

\[
\begin{align*}
 y_n &= x_n - \theta F'(x_n)^{-1} F(x_n), \\
 x_{n+1} &= x_n - \left[\left(1 + \frac{1}{2\theta} \right) I - \frac{1}{2\theta} F'(x_n)^{-1} F'(y_n) \right] F'(x_n)^{-1} F'(x_n).
\end{align*}
\]

Let \(F \) be a twice Fréchet differentiable in \(\Omega \) and \(BL(Y, X) \) be the set of bounded linear operators from \(Y \) into \(X \). Let us assume that \(\Gamma_0 = F'(x_0)^{-1} \in BL(Y, X) \) exists at some \(x_0 \in \Omega_0 \) and the following conditions hold:

(1) \(\| F'(x) - F'(y) \| \leq K \| x - y \|, x, y \in \Omega, \)

(2) \(\| F''(x) \| \leq M, x \in \Omega \)

(3) \(\| \Gamma_0 \| \leq \beta, \)

(4) \(\| \Gamma_0 F(x_0) \| \leq \eta. \)

Let us denote

\[a = K \beta \eta. \]

Now, we define the sequences

\[
\begin{align*}
 a_0 &= b_0 = 1, d_0 = 1 + \frac{a}{2}, \\
 a_{n+1} &= \frac{a_n}{1 - a a_n d_n}, \\
 b_{n+1} &= a_{n+1} \beta \eta C_n, \\
 d_{n+1} &= \left(1 + \frac{1}{2} a a_{n+1} b_{n+1} \right) b_{n+1},
\end{align*}
\] (2.3)
where
\[C_n = \frac{M}{2} K_n^2 + K|\theta|b_n K_n + \left(\frac{M\theta^2 + K}{2} \right) b_n^2, \] (2.4)

with
\[K_n = \left(|1 - \theta| + \frac{aa_n b_n}{2} \right) b_n. \] (2.5)

The polynomials \(C_n \) and \(K_n \) can be written as
\[C_n = (P_0 + P_1 a_n b_n + P_2 a_n^2 b_n^2) b_n^2, \]
\[K_n = (Q_0 + Q_1 a_n b_n) b_n. \]

Lemma 2.1. Under the previous assumptions, we prove the following:

\((I_n) \quad \|\Gamma_n\| = \|F'(x_n)^{-1}\| \leq a_n \beta, \)
\((II_n) \quad \|\Gamma_n F(x_n)\| \leq b_n \eta, \)
\((IIIn) \quad \|x_{n+1} - x_n\| \leq d_n \eta, \)
\((IV_n) \quad \|x_{n+1} - y_n\| \leq K_n \eta. \)

Proof. We use induction to prove the above claims. Notice that \((I_0) \) and \((II_0) \) follow immediately from the assumptions. To prove \((IIIn) \), we consider (2.1). Using the assumptions, it follows that
\[\|x_1 - x_0\| \leq \left[1 + \frac{1}{2|\theta|} K\beta \|y_0 - x_0\| \right] \|\Gamma_0 F(x_0)\| \]
\[\leq \left[1 + \frac{a}{2} \right] \eta = d_0 \eta, \] (2.6)

and \((III_0) \) holds. We have
\[x_1 - y_0 = - \left[(1 - \theta) \frac{1}{2\theta} F'(x_0)^{-1} (F'(x_0) - F'(y_0)) \right] F'(x_0)^{-1} F'(x_0), \] (2.7)

so that
\[\|x_1 - y_0\| \leq \left[|1 - \theta| + \frac{1}{2|\theta|} K\beta \|y_0 - x_0\| \right] \|\Gamma_0 F(x_0)\| \]
\[\leq \left[|1 - \theta| + \frac{a^2}{2} \right] \eta = K_0 \eta, \] (2.8)

and \((IV_0) \) also holds. Following an inductive procedure and assuming that \(x_n \in \Omega \) and \(a a_n d_n < 1 \), if \(x_{n+1} \in \Omega \), we have
\[\|I - \Gamma_n F'(x_{n+1})\| \leq \|\Gamma_n\| \|F'(x_n) - F'(x_{n+1})\| \leq a a_n d_n < 1. \] (2.9)
Then, from Banach lemma, Γ_{n+1} exists and
\[
\|\Gamma_{n+1}\| \leq \frac{\|\Gamma_n\|}{1 - \|\Gamma_n\| \|F'(x_n) - F'(x_{n+1})\|} \leq \frac{a_n \beta}{1 - a_n \eta_n} = a_{n+1} \beta. \tag{2.10}
\]
Hence, by induction (2.10) holds for all n. This proves condition (I_n).

Using the first step of (1), we have
\[
F(y_n) = F(y_n) - \theta F(x_n) - F'(x_n)(y_n - x_n)
= (1 - \theta) F(x_n) + F'(x_n) - F'(x_n)(y_n - x_n)
= (1 - \theta) F(x_n) + \int_0^1 F''(x_n + t(y_n - x_n))(1 - t) dt (y_n - x_n)^2. \tag{2.11}
\]
Now subtract first step of (2.1) from second, we get
\[
x_{n+1} - y_n = - \left[(1 - \theta) I + \frac{1}{2\theta} F'(x_n)^{-1}(F'(x_n) - F'(y_n)) \right] F'(x_n)^{-1} F'(x_n).
\tag{2.12}
\]
so that
\[
\|x_{n+1} - y_n\| \leq \left[|1 - \theta| + \frac{a_n \beta K}{2|\theta|} \right] \|\Gamma_n F(x_n)\|
\leq \left[|1 - \theta| + \frac{a_n \beta \eta_n}{2} \right] b_n \eta_n = K_n \eta. \tag{2.13}
\]
Using Taylor’s formula, we have
\[
F(x_{n+1}) = F(y_n) + F'(y_n)(x_{n+1} - x_n)
+ \int_0^1 F''(y_n + t(x_{n+1} - y_n))(1 - t) dt (x_{n+1} - y_n)^2
= (1 - \theta) F(x_n) + F'(x_n)(x_{n+1} - x_n)
+ \int_0^1 F''(y_n + t(y_n - x_n))(1 - t) dt (y_n - x_n)^2
+ \int_0^1 F''(y_n + t(x_{n+1} - y_n))(1 - t) dt (x_{n+1} - y_n)^2
+ (F'(y_n) - F'(x_n)) (x_{n+1} - y_n)
= F'(x_n) \frac{1}{2\theta} F'(y_n)^{-1}(F'(y_n) - F'(x_n)) \Gamma_n F(x_n) + (F'(y_n) - F'(x_n)) (x_{n+1} - y_n)
+ \int_0^1 F''(y_n + t(x_{n+1} - y_n))(1 - t) dt (x_{n+1} - y_n)^2
+ \int_0^1 F''(x_n + t(y_n - x_n))(1 - t) dt (y_n - x_n)^2. \tag{2.14}
\]
Convergence of a Third-order family of methods in Banach spaces

Hence using (2.13) in (2.14), we have

\[
\| F(x_{n+1}) \| \leq \frac{K}{2\theta^2} \| y_n - x_n \|^2 + K \| y_n - x_n \| \| x_{n+1} - y_n \| \\
+ \frac{M}{2} \| y_n - x_n \|^2 + \frac{M}{2} \| x_{n+1} - y_n \|^2 \\
\leq \left[\frac{M}{2} K_n^2 + K |\theta| b_n K + \left(\frac{M\theta^2 + K}{2} \right) b_n^2 \right] \eta^2 \\
= C_n \eta^2.
\]

Therefore

\[
\| \Gamma_{n+1} F(x_{n+1}) \| \leq \| \Gamma_{n+1} \| \| F(x_{n+1}) \| \\
\leq a_{n+1} \beta C_n \eta^2 = b_{n+1} \eta,
\]

So, by induction condition \((II_n)\) holds for all \(n\). Using (2.16), we have

\[
\| x_{n+2} - x_{n+1} \| \leq \left[1 + \frac{1}{2|\theta|} \| F'(x_{n+1})^{-1} \| \| F'(x_{n+1})^{-1} - F'(y_{n+1})^{-1} \| \right] \| \Gamma_{n+1} F(x_{n+1}) \| \\
\leq \left[1 + \frac{1}{2} a_{n+1} \beta K b_{n+1} \eta \right] b_{n+1} \eta \\
= \left[1 + \frac{aa_{n+1} b_n}{2} \right] b_{n+1} \eta = d_{n+1} \eta.
\]

Hence, by induction, this inequality holds for all \(n\). This proves condition \((III_n)\). We have from (2.13) and (2.16) that

\[
\| x_{n+2} - y_{n+1} \| \leq \left[|1 - \theta| + \frac{1}{2|\theta|} a_{n+1} \beta K \| y_{n+1} - x_{n+1} \| \right] \| \Gamma_n F(x_n) \| \\
\leq \left[|1 - \theta| + \frac{aa_{n+1} b_n}{2} \right] b_{n+1} \eta = K_{n+1} \eta.
\]

Hence, by induction, this inequality holds for all \(n\). This proves condition \((IV_n)\).

3. Convergence Analysis

In this section, we establish the convergence of our third-order method (2.1). To this end, we have to prove the convergence of the sequence \(x_n\) defined in a Banach space or, which is same, to prove that \(d_n\) is a Cauchy sequence and that the following assumptions hold:

1. \(x_n \in \Omega\),
2. \(aa_n d_n < 1, n \in \mathbb{N}\).
The next two lemmas will show the Cauchy property for the sequence d_n.

Lemma 3.1. Assume that x_0 is chosen so as to satisfy $0 < d_0 < \frac{1}{a}$, that is, $a \in (0, \sqrt{3} - 1)$. Then, the sequence $a_n > 0$ is increasing, as n increases.

Proof. We show now that all the involved sequences are positive. Under the imposed conditions, we see that a_0, b_0, d_0, C_0, K_0 are all positive, and also that $1 - a a_0 d_0 > 0$. Assume, now, that all a_i, b_i, d_i, C_i, K_i, and $1 - a a_i d_i$ are positive, for $i = 0, 1, 2, \ldots, n$

Since $C_n > 0$ and $b_{n+1} = a_{n+1} \beta \eta C_n$, it follows that a_{n+1}, b_{n+1} have same sign, and so $a_{n+1} b_{n+1} > 0$. Further, from $d_{n+1} = (1 + \frac{1}{2} a a_{n+1} b_{n+1}) b_{n+1}$, we get that d_{n+1} has same sign as that of b_{n+1}, and so, all the three terms $a_{n+1}, b_{n+1}, d_{n+1}$ share the same sign.

By absurd, we suppose that the implied sign is negative. Then $d_n + d_{n+1} < d_n$, and so, $1 - a a_n (d_n + d_{n+1}) > 1 - a a_n d_n$, which renders $1 - a a_{n+1} d_{n+1} = \frac{1 - a a_n (d_n + d_{n+1})}{1 - a a_n d_n} > 1$, which implies $a a_{n+1} d_{n+1} < 0$, but that is impossible since a_{n+1}, d_{n+1} have the same sign and $a > 0$.

Next, since $a_{n+1} = \frac{a_n}{1 - a a_n d_n}$, then

$$d_n = \frac{1}{a} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right),$$

and so, by telescoping, we get $\sum_{i=0}^{n-1} d_i = \frac{1}{a} \left(\frac{1}{a_0} - \frac{1}{a_n} \right)$, where $a_0 = 1$.

This will render $a_n = \frac{1}{1 - a \sum_{i=0}^{n-1} d_i}$. Certainly, since $a > 0$, $d_i > 0$, for all $i \geq 0$, then $a \sum_{i=0}^{n-1} d_i$ increases as n increases and so, $1 - a \sum_{i=0}^{n-1} d_i$ decreases as n increases, which implies that the reciprocal, a_n is an increasing sequence, and consequently, $a_n \geq a_0 = 1$. \blacksquare
We define the sequence \(c_n = a_nb_n \). Then the sequences \(\{a_n\}, \{b_n\}, \{c_n\}, \{d_n\} \) can be rewritten as

\[
a_{n+1} = \frac{a_n}{1 - a a_n d_n} = \frac{a_n}{1 - a (c_n + \frac{a}{2} c_n^2)},
\]

\[
b_{n+1} = a_{n+1} \beta \eta C_n = \frac{\beta \eta b_n c_n (P_0 + P_1 c_n + P_2 c_n^2)}{1 - a (c_n + \frac{a}{2} c_n^2)},
\]

\[
c_{n+1} = a_{n+1} b_{n+1} = \frac{\beta \eta c_n^2 (P_0 + P_1 c_n + P_2 c_n^2)}{[1 - a (c_n + \frac{a}{2} c_n^2)]^2},
\]

\[
d_{n+1} = \left(1 + \frac{1}{2} a a_{n+1} b_{n+1}\right) b_{n+1} = \frac{\beta \eta b_n c_n (P_0 + P_1 c_n + P_2 c_n^2)}{1 - a (c_n + \frac{a}{2} c_n^2)} \left(1 + \frac{a}{2} c_{n+1}\right).
\]

That the sequence \(\{c_n\} \) is a decreasing sequence under the assumption that \(a_1 b_1 < 1 \) can be proved by using the mathematical induction. It is obvious that \(c_1 = a_1 b_1 < 1 = c_0 \). Assuming that \(c_n < c_{n-1} \) for some \(n > 0 \), we have

\[
c_{n+1} = \frac{\beta \eta c_n^2 (P_0 + P_1 c_n + P_2 c_n^2)}{[1 - a (c_n + \frac{a}{2} c_n^2)]^2} < \frac{\beta \eta c_{n-1}^2 (P_0 + P_1 c_{n-1} + P_2 c_{n-1}^2)}{[1 - a (c_{n-1} + \frac{a}{2} c_{n-1}^2)]^2} = c_n.
\]

Therefore the sequence \(\{c_n\} \) becomes a decreasing sequence with \(c_n < 1 \) for all \(n \). If \(0 < s < 1 \) and \(c_n \leq s c_{n-1} \), then

\[
c_{n+1} = \frac{\beta \eta c_n^2 (P_0 + P_1 c_n + P_2 c_n^2)}{[1 - a (c_n + \frac{a}{2} c_n^2)]^2} \leq s^2 \frac{\beta \eta c_{n-1}^2 (P_0 + P_1 s c_{n-1} + P_2 s^2 c_{n-1}^2)}{[1 - a (s c_{n-1} + \frac{a}{2} s^2 c_{n-1}^2)]^2} \leq s^2 \frac{\beta \eta c_{n-1}^2 (P_0 + P_1 c_{n-1} + P_2 c_{n-1}^2)}{[1 - a (c_{n-1} + \frac{a}{2} c_{n-1}^2)]^2} = s^2 c_n.
\]

Let \(\zeta = \frac{c_1}{c_0} = c_1 = a_1 b_1 \), then we have \(0 < \zeta < 1 \) and \(c_1 \leq \zeta c_0 = \zeta \), so that

\[
c_1 \leq \zeta c_0, \quad c_2 \leq \zeta^2 c_1, \quad c_3 \leq \zeta^2 c_2, \quad \cdots \quad c_{n+1} \leq \zeta^{2^n} c_0 = \zeta^{2^n+1} \frac{1}{\zeta}.
\]
On other hand the sequence \(\{d_n\} \) under the assumption that \(a_1 b_1 < 1 \) we have

\[
d_n = \frac{a d_n}{a_n} = \left(c_n + \frac{a}{2} c_n^2 \right) \frac{1}{a_n} \\
\leq \left(c_n + \frac{a}{2} c_n^2 \right) \frac{1}{a_0} = c_n + \frac{a}{2} c_n^2 \\
\leq \left(1 + \frac{a}{2} \right) c_n \\
\leq \left(1 + \frac{a}{2} \right) \zeta \frac{2^n}{\zeta},
\]

Since \(\{a_n\} \) is an increasing sequence, and \(a_0 \geq 1 \). We thus have proved the following estimates.

Lemma 3.2. We assume that \(a_1 b_1 < 1 \). Then the sequence \(\{c_n\} \) is a decreasing sequence and for all \(n \in \mathbb{N} \) we have the following estimates

\[
c_{n+1} \leq \zeta \frac{2^{n+1}}{\zeta}, \\
d_n \leq \left(1 + \frac{a}{2} \right) \zeta \frac{2^n}{\zeta}
\]

where \(0 < \zeta = a_1 b_1 < 1 \).

Lemma 3.3. The sequence \(d_n > 0 \) is a convergent sequence and its limit is 0.

Proof. Since \(a_n \geq 1 \) is an increasing, then \(1/a_n \leq 1 \) is a decreasing sequence and further \(0 \leq 1/a_n \leq 1 \). Therefore \(1/a_n \) is convergent to a limit \(L \). Since \(d_n = \frac{1}{a} \left(\frac{1}{a_n} - \frac{1}{a_{n+1}} \right) \),

then \(d_n \) is convergent to the limit \(\frac{1}{a} (L - L) = 0 \). \(\square \)

Remark 3.4. Clearly \(\sum_{i=0}^{\infty} d_i < \infty \), since \(\sum_{i=0}^{\infty} d_i = \lim_{i \to \infty} \sum_{i=1}^{n-1} d_i = \lim_{n \to \infty} \frac{1}{a} \left(1 - \frac{1}{a_n} \right) = \frac{1}{a} (1 - L) \), where \(L \) would be the finite limit of \(1/a_n \).

Theorem 3.5. Let \(X, Y \) be Banach spaces and \(F \) be a twice Fréchet differentiable in an open convex domain \(\Omega \) of Banach space \(X \) and \(BL(Y, X) \) be set of bounded linear operators from \(Y \) into \(X \). Let us assume that \(\Gamma_0 = F'(x_0)^{-1} \in BL(Y, X) \) exists at some \(x_0 \in \Omega_0 \) and the following conditions hold:

(1) \(\|F'(x) - F'(y)\| \leq K \|x - y\|, \ x, y \in \Omega \),

(2) \(\|F''(x)\| \leq M \),

(3) \(\|\Gamma_0\| \leq \beta \).
(4) \(\| \Gamma_0 F(x_0) \| \leq \eta \).

Let us denote \(a = K\beta\eta \). Suppose that \(x_0 \) is chosen so as to satisfy \(a \in (0, \sqrt{3} - 1) \) and \(a_1 b_1 < 1 \). Then, if \(B(x_0, r\eta) \subset \Omega \), where \(r = \sum_{n=0}^{\infty} d_n \), then the sequence \(\{x_n\} \) defined by (1) and starting at \(x_0 \) converges to a solution \(x^* \) of the solution \(F(x) = 0 \). In this case, the solution \(x^* \) and the iterates \(x_n \) belong to \(B(x_0, \frac{2}{K\beta} - r\eta) \cap \Omega \).

Furthermore, the error bound on \(x^* \) depends on the sequence \(\{d_n\} \) given by

\[
\| x_{n+1} - x^* \| \leq \sum_{k=n+1}^{\infty} d_k \eta \leq \frac{(1 + a/2)\eta}{\zeta} \sum_{k=n+1}^{\infty} \zeta^2, \quad \zeta = a_1 b_1. \tag{3.1}
\]

Proof. It is easy to see that the sequence \(\{x_n\} \) is convergent. Hence, there exists a limit \(x^* \) such that \(\lim_{n \to \infty} x_n = x^* \). The sequence \(\{a_n\} \) is bounded above since

\[
a_n = \frac{1}{n+1} \leq \frac{1}{1 - a \sum_{i=0}^{\infty} d_i}.
\]

Since \(\lim_{n \to \infty} d_n = 0 \), so we have \(\lim_{n \to \infty} b_n = 0 \). This indicates that \(\lim_{n \to \infty} C_n = 0 \). Thus by and by the continuity of \(F \), we proved that

\[
\| F(x^*) \| = 0.
\]

Also,

\[
\| x_{n+1} - x_0 \| \leq \| x_{n+1} - x_n \| + \| x_n - x_{n-1} \| + \cdots + \| x_1 - x_0 \|
\leq \sum_{k=0}^{n} d_k \eta \leq r\eta, \tag{3.2}
\]

where \(r = \sum_{n=0}^{\infty} d_n \). We conclude that \(\{x_n\} \) lies in \(\overline{B}(x_0, r\eta) \) and taking limit as \(n \to \infty \) we have \(x^* \in \overline{B}(x_0, r\eta) \). To show the uniqueness of the solution, suppose that

\[
y^* \in B(x_0, \frac{2}{K\beta} - R\eta) \cap \Omega_0
\]

is another solution of \(F(x) = 0 \). Then,

\[
0 = F(y^*) - F(x^*) = \int_0^1 F'(x^* + t(y^* - x^*)) dt (y^* - x^*). \tag{3.3}
\]
To show that $y^* = x^*$, we have to show that the operator $\int_0^1 (F'(x^* + t(y^* - x^*)) dt$ is invertible. Now, for

$$\|\Gamma_0\| \int_0^1 \|F'(x^* + t(y^* - x^*)) - F'(x_0)\| dt$$

$$\leq KB\int_0^1 \|x^* + t(y^* - x^*) - x_0\| dt$$

$$\leq KB\int_0^1 ((1 - t)\|x^* - x_0\| + t\|y^* - x_0\|) dt$$

$$< \frac{KB}{2}(r\eta + \frac{2}{K\beta} - r\eta) = 1,$$

(3.4)

it follows from Banach’s Theorem [15] that the operator $\int_0^1 (F'(x^* + t(y^* - x^*)) dt$ has an inverse, and consequently, $y^* = x^*$. For every $m \geq n + 1$, we have

$$\|x_m - x_{n+1}\| \leq \|x_m - x_{m-1}\| + \|x_{m-1} - x_{m-2}\| + \cdots + \|x_{n+2} - x_{n+1}\|$$

$$\leq \sum_{k=n+1}^{m-1} d_k \eta \leq r \eta.$$

(3.5)

By taking $m \to \infty$, we get

$$\|x_{n+1} - x^*\| \leq \sum_{k=n+1}^{\infty} d_k \eta \leq r \eta.$$

(3.6)

and from Lemma 3.1

$$\|x_{n+1} - x^*\| \leq \sum_{k=n+1}^{\infty} d_k \eta \leq \frac{(1 + a/2)\eta}{\zeta} \sum_{k=n+1}^{\infty} \zeta^k, \ 0 < \zeta < 1.$$

(3.7)

which shows that $\{x_n\}$ converges and completes the proof.

4. Conclusion

In this paper, the recurrence relations are developed for establishing the convergence of a family of third-order methods for solving $F(x) = 0$ in Banach spaces. Based on recurrence relations, we prove a semilocal convergence, which shows the existence-uniqueness theorem for this family of methods and a priori error bounds.
References

