FUZZY CLUSTERING TECHNIQUES BASED ON GLAUCOMA DETECTION USING COMPUTATION OF CDR

a Assistant professor of Mathematics, Bon Secours College for Women, Thanjavur-613006, Tamilnadu, India.

b,c M.Phil scholar, Department of Mathematics, Bon Secours College for Women, Thanjavur-613006, Tamilnadu, India

ABSTRACT

Glaucoma is a serious eye disease, overtime it will result in gradual blindness. Early detection of the disease will help prevent against developing a more serious condition. A vertical cup-to-disc ratio which is the ratio of the vertical diameter of the optic cup to that of the optic disc, of the fundus eye image is an important clinical indicator for glaucoma diagnosis. This paper presents an automated method for the extraction of optic disc and optic cup using Fuzzy C Means clustering technique combined with thresholding. Using the extracted optic disc and optic cup the vertical cup-to-disc ratio was calculated. The validity of this new method has been tested on 465 colour fundus images from two different publicly available databases DRION, DIARATDB0 and images from an ophthalmologist. The result of the method seems to be promising and useful for clinical work.

KEYWORDS: Fundus image, Optic disc, Optic cup, Cup-to-Disc Ratio, Fuzzy C Means Clustering

1. INTRODUCTION

Glaucoma is an eye condition where the optic nerve at the back of the eye is damaged. The disease is mostly caused due to increased intraocular pressure (IOP) resulting from a malfunction or malformation of the eye’s drainage structures. Important anatomical structures captured in a fundus image are blood vessels, optic cup (OC), optic disc (OD) and macula for a normal retina. In a healthy retinal image the OD usually appears as a circular shaped bright yellowish object which is partly covered with vessels. The optic cup is the cupping of the optic nerve and that means the size of the depression in the middle of the nerve when viewed from the front of the eye. When there is damage to the optic nerve, the cupping increases. Changes in the OD and OC can indicate the presence, current state and progression of glaucoma[1][2]. The increase in pressure results in immoderate amount of stress to be put to the attachment of the optic nerve to the eye. Lack of treatment for glaucoma can lead to permanent blindness. The computation of Cup-to- Disc Ratio (CDR) helps the ophthalmologist to do the screening and detection of glaucoma easily Here, the vertical CDR is calculated by using fundus photograph where vertical CDR, is an important indicator of glaucoma[3]. Since the colour fundus images provide early signs of certain diseases such as diabetes, glaucoma etc., colour fundus images are
used to track the eye diseases by the ophthalmologists. This figure shows the important features of a retinal colour fundus image.

![Image](image.png)

Figure1: Represents the (a)Fundus image (b)Normal disc Cupping (c)Glaucoma disc Cupping

Diseases with symptoms on the fundus images are very complex. Several main symptoms of diseases expressed on the disk optic, blood vessels, haemorrhage and lesion areas on the retinal background. OD is an extremely intense region inside the fundus image and can be identified from features such as the (i) Shape: the OD is roughly circular (ii) Colour: the OD usually presents hues ranging from orange to yellow (iii) Brightness: the OD presents a brightness value that is usually higher than the rest of the retinal image (iv) Size: the OD area is usually less than 1/7 of the total eye.. This figure shows the colour fundus image of a normal eye and glaucomatous eye.

The cup-to-disc ratio (CDR) of normal subjects is typically around 0.2 to 0.4 as it is shown in Figure(i). However, with glaucoma, there is progressive loss of optic nerve fibers, and consequent increase in the cup size of the optic nerve. Figure (ii) shows a glaucomatous fundus image. In this paper Section 2 presents a brief survey of existing literature. Section 3 describes the materials used for the present work. A new algorithm to efficiently extract OD and OC in ocular fundus images and computation of CDR are given in Section 4. The results are presented in Section 5, and Conclusions are given in the final Section 6.

2. LITERATURE SURVEY

The Active Shape Model (ASM) based optical disk detection is implemented by Huiqi et al[4]. The initialization of the parameters for this model is based on Principal Component Analysis technique. The faster convergence rate and the robustness of the technique are proved by experimental results. Huajun Ying et al[5]. designed a fractal-based automatic localization and segmentation of optic disc in retinal images. K. Shekar[6] developed a method for OD segmentation using Hussain, A.R. et al[7]. proposed a method for optic nerve head segmentation using genetic active contours. Zhuo Zhang et al[8] designed a convex hull based neuro-retinal optic cup ellipse optimization technique. Wong, D.W.K. et al[9]. developed SVM-based model optic cup detection for glaucoma detection using the cup to disc ratio in retinal fundus images. Joshi G.D. et al[10]. developed vessel bend-based cup segmentation in retinal images. Shijian Lu et al. proposed a background elimination method for the automatic detection of OD. Morphological operations were used for locating the optic disc in retinal images by Angel Suero et al[11]. In this paper, a new algorithm based on Fuzzy C-Means Clustering (FCM) technique combined with thresholding, is used for OD and OC extraction. This new method, firstly, extracts the OD and OC of the colour fundus image and computes the vertical CDR automatically. This is an efficient method for the automatic screening of colour fundus image for CDR computation.
3. MATERIALS AND METHODS

The fundus images used in these experiments are taken from publicly available databases DRION, DIARATDB0 and DIARETDB1 and, images are taken. The CDRs obtained from an ophthalmologist is used as ground truth for the evaluation.

4. DEVELOPED ALGORITHM

The new approach is composed of four steps. The channels of the colour retinal are separated. The blood vessels are removed, applying the contrast adjustment to enhance the low contrast image. The Fuzzy C Means combined with thresholding is applied on the red channel of the input image for the extraction of the OD and the same technique is applied on the green channel of the input image for the extraction of OC. The CDR is computed using the ratio of vertical diameter of OC and OD

4.1 Retinal Image Pre-Processing

The preprocessing step excludes variations due to image acquisition, such as inhomogeneous illumination. In preprocessing, techniques such as morphological operations and contrast enhancement are applied on the input image. The following sections include different preprocessing operations used in this paper.

4.1.1 Preprocessing steps for Optic Disc Extraction

The Selection of Red Channel is the green component of an RGB retinography is the one with highest contrast, the OD is often present in the red field as a well-defined white shape, brighter than the surrounding area. Therefore the red channel of the RGB colour images is used for the extraction of OD regions in the retinal fundus images. Since blood vessels within the OD are strong distracters, they should be erased from the image beforehand. In this method a morphological closing operation is performed on the red channel. The dilation operation first removes the blood vessels and then the erosion operation approximately restores the boundaries to their former position.

\[C(A, B) = A \cdot B = E(D(A, -B), -B) \]

where A is the red channel of the input image and B is a 10x10 symmetrical disc structuring element, to remove the blood vessels. C is the resultant vessel free, smoothed output image.

4.1.2 Preprocessing steps for Optic Cup Extraction

The Selection of Green Channel has low contrast variation which gives more differentiation between the blood vessel and OC. The green channel is selected for the extraction of the OC of the retinal image. Blood vessels in the green channel were removed using a morphological closing procedure,

\[I_2(I, B) = A \cdot B = E(D(I, -B), -B) \]

where I is the green channel of the input image and B is an 8x8 symmetrical disc structuring element, to remove the blood vessels. I2 is the smoothed, vessel free output image. Figure2 shows the preprocessing operations on the input image.
4.2. Fuzzy C Means Clustering with Thresholding

Medical image segmentation is a difficult task due to the complexity of segmentation. Assessment of OD and OC is important in discriminating between normal and pathological retinal images. FCM clustering with thresholding is used in this work for the extraction of OD and OC. The proposed method is a combination of fuzzy algorithm, C Means clustering and thresholding. Clustering involves the task of dividing data points into homogeneous classes or clusters so that items in the same class are as similar as possible and items in different classes are as dissimilar as possible. Clustering can also be thought of as a form of data compression, where a large number of samples are converted into a small number of representative prototypes or clusters. Different types of similarity measures may be used to identify classes depending on the data and the application, where the similarity measure controls the formation of the clusters. In the following new method intensity value is used as the similarity measure. Thresholding is one of the most powerful techniques for image segmentation, in which the pixels are partitioned depending on their intensity value.

4.2.1. Fuzzy C-Means Clustering Algorithm

Fuzzy C-Means (FCM) Clustering is a clustering technique and it employs fuzzy partitioning such that a data point can belong to all groups with different membership grades between 0 and 1. It is an iterative algorithm. The aim of FCM is to find cluster centers (centroids) that minimize a dissimilarity function. Corresponding to each cluster center, this algorithm works by assigning membership to each data point on the basis of the difference between the cluster center and the data point. The more the data is near to the cluster center, the more is its membership towards the particular cluster center. It is obvious that the summation of membership of each data point should be equal to one.

\[
\sum_{i=1}^{c} u_{ij} = 1, \forall j = 1, ..., n
\] \hspace{1cm} (3)

\[
d_{ik} = \left[\sum_{j=1}^{m} \left[X_{kj} - V_j \right]^2 \right]^{1/2}
\] \hspace{1cm} (4)

where \(X_{kj}\) is data element, \(d_{ik}\) is the distance matrix and \(V_j\) is the element of the cluster center vector. The dissimilarity function which is used in FCM is given Equation (5)

\[
J(U,c_1,c_2, ..., c_c) = \sum_{i=1}^{c} J_i = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} m d_{ij}^2
\] \hspace{1cm} (5)
u_{ij} is between 0 and 1;
ci is the centroid of cluster i;
d_{ij} is the Euclidian distance between ith centroid(c_i) and jth data point;
$m \in [1, \infty]$ is a weighting exponent.

To reach a minimum of dissimilarity function there are two conditions. These are given in Equation (6) and Equation (7)

$$c_i = \frac{\sum_{i=1}^{n} u_{ij}^m X_j}{\sum_{i=1}^{n} u_{ij}^m} \quad (6)$$

$$u_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{d_{ij}}{d_{kj}} \right)^{2/(m-1)}} \quad (7)$$

This algorithm determines the following steps.
Step1. Randomly initialize the membership matrix (U) that has constraints in Equation 7.
Step2. Calculate centroids (C_i) by using Equation(6).
Step3. Compute dissimilarity between centroids and data points using equation (5). Stop if its improvement over previous iteration is below a threshold.

By iteratively updating the cluster centers and the membership grades for each data point, FCM iteratively moves the cluster centers to the apt location within a data set. To accommodate the introduction of fuzzy partitioning, the membership matrix (U) is randomly initialized according to Equation (7).

The Fuzzy Logic Toolbox command line function fcm is used for generating clusters, and in this paper three clusters are generated from the vessel free enhanced image. The fcm function iteratively moves the cluster centers to the right location within the data set. The outputs are 3 cluster centers C1, C2 and C3 and membership function matrix M with membership-grades, which is the intensity value of each pixel.

4.3. Thresholding
Thresholding is the operation of converting a multilevel image into a binary image i.e., it assigns the value of 0 (background) or 1 (objects or foreground) to each pixel of an image based on a comparison with some threshold value T (intensity or colour value). By applying the threshold T on an image, the image is converted to a binary image. The following formula (8) is used for the binary image extraction.

$$I_T(x, y) = \begin{cases} 1, & \text{if } I(x, y) > T \\ 0, & \text{if } I(x, y) \leq T \end{cases} \quad (8)$$

where I is the input image, T is the threshold and I_T is the binary image after thresholding.

4.4. Extraction of Optic Cup
The above mentioned FCM clustering with thresholding is applied on the smoothed green channel for the extraction of OC.

The following algorithm includes four steps.
Step1. Randomly initialize the membership matrix (U) that has constraints in Equation (6).
Step2. Calculate centroids (C_i) by using Equation (7).
Step 3. Compute dissimilarity between centroids and data points using equation (5). Stop if its improvement over previous iteration is below a threshold.

The threshold values T_2 is calculated using the following equation.

$$T_2 = \frac{1}{2} \text{Max (data (value)) + Min (data (value))},$$

where data represents the data points of the vessel free green channel and label represents the cluster value with the highest membership grade.

Since the OC is the brightest portion in the green channel, thresholding with threshold T_2 in im2bw function helps to extract OC. This function returns the binary image forming the object OC. The average of the rows and columns forms the centroid (Y_2, X_2) of the OC.

$$Y_2 = \frac{1}{m_2} \sum_{i=1}^{m_2} \text{row}^2_i \quad (10)$$

$$X_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} \text{col}^2_i \quad (11)$$

where m_2 is the number of rows and n_2 is the number of columns.

From the above coordinates of the optic cup the minimum coordinates (y_{min2}, x_{min2}) is calculated. The Euclidian distance between the centroid and (y_{min1}, x_{min1}) returns the radius of the cup.

$$R_{OC} = Y_2 - y_{min2}, \quad (12)$$

where R_{OC} is the radius of the cup.

4.5. Optic Disc and Cup Segmentation

OD segmentation obtains a circular boundary approximation within a retinal image. A circle is plotted using the centroid (Y_1, X_1) and radius R_{OD}, gives segmented OD on the colour fundus eye image. Figure 3 shows the segmented OD.

OC within OD usually appears in circular shape. Therefore the OC segmentation is a circular boundary approximation. Using the centroid (Y_2, X_2) and radius R_{OC} a circle is drawn onto the current axes of the input image which would give the segmented OC on the colour fundus eye image.

![Figure 3](image)

(i). Extracted optic disc (ii).Centre and radius of extracted disc (iii). Optic disc segmentation

4.6. Computation of CDR

The manual method uses the ratio of the vertical diameter of OC and OD for the computation of CDR. From the segmented OD the minimum row coordinate y_{min1} and maximum row coordinate y_{max1} are calculated. The Euclidian distance between these coordinates is the vertical diameter of the OD, $OD_{v diam}$.

$$OD_{v diam} = y_{max1} - y_{min1} \quad (13)$$
Similarly from the segmented OC the minimum row coordinate y_{min2} and maximum row coordinate y_{max2} are calculated. The Euclidian distance between these coordinates is the vertical diameter of the OC, OC_{vdiam}.

$$OC_{vdiam} = y_{max2} - y_{min2} \quad (14)$$

The CDR is calculated using the following formula

$$CDR = \frac{OC_{vdiam}}{OD_{vdiam}} \quad (15)$$

The following figure shows the OD vertical diameter OD_{vdiam} and OC vertical diameter OC_{vdiam} of the input image.

![Figure 4: Represents the Optic Disc vertical diameter OD_{vdiam} and Optic Cup vertical diameter OC_{vdiam}](image)

4.7 Glaucoma Detection

If the CDR is 0.4 or less refers to a relatively healthy looking optic nerve. If the CDR is greater than .4 is suspicious of glaucoma. While there is no one CDR that separates normal from glaucoma, the CDR greater than 0.6 or 0.7 is glaucomatous and often requires further testing to rule out glaucoma. CDR > .7 is considered as advanced stage glaucoma. As glaucoma progresses, the CDR enlarges (as more optic nerve fiber dies off), and the patient may start to develop peripheral vision loss.

![Figure 5: Represents the (a) Normal (b) Early Stage Glaucoma (c) Advanced Stage Glaucoma](image)

5. RESULTS AND DISCUSSION

The automatic detection and evaluation of OD and OC is required for automatic diagnosis using retinal images. The CDR values are also automatically calculated. The new method is evaluated on the basis of the ground truth data, where, vertical CDR values are obtained from an expert ophthalmologist. Four hundred and sixty five color retinal images, including thirty normal and four hundred and thirty five pathological images, are used in this test. The performance evaluation is done by making use of the scatter plot analysis.
5.1 Image Data Sets

5.1.1 The DIARETDB0 and DIARETDB1 Databases

The DIARETDB0 and DIARETDB1 Database images were captured using an FOV of 50° and the size of each image is 1500 x 1152 x 3. Out of the 130 images of the DIARETDB0 database, 20 have normal architecture and 110 have various types of pathology. Out of the 89 images of the DIARETDB1 database, 5 have normal architecture and 84 have various types of pathology.

5.1.2 DRION Database

It has 110 retinal images with each image having the resolution of 600 x 400 pixels and the optic disc annotated by two experts with 36 landmarks. The mean age of the patients was 53.0 years (standard Deviation 13.05), with 46.2% male and 53.8% female and all of them were Caucasian ethnicity. 23.1% patients had chronic simple glaucoma and 76.9% eye hypertension. The images were acquired with a colour analogical fundus camera, approximately centered on the ONH and they were stored in slide format. In order to have the images in digital format, they were digitized using a HP-PhotoSmart-S20 high-resolution scanner, RGB format, resolution 600x400 and 8 bits/pixel.

5.2 Implementation

The new algorithm was applied on 454 images obtained from the above mentioned databases and ophthalmologists. Seven of the input images from each data set, along with their OD and OC segmentation on the input image, is shown in figure respectively.

\[\text{Figure 6: Represents (a)Input Image (b) Segmented image I- Normal II - Early Stage Glaucoma III- Advanced Stage Glaucoma} \]

5.3 Performance Evaluation

The performance evaluation is done using the following parameters.

5.3.1 Success rate

The decision for successful segmentation or failed segmentation is based on human eye observation. Table 1 shows the success rate of OD and OC segmentation using 465 images.
5.3.2 Accuracy

The accuracy of the technique was evaluated quantitatively by comparing the obtained vertical CDR values with ophthalmologists’ ground-truth vertical CDR values. Fifteen examples of detailed results of performance measurement using FCM clustering combined with thresholding are displayed in Table II using fifteen test images of DRION database and fifteen test images from the ophthalmologist. Table II CDR Comparison Table shows the comparison of clinical CDR values with CDR values obtained using the new method.

<table>
<thead>
<tr>
<th>Images</th>
<th>Clinical CDR (1)</th>
<th>Obtained CDR (2)</th>
<th>Difference (1) – (2)</th>
<th>Clinical CDR of DRION Database (3)</th>
<th>Obtained CDR (4)</th>
<th>Difference (3)–(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>0.5000</td>
<td>0.6082</td>
<td>0.1082</td>
<td>0.3333</td>
<td>0.4000</td>
<td>0.0667</td>
</tr>
<tr>
<td>Image 2</td>
<td>0.5714</td>
<td>0.6231</td>
<td>0.0517</td>
<td>0.5734</td>
<td>0.5310</td>
<td>0.0424</td>
</tr>
<tr>
<td>Image 3</td>
<td>0.6666</td>
<td>0.5505</td>
<td>0.1161</td>
<td>0.6666</td>
<td>0.6080</td>
<td>0.0586</td>
</tr>
<tr>
<td>Image 4</td>
<td>0.8517</td>
<td>0.7871</td>
<td>0.0646</td>
<td>0.7000</td>
<td>0.7543</td>
<td>0.0543</td>
</tr>
<tr>
<td>Image 5</td>
<td>0.7142</td>
<td>0.6412</td>
<td>0.073</td>
<td>0.6578</td>
<td>0.5816</td>
<td>0.0762</td>
</tr>
<tr>
<td>Image 6</td>
<td>0.4864</td>
<td>0.4173</td>
<td>0.0691</td>
<td>0.5625</td>
<td>0.5045</td>
<td>0.0580</td>
</tr>
<tr>
<td>Image 7</td>
<td>0.7060</td>
<td>0.6275</td>
<td>0.0785</td>
<td>0.4062</td>
<td>0.4995</td>
<td>0.0933</td>
</tr>
<tr>
<td>Image 8</td>
<td>0.9000</td>
<td>0.8367</td>
<td>0.0633</td>
<td>0.5000</td>
<td>0.6020</td>
<td>0.1020</td>
</tr>
<tr>
<td>Image 9</td>
<td>0.6801</td>
<td>0.7287</td>
<td>0.0486</td>
<td>0.6097</td>
<td>0.6696</td>
<td>0.0626</td>
</tr>
<tr>
<td>Image 10</td>
<td>0.9026</td>
<td>0.8206</td>
<td>0.0820</td>
<td>0.6410</td>
<td>0.6610</td>
<td>0.0200</td>
</tr>
<tr>
<td>Image 11</td>
<td>0.4631</td>
<td>0.4012</td>
<td>0.0619</td>
<td>0.5162</td>
<td>0.4011</td>
<td>0.1151</td>
</tr>
<tr>
<td>Image 12</td>
<td>0.6267</td>
<td>0.5151</td>
<td>0.1116</td>
<td>0.5010</td>
<td>0.5362</td>
<td>0.0352</td>
</tr>
<tr>
<td>Image 13</td>
<td>0.5147</td>
<td>0.4736</td>
<td>0.0411</td>
<td>0.6097</td>
<td>0.5215</td>
<td>0.0882</td>
</tr>
<tr>
<td>Image 14</td>
<td>0.7318</td>
<td>0.7180</td>
<td>0.0138</td>
<td>0.7408</td>
<td>0.6943</td>
<td>0.0465</td>
</tr>
<tr>
<td>Image 15</td>
<td>0.4265</td>
<td>0.3162</td>
<td>0.1103</td>
<td>0.6981</td>
<td>0.6208</td>
<td>0.0773</td>
</tr>
</tbody>
</table>

Mean Difference 0.07292

6. CONCLUSION

This paper presents a new fuzzy based approach for OD and OC extraction and segmentation together with CDR computation. The results presented in this paper show that the new methodology offers a reliable and robust solution for CDR computation. The scatter plot analysis results a high positive correlation between the clinical CDR and the obtained CDR. This automated method is very useful for the automatic screening of retinal images. However the present method has the following limitations. It is assumed that the OD and OC are brighter than the surrounding pixels and therefore cannot handle retinal images with a relatively dark OD. Hence advanced extraction methods are required for future studies and research.

REFERENCES

[1] Juan Xu, Hiroshi Ishikawa, Gadi Wollstein, Richard A. Bilonick, Kyung R. Sung, Larry Kagemann, Kelly A. Townsend, and Joel S. Schuman, “Automated Assessment of the Optic...

