A Novel Rectangular Microstrip Patch Antenna for S-Band Frequency Applications

Ms. G.T. Bharathy
Associate Professor, Department of Electronics and Communication Engineering
Jerusalem College of Engineering, Pallikaranai, Chennai-600 100, India.

Ms. S. Bhavanisankari
Associate Professor, Department of Electronics and Communication Engineering
Jerusalem College of Engineering, Pallikaranai, Chennai-600 100, India.

Ms. T. Tamilselvi
Associate Professor, Department of Electronics and Communication Engineering
Jerusalem College of Engineering, Pallikaranai, Chennai-600 100, India.

Ms. G. Bhargavi
Assistant Professor, Department of Electronics and Communication Engineering
Jerusalem College of Engineering, Pallikaranai, Chennai-600 100, India.

Abstract - A microstrip patch antenna has the ability of polarization diversity. So, it has become an essential antenna for antenna designers. The dielectric loading of the antenna has an impact on the radiation pattern, impedance and the bandwidth. Maximum directive gain is obtained by a single patch antenna. In communications and radar applications, it becomes an important element since it has a scope of a wide variety of design. This paper proposes a design, analysis and simulation of a rectangular microstrip patch antenna for operating in single and dual S band frequencies with center and offset feeds using ADS software which can be used for the applications such as IRNS, GSM850, GSM900, DCS, PCS, UMTS, WWAN.

Keywords: Microstrip Patch antenna, Rectangular Patch, ADS

I. INTRODUCTION

A. Microstrip Antenna

A microstrip antenna is a constructed using a conducting patch etched on a ground plane which is separated by a dielectric substrate. The radiation in microstrip antenna occurs due to the fringe fields that present between the patch edge and the ground plane [1]. Compared to conventional microwave antennas, the characteristics of Microstrip antennas depend more on their physical parameters [2]. Higher bandwidth, better efficiency and lower quality factor Q is obtained by using low dielectric constant. Increased radiated power is possible with a lesser value of dielectric constant which in turn increases the fringing field at the edges of the patch.

II. MICROSTRIP PATCH ANTENNA

A Microstrip Patch antenna is a combination of a radiating patch on one side of a dielectric substrate and a ground plane on the other side [2], as shown in Figure 2.1

Copper or Gold is used as the conducting material to form a patch. The feed lines are typically photo etched on the dielectric substrate.

Figure 2.1 Structure of a Microstrip Patch Antenna

The different types of patch are square, rectangular, circular, triangular, and elliptical or some other common shape [3], as shown in Figure 2.2.

Figure 2.2 Types of microstrip patch elements
III. FEED TECHNIQUES OF PATCH ANTENNA

Microstrip patch antennas can be fed by either contacting or non-contacting method [4]. The RF power is fed straightforwardly to the radiating patch via a connecting element such as a microstrip line, in the contacting method. In the non-contacting scheme, electromagnetic field coupling is done to transmit power between the radiating patch and the microstrip line.

A. Microstrip Line Feed

The periphery of the Microstrip patch is directly linked to a conducting strip [5] as shown in Figure 3.1.

B. Coaxial Feed

As seen in the Figure 3.2, in a coaxial feed the interior conductor of the coaxial connector extends all the way through the dielectric and it is soldered to the radiating patch, and the external conductor is coupled to the ground plane [6].

C. Aperture Coupled Feed

In this type of feed technique, a slot or an aperture etched on the ground plane couples the patch and the feed line as shown in Figure 3.3.

D. Proximity Coupled Feed

As shown in Figure 3.4, two dielectric substrates are used such that the feed line is sandwiched between them so that the superior substrate contains the radiating patch. Hence this type of feed technique is also called as the electromagnetic coupling scheme.

IV. ANALYTICAL METHODS OF INVESTIGATION OF PATCH ANTENNAS

A. Transmission Line Model

Compared to other methods, transmission line method is the simplest method. Though it has a better physical insight, it offers only a lesser accuracy [7]. This model predicts the input parameters of the rectangular patch antennas. Here, a rectangular patch radiator is considered as a strip line resonator which does not contain any transverse field variation. It is a known fact that the main mode of propagation in a strip line is the transverse electric magnetic (TEM) mode which has a insignificant deviation of fields in the transverse path.

The microstrip antenna is constructed by two slots of width W and height h that is detached by a transmission line of length L. From figure 4.1 it is seen that, largely the electric field lines dwell in the substrate and very few of the electric lines in air. This makes the propagation of TE mode impossible in a transmission line [8]. Fringing fields at the boundary of the patch are not restricted to the dielectric substrate but also extend in the free space.

B. Cavity Model

The cavity model is used since the field deviations along the radiating boundaries are ignored.
in the transmission line model. Here, the interior part of the dielectric substrate is designed as a cavity.

The cavity is encircled by the electric walls on the top and bottom, with the magnetic fields present surrounding the cavity. As the microstrip patch is energized, the allocation of charges occurs not only on the superior and inferior patch surfaces, but also on top of the ground plane surface as shown in figure 4.2.

Figure 4.2. Charge distribution and current density creation on microstrip patch antenna

V. NUMERICAL METHODS OF INVESTIGATION OF PATCH ANTENNAS

A. MOM- Methods of Moments

In this method the patch is modelled considering the surface currents. Here a matrix which can be easily solved by a computer is obtained from testing and basis functions.

B. FEM-Finite Element Method

In this method, the area of interest is separated into a number of finite surfaces. These units can be of any distinct geometrical structures such as triangles, tetrahedral etc. Which depends on whether the arrangement is planar, 2D or 3D.

C. FDTD-Finite Difference Time Domain method

The solution is calculated utilizing the spatial and time grid for electric and magnetic fields. Differential form of the Maxwell’s equations is used in this method.

VI. DESIGN PROCEDURE

Step 1: The width of the patch is designed (W_p), using the formula [9],

$$W_p = \frac{c}{2f_r} \sqrt{\frac{2}{\epsilon_r + 1}}$$

(1)

Where, c = velocity of light=3×10⁸ m/s,
f_r= resonance frequency,
ϵ_r=dielectric constant

Step 2: The Effective dielectric constant is calculated using the formula [9],

$$\epsilon_{eff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \sqrt{1 + \frac{12\epsilon_r}{W_p}}$$

(2)

Step 3: The Effective length of patch is calculated using the formula [9],

$$L_{eff} = \frac{c}{2f_r} \sqrt{\epsilon_{eff}}$$

(3)

Step 4: Calculation of length extension uses the formula [9],

$$\Delta L = 0.412h \left(\frac{\epsilon_{eff} + 0.3}{\epsilon_{eff} - 0.259} \right) \left(\frac{W_p}{h} + 0.264 \right)$$

(4)

Step 5: Actual length of patch is calculated using the formula [9],

$$L_p = L_{eff} - 2\Delta L$$

(5)

Step 6: calculation of inset depth is done using the formula [9],

$$Z_c = Z_{in} \cos^2 \left(\frac{\pi d}{L_p} \right)$$

(6)

Where,
Z_c = Characteristics impedance
Z_{in} = input impedance
d = inset depth/notch depth/gap depth

VII. SIMULATION RESULTS

A. Design Specifications for Single Band Operation with center feed.

- f_c = 2.4 GHz
- ϵ_r = 3.4
- h = 60 mil

Other Parameters for the design are as follows
- μ_r = 1
- Mesh density = 30 cells/wavelength
- Arc Resolution = 45 degrees
- Sweep type = Adaptive
B. Design Specifications for Dual Band Operation with Off-Center feed.

The essential parameters for the design are given below,

- $f_o = 2.4$ and 2.8 GHz
- $\varepsilon_r = 3.55$
- $h = 60$ mil

Other Parameters for the design are as follows

- Mesh density = 30 cells/wavelength
- $\mu_r = 1$
- Arc Resolution = 45 degrees
- Sweep type = Adaptive

The Simulation results shows that the antenna works in the designed dual frequencies of 2.436 GHz and 2.764 GHz in the S Band frequency range.
VI CONCLUSION

The design, simulation and investigation of Rectangular Microstrip Patch Antenna for a single resonant frequency of 2.4 Ghz with a centre feed and dual frequencies of 2.4 Ghz and 2.8 Ghz with an off-center feed has been done and the simulation results show that the antenna is perfectly operating in the designed frequencies of S Band. The design of the antenna can be further implemented to be used in S band frequency applications such as Indian Regional Navigational Service (IRNS) etc.

REFERENCES

About The Authors

Ms. G. T. Bharathy was born in India in the year 1979. She completed B.E degree in Electronics and Communication Engineering from Easwari Engineering College, Chennai, Madras University, India in the year 2000 and M.E degree in Communication Systems from Shri Venkateshwara College of Engineering, Chennai, Anna University, India in the year 2005. She is now working as Associate Professor in Jerusalem College of Engineering, Dept. of Electronics and Communication Engineering, Chennai. She is a life member in ISTE. Her research interest is RF and microwave circuits and systems.

Ms. S. Bhavani Sankari was born in India in the year 1978. She completed B.E degree in Electronics and Communication Engineering from Thanthai Periyar Government College of Engineering, Madras University, India in the year 1995 and M.E degree in Industrial Electronics from Sri Jeyachamarajendra College of Engineering, Visveswaraya University, India in the year 2003. She is now working as an Associate Professor in Jerusalem College of Engineering, Dept. of Electronics and Communication Engineering, Chennai. She is a life member in ISTE. Her research interest is Communication, Signal Processing.

Ms. T. Tamilselvi was born in India in the year 1978. She completed B.E degree in Electronics and Communication Engineering from Adhiparasakthi Engineering College, Madras University, India in the year 2000 and M.E degree in Embedded System Technologies from College of Engineering, Guindy (CEG Main Campus), Anna University, India in the year 2006. She is now working as Associate Professor in Jerusalem College of Engineering, Dept. of Electronics and Communication Engineering, Chennai. She is a life member in ISTE. Her research interest is VLSI and Embedded design.

Ms. G. Bhargavi was born in India in the year 1987. She completed B.E degree in Electronics and Communication Engineering from Sri Muthukumaran Institute of Technology, Anna University, India in the year 2009 and M.E degree in Communication Systems from Shri Venkateshwara College of Engineering, Chennai, Anna University, India in the year 2011. She is now working as Assistant Professor in Jerusalem College of Engineering, Dept. of Electronics and Communication Engineering, Chennai. She is a life member in ISTE. Her research interest is Communication Systems.