Abstract
A set S of vertices of a graph G is an edge geodetic set if every edge of G lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of an edge geodetic set of G is the edge geodetic number of G denoted by $g_1(G)$. In this paper, we explore the concept of edge geodetic parameters in the context of various types of special graphs such as Cocktail party graph, Crown graph, Dutch windmill graph, Friendship graph, Shadow graph, Tadpole graph, Windmill graph, Jump graph.

Keywords: Edge geodetic set, Connected edge geodetic set, Restrained edge geodetic number, Split edge geodetic set.

Mathematics Subject Classification 2012: 05C12, 05C76.

1. INTRODUCTION

Let $G = (V, E)$ be a connected graph with node set $V = V(G)$ and the edge set $E = E(G)$. A set S of vertices of a graph G is an edge geodetic set if every edge of G lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of an edge geodetic set of G is the edge geodetic number of G denoted by $g_1(G)$. The edge geodetic number $g_1(G)$ was introduced and studied in [9]. The concept of connected edge geodetic number $g_1(G)$ was introduced in [8]. A. P. Santhakumaran et al. introduced the concept of restrained edge geodetic number $g_2(G)$ in [6]. The concept of split edge geodetic number $g_{1e}(G)$ was introduced in [2]. In [1] Shobha and Venkanagouda M Goudar introduced the concept of total edge geodetic number $g_{1c}(G)$. For any undefined terms or notations in this paper can be found in Harary [11].

2. MAIN RESULTS

Crown Graph

Definition 2.1. The Crown graph $H_{n,n}$ is the graph obtained from the complete bipartite graph $K_{n,n}$ by removing a perfect matching. It is defined in [5].

Example: For a Crown graph $H_{4,4}$ given in Figure 1, the darkened vertices is its g_1- set.

The set $S = \{u_1, v_1\}$ is g_1- set so that $g_1(H_{4,4}) = 2$.

![Figure 1: Crown graph](image)

Theorem 2.2. For a Crown graph $H_{n,n}$, $n \geq 3$, $g_1(H_{n,n})=2$.

Proof. Let $G = H_{n,n}$ with vertex set $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and the edge set $\{(u_i, v_j) : 1 \leq i \neq j \leq n\}$ such that $|V(G)| = 2n$ and $|E(G)| = n$. Let $S = \{u_r, v_s\}$ such that $d(u_r, v_s) = 3$. Clearly, all the edges of G lies in the geodesic joining u_r and v_s and hence S is g_1- set. Thus, $g_1(H_{n,n}) = 2$.

Theorem 2.3 If $H_{n,n}$, $n \geq 3$ is any crown graph then $g_{1c}(H_{n,n}) = 4$.

Proof. Let $G = H_{n,n}$. By Theorem 2.2, $S = \{u_r, u_s\}$ is g_1- set of G and $g_1(G) = 2$. But G is disconnected. Let $S' = S \cup \{u_i, u_j\}$ where u_i is adjacent to v_s and v_j. Clearly, S' is connected. Therefore, S' is g_{1c}- set of G. Hence, $g_{1c}(H_{n,n}) = 4$.

Theorem 2.4 For any crown graph $H_{n,n}$, $n \geq 4$ $g_{1c}(H_{n,n}) = a_0(H_{n,n}) + 1$ where a_0 is the vertex covering number of $H_{n,n}$.

Proof. Consider $G = H_{n,n}$. Let a_0 be the vertex covering number of G. We have By Theorem 2.2 $S = \{u_r, v_s\}$ is the g_1- set of G and $g_1(G) = 2$. Consider $S_1 = \{u_{ki}, v_{ki} : 2 \leq k, l \leq n - 2\}$. Let $S' = S \cup S_1$. Clearly, S' has no isolated vertices.
vertices. Therefore, \(S' \) is \(g_{1t} - \) set. Hence \(g_{1t}(H_{n,n}) = |S'| = a_0(H_{n,n}) + 1 \).

Corollary 2.5 For any crown graph \(H_{n,n}, n \geq 4 \)

\(g_{1t}(H_{n,n}) = g_{1t}(H_{n,n}) \).

Definition 2.6 The Friendship graph is a planar undirected graph with \(2n+1 \) vertices and \(3n \) edges. The friendship graph \(F_n^3 \) can be constructed by joining \(n \) copies of the cycle \(C_3 \) with a common vertex. It is defined in [3].

Example: For a friendship graph \(F_3^4 \) given in Figure 4, the colorless vertices is its edge geodetic set.

\[S = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \] is an edge geodetic set of \(F_3^4 \) so that \(g_1(F_3^4) = 8 \).

Theorem 2.7 For any friendship graph \(F_n^3, n \geq 2 \)

\(g_1(F_n^3) = 2n \).

Proof. Let \(G = F_n^3 \) with \(V(G) = \{v_1, v_2, v_3, \ldots, v_{3n}\} \) such that \(|V(G)| = 2n + 1 \) and \(|E(G)| = 3n \) and \(\{v_1, v_2, v_3\} \) be the common vertex. Let \(S_1 = \{v_1, v_2, v_3\} \) be \(g_1 \)-set of \(G \) which covers all the edges of \(G \). Therefore, \(g_1(G) = 2n \).

Corollary 2.8 For any friendship graph \(F_n^3, n \geq 2 \)

\(g_{1t}(F_n^3) = g_1(F_n^3) = g_1(F_n^3) \).

Theorem 2.9 For a friendship graph \(F_n^3, g_{1c}(F_n^3) = 2n + 1 \).

Proof. By the Theorem 2.7, \(S_1 = \{v_1, v_2, v_3, \ldots, v_{3n}\} \) is \(g_1 \)-set and \(g_1(F_n^3) = 2n + 1 \). Let \(S_2 = S_1 \cup \{v_k\} \) forms \(g_{1c} \)-set of \(F_n^3 \). Therefore, \(g_{1c}(F_n^3) = 2n + 1 \).

Corollary 2.10. For any friendship graph \(F_n^3 \) there is no split edge geodetic number and restrained edge geodetic number.

Windmill Graph

Definition 2.11. The Windmill graph \(Wd(k, n) \) is an undirected graph obtained by taking \(k \) copies of the complete graph \(K_n \) with a vertex in common. It is defined in [3].

Example: For a Windmill graph \(Wd(3, 4) \) given in Figure 3. The colorless vertices is its \(g_1 \)-set.

\[S = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \] be \(g_1 \)-set so that \(g_1(Wd(3, 4)) = 9 \).

Theorem 2.12 For any Windmill graph \(Wd(k, n) \),

\(g_1(Wd(k, n)) = k(n - 1) \).

Proof. Let \(G = Wd(k, n) \) and \(V(G) = \{u_1, u_2, \ldots, u_{k(n-1)}, x\} \) and \(x \) is a common vertex. Let \(S = \{u_1, u_2, \ldots, u_{k(n-1)}\}_{k\ times}/x \). Clearly, \(S \) is \(g_1 \)-set of \(G \). Therefore, \(g_1(Wd(k, n)) = k(n - 1) \).

Corollary 2.13 For a Windmill graph , \(g_{1t}(Wd(k, n)) = g_1(Wd(k, n)) \).

Theorem 2.14 For any Windmill graph \(Wd(k, n) \),

\(g_{1c}(Wd(k, n)) = k(n - 1) + 1 \).

Proof. Let \(G = Wd(k, n) \). By the Theorem 2.12, \(S = \{u_1, u_2, \ldots, u_{k(n-1)}\}_{k\ times}/x \) is \(g_1 \)-set of \(G \) and \(g_1(G) = k(n - 1) \). But \(< S > \) is disconnected. Let \(S_1 = S \cup \{x\} \). Clearly, \(< S_1 > \) is connected and hence \(S_1 \) is \(g_{1c} \)-set. Therefore, \(g_{1c}(Wd(k, n)) = k(n - 1) + 1 \).

Dutch windmill Graph

Definition 2.15 The Dutch windmill graph \(D^k_n \) is the graph obtained by taking \(k \) copies of the cycle graph \(C_n \) with a vertex in common. It is defined in [3].

Example: For a Dutch windmill graph \(D^k_4 \), \(S = \{v_1, v_6, v_9\} \) is edge geodetic set of \(D^k_4 \) so that \(g_1(D^k_4) = 3 \).
Theorem 2.16. Let D_n^k be the Dutch windmill graph then
\[g_1(D_n^k) = \begin{cases} k & \text{if } n \equiv 0 \pmod{2}, \\ 2k & \text{if } n \equiv 1 \pmod{2}. \end{cases} \]

Proof. Let $G = D_n^k$ consisting of k copies of the cycle graph C_n with a vertex in common. Let $V(G) = \{U v_1^i, v_2^i, \ldots, v_{n-1}^i, v_n^i\}$ where $1 \leq i \leq n$ and v_i is a common vertex. Then $G = k(n-1) + 1$ and $E(G) = nk$. We discuss the following cases:

Case 1. Let $n \equiv 0 \pmod{2}$. Let $S_1 = \{v_1^i, v_2^i, v_3^i, \ldots, v_n^i\}$ such that $d(v_1^i, v_2^i) = d(v_3^i, v_4^i) = \ldots = d(v_{n-1}^i, v_n^i) = \text{diam}(G)$ where $\{v_1^i, v_2^i, v_3^i, \ldots, v_n^i\}$ are the antipodal vertices of G. Clearly, every edge of G lies in geodesic joining any two vertices of S_1. Therefore, S_1 is g_1-set of G. Hence $g_1(G) = |S_1| = k$.

Case 2. Let $n \equiv 1 \pmod{2}$. Let $S_2 = \{v_1^i, v_2^i, v_3^i, v_4^i, v_5^i, \ldots, v_n^i\}$ such that $d(v_1^i, v_2^i) = d(v_2^i, v_3^i) = d(v_4^i, v_5^i) = \ldots = d(v_{n-2}^i, v_{n-1}^i) = \text{diam}(G)$ be g_1-set of G. Hence $g_1(G) = |S_2| = 2k$.

Theorem 2.17. For any Dutch windmill graph D_n^k, $g_{st}(D_n^k) = 2k$.

Proof. Let $G = D_n^k$. We discuss the following cases:

Case 1. When n is even. By the theorem 2.16, $S_1 = \{v_1^i, v_2^i, v_3^i, \ldots, v_n^i\}$ is g_1-set of G. But S_1 has isolated vertices. Let $S'' = S \cup \{v_{i+1}^0, v_{i+3}^0, v_{i+4}^0, \ldots, v_{i+k}^0\}$. Clearly, S'' has no isolated vertices and hence $g_{st}(G) = 2k$.

Case 2. When n is odd. By the theorem 2.16, $S_2 = \{v_1^i, v_2^i, v_3^i, v_4^i, v_5^i, \ldots, v_n^i\}$ is g_1-set of G. But S_2 has no isolated vertices. Therefore, S_2 is g_{st}-set and hence $g_{st}(G) = 2k$.

Theorem 2.18. For any Dutch windmill graph D_n^k, $g_{st}(D_n^k) = \begin{cases} k+1 & \text{if } n \equiv 0 \pmod{2}, \\ 2k+1 & \text{if } n \equiv 1 \pmod{2}. \end{cases}$

Proof. Let $G = D_n^k$. Let $V(G) = \{v_i^j\}$ where $1 \leq i \leq n$ and v_i is a common vertex. We have the following cases:

Case 1. For n is even. By the theorem 2.16, $S_1 = \{v_1^i, v_3^i, \ldots, v_n^i\}$ is g_1-set of G. But $V(G) - S_1$ is connected. Let $S'' = S_1 \cup \{v_{n+1}^0\}$. Clearly, S'' has no isolated vertices and hence $g_{st}(G) = k+1$.

Case 2. For n is odd. By the theorem 2.16, $S_2 = \{v_1^i, v_3^i, v_5^i, v_7^i, v_9^i, \ldots, v_n^i\}$ is g_1-set of G. But $V(G) - S_1$ is connected. Let $S'' = S_2 \cup \{v_{n+1}^0\}$ forms g_{st}-set of G. Therefore, $g_{st}(G) = 2k+1$.

Shadow Graph

Definition 2.19. The Shadow graph of G, denoted by $D_2(G)$ is the graph constructed from G by taking two copies of G namely G and G' and by joining each vertex u in G to the neighbours of the corresponding vertex u' in G'. It is defined in [4].

Example: For the shadow graph $D_2(P_5)$ given in Figure 5, $S = \{ v_1, v_2, v_3, v_4, v_5 \}$ is an edge geodesic set so that $g_1(D_2(P_5)) = 4$.

![Figure 5: G](image)

Observation 2.20. For any path $P_n, n \geq 4$ the vertex covering number α_0 (P_n) of shadow graph $D_2(P_n)$ is equal to n.

Theorem 2.21. For any path $P_n, n \geq 4, g_1(D_2(P_n)) = 4$.

Proof. Let $G = (D_2(P_n))$ and $V(G) = \{v_1, v_2, v_3, \ldots, v_n\}$ where $\{v_1, v_2, v_3, \ldots, v_n\}$ are the vertices of P_n and $\{v_1', v_2', v_3', \ldots, v_n'\}$ are the shadow vertices of P_n respectively. Then $|V(G)| = 2n$ and $|E(G)| = 4n-6$.

For $n=3$, it is easy to verify that, $g_1(G) = 3$.

For $n \geq 4$, let $S = \{ v_1, v_n, v_2', v_n' \}$. Since all the edges lie in geodesic joining any two vertices of S, clearly, S is g_1-set. Therefore, $g_1(G) = |S| = 4$.

Corollary 2.22. Let $G, n \geq 4$, be any path then $e_{g_1}(D_2(P_n)) = g_1(D_2(P_n))$.

Theorem 2.23. For any path $P_n, n \geq 4, g_1c(D_2(P_n)) = \alpha_0(D_2(P_n)) + 2$ where α_0 is the vertex covering number of $D_2(P_n)$.

Proof. Let α_0 be the vertex covering number of $G = D_2(P_n)$. By the Theorem 2.21, $S = \{v_1, v_2, v_3, v_n\}$ be g_1-set of G and $g_1c(G) = 4$. But $<S>$ is connected. Let $S' = S \cup \{v_{n+1}\}$. Clearly, S' is connected. By Observation 2.21, it follows that $g_1c(D_2(P_n)) = |S'| = \alpha_0(D_2(P_n)) + 2$.

Theorem 2.24. For any path $P_n, n \geq 5, g_{st}(D_2(P_n)) = 5$.

Proof. Let $G = D_2(P_n)$. By the Theorem 2.21, $S = \{v_1, v_2, v_3, v_4, v_5\}$ be g_1-set of G and $g_{st}(G) = 4$. But $<V-S>$ is connected. Let $S' = S \cup \{v_{n-2}\}$. Clearly, $<V-S'>$ is not connected. Hence, S' forms g_{st}-set. Therefore, $g_{st}(D_2(P_n)) = 5$.

Theorem 2.25. For any star $K_{1,n}, n \geq 3, g_1(K_{1,n}) = \Delta(K_{1,n}) + 1$ where Δ is the maximum degree of $D_2(K_{1,n})$.

1746
Proof. Let $G = D_2(K_{1,n})$ and two copies of star $G = G' \cup G''$. Let $V(G') = \{a_1, a_2, a_3, \ldots, a_n, x\}$ and $V(G'') = \{a'_1, a'_2, a'_3, \ldots, a'_n, x'\}$ where x and x' are the central vertices of G' and G''. Let $S = V(G')$. Clearly, S forms g_1-set. Therefore, $g_1(D_2(K_{1,n})) = |S| = \Delta(K_{1,n}) + 1$.

Corollary 2.26 For any star $K_{1,n}$, $n \geq 3$, $\text{eg}(D_2(K_{1,n})) = g_1(D_2(K_{1,n}))$.

Theorem 2.27. For any cycle C_n, $n \geq 4$, $g_1[D_2(C_n)] = \begin{cases} 4 & \text{for } n \text{ is even,} \\ 6 & \text{for } n \text{ is odd.} \end{cases}$

Proof. Let $G = D_2(C_n)$ and $G = G' \cup G''$ where G' and G'' are the two copies of G such that $V(G') = \{v_1, v_2, \ldots, v_n\}$ and $V(G'') = \{v'_1, v'_2, v'_3, \ldots, v'_n\}$. We shall discuss the following cases:

Case 1. For n is even. Let $S = \{v_r, v'_r, v_r, v'_r\}$ where v_r is the antipodal vertex of v_r which forms a g_1-set of $D_2(C_n)$. Hence, $g_1(D_2(C_n)) = 4$.

Case 2. For n is odd. Let $S = \{v_p, v'_p, v_r, v_r, v_s, v'_s\}$ where v_r is the antipodal vertex of v_r and v_s in G' be a g_1-set. Hence, $g_1(D_2(C_n)) = 6$.

Corollary 2.28. For any cycle C_n, $n \geq 4$, $\text{eg}(D_2(C_n)) = g_1(D_2(C_n))$.

Corollary 2.29. For any cycle C_n, $n \geq 4$, $g_1[D_2(C_n)] = g_1(D_2(C_n))$.

Cocktail Party Graph

Definition 2.27. The Cocktail Party graph \overline{C}_n is the graph consisting of two rows of paired vertices in which all vertices but the paired ones are connected with a graph edge. It is defined in [5].

Example: For a cocktail party graph \overline{L}_4 given in Figure 6, the colorless vertices is its edge geodetic set. Then $S = \{u_1, u_2, u_3, w_1, w_2, w_3\}$ is g_1-set so that $g_1(\overline{L}_n) = 6$.

![Figure 6: G](image)

Theorem 2.28. The edge geodetic number of a cocktail party graph \overline{L}_n of order $2n$ is equal to $2n - 2$.

Proof. Let $G = \overline{L}_n$. Let $V_1 = \{u_1, u_2, u_3, \ldots, u_n\}$ and $V_2 = \{w_1, w_2, w_3, \ldots, w_n\}$ be the two vertex sets respectively such that every vertex in V_1 has a vertex pair in V_2 except the paired ones (u_i, w_j) for $i = j$. Then $|V(G)| = 2n$. Let $S = \{u_1, u_2, u_3, \ldots, u_{n-1}, w_1, w_2, \ldots, w_{n-1}\}$ and every edge of G lies in geodesic joining any pair of vertices of S. Therefore, $g_1(G) = |S| = 2n - 2$.

Corollary 2.29 If \overline{L}_n is any cocktail party graph of order $2n$, then $g_1(\overline{L}_n) = 2n - 2$.

Corollary 2.30 For any cocktail party graph \overline{L}_n of order $2n$, $g_1(\overline{L}_n) = g_1(\overline{C}_n)$.

Corollary 2.31 For any cocktail party graph \overline{L}_n of order $2n$, $g_1(\overline{L}_n) = g_1(\overline{L}_n)$.

Tadpole Graph

Definition 2.32. The $T(p, n)$-Tadpole graph, also called a dragon graph, is the graph obtained by joining a cycle graph C_p to a path graph P_n with a bridge. It is defined in [4].

Example: For a Tadpole graph $T(5, 2)$ given in Figure 7, the darkened vertices is its g_1-set.

Let $S = \{x_2, x_4, y_2\}$ is edge geodetic set of $T(5, 2)$ so that $T(5, 2) = 3$.

Figure 7: G

Theorem 2.33 For any tadpole graph $T(p, n), n \geq 3$, $g_1(T(p, n)) = \begin{cases} 2 & \text{if } n \equiv 0(\text{mod } 2), \\ 3 & \text{if } n \equiv 1(\text{mod } 2). \end{cases}$

Proof. Let $G = T(p, n)$. Consider $V(G) = \{x_1, x_2, x_3, \ldots, x_p, y_1, y_2, y_3, \ldots, y_n\}$ where $V(P) = \{x_1, x_2, x_3, \ldots, x_p\}$ and $V(C_p) = \{y_1, y_2, y_3, \ldots, y_n\}$. We discuss in following two cases:

Case 1: when n is even. Let $S = \{x_i, y_n\}$ where $d(x_i, y_n) = \text{diam}(G)$ and $I[S] = V(G)$ Clearly, S is g_1-set of G. Hence $g_1(G) = 2$.

Case 2: when n is odd. Let $S = \{x_i, x_{i+1}, y_n\}$ where $d(x_i, y_n) = d(x_{i+1}, y_n) = \text{diam}(G)$ and S forms g_1-set of G. Hence $g_1(G) = 3$.

Corollary 2.34 For a tadpole graph $T(p, n)$, $\text{eg}(T(p, n)) = g_1(T(p, n))$.

Theorem 2.35 For a tadpole graph $T(p, n)$, $g_{1e}(T(p, n)) = 4$.

Proof. Let $G = T(p, n)$. We discuss in following two cases:
Case 1. For n is even. By the Theorem 2.33, $S = \{x_i, y_n\}$ is a cut vertex of G. Let $S_1 = S \cup \{x_{i+1}, y_{n-1}\}$. Clearly, S_1 is $g_1(S)$ of G. Therefore, $g_1(S) = 4$.

Case 2. For n is odd. By the Theorem 2.33, $S = \{x_i, x_{i+1}, y_n\}$ is $g_1(S)$ of G. Let $S_2 = S \cup \{x_k\}$ where $\{x_k\}$ is any cut vertex of G. Clearly, S_2 is $g_1(S)$ of G. Therefore, $g_1(S) = 4$.

Theorem 2.36 For a tadpole graph $T(p,n)$, $g_{1\alpha}(T(p,n)) = \begin{cases} 3 & \text{if } n \equiv 0 \pmod{2}, \\ 4 & \text{if } n \equiv 1 \pmod{2}. \end{cases}$

Proof. Let $G = T(p,n)$. We have the following cases:

Case 1. When n is even. By the Theorem 2.33, $S = \{x_i, y_n\}$ is a g_1-set of G and $g_1(S) = 2$. But $V - S$ is connected. Let $S_1 = S \cup \{x_k\}$ where $\{x_k\}$ is any cut vertex of G. Clearly, S_1 is $g_{1\alpha}(G) = 3$.

Case 2. When n is odd. By the Theorem 2.33, $S = \{x_i, x_{i+1}, y_n\}$ is $g_1(S)$ of G and $g_1(S) = 3$. Let $S_2 = S \cup \{x_k\}$ where $\{x_k\}$ is the cut vertex of G and $V - S_2$ is disconnected. Hence, $g_{1\alpha}(G) = 4$.

Jump Graph

Definition 2.37 The Jump graph $J(G)$ of a graph G is defined as that graph whose vertices are the edges of G and where two vertices of $J(G)$ are adjacent if and only if the corresponding edges of G are independent. It is defined in [7].

Example: Consider the jump graph of path P_8 given in Figure 8, the set $S = \{u_1, u_2, u_3, u_4, u_5\}$ is an edge geodetic set of $J(P_8)$ so that $g_1(J(P_8)) = 5$.

Figure 8: G

Theorem 2.38 For any path P_n, $n \geq 8$,

$$g_1(J(P_n)) = \begin{cases} 2 & \text{for } n = 5, \\ 3 & \text{for } n = 6,7, \\ n-3 & \text{for } n \geq 8. \end{cases}$$

Proof. For $n = 5, 6,7$, proof is obvious.

Further, let $V_1 = \{v_1', v_2', v_3', \ldots, v_n'\}$ be the set of vertices in $J(P_n)$ corresponding to the set of independent edges $e_1, e_2, e_3, \ldots, e_n$ of P_n. Suppose that $n \geq 8$. Let $S_1 = \{u_1', v_1', v_2', v_3', \ldots, v_{n-3}'\}$. Clearly, all the edges of $J(P_n)$ lie in geodesic joining any two vertices of S_1. Hence S_1 is g_1-set of $J(P_n)$. Therefore, $g_1(J(P_n)) = |S_1| = n - 3$.

Corollary 2.39 For any path P_n, $n \geq 8$, $g_1(J(P_n)) = g_1(J(P_{n-3}))$.

Corollary 2.40 For any path P_n, $n \geq 5$, $g_1(J(P_n)) = g_1(J(P_{n-3}))$.

Theorem 2.41 For any path P_n, $n \geq 8$, $g_1(J(P_n)) = \begin{cases} 2 & \text{for } n = 6,7, \\ n-3 & \text{for } n \geq 8. \end{cases}$

Proof. Let ω_0 be the vertex covering number of P_n. Proof is obvious for $n = 6,7$. Consider any subgraph P_{n-2} of P_n. Let E be the set of edges in P_{n-2}. By the Theorem 2.38, let $V' = \{v_1', v_2', v_3', \ldots, v_n'\}$ be the set of vertices in $J(P_{n-2})$ corresponding to the set of edges E of P_n. Clearly, $S_1 = V'$ is a g_1-set of $J(P_n)$. But $V - S_1$ is connected. Let $S_2 = V \setminus (J(P_n) - S_1)$, such that $V - S_2$ is disconnected. Hence, $g_{1\alpha}(J(P_n)) = |S_1| + 2$.

Theorem 2.42 For any cycle C_n, $n \geq 5$, then,

$$g_1(J(C_n)) = \deg((J(v_j))) + 1.$$

Proof. For $n = 4$, $J(C_4)$ is disconnected and hence there is no g_1-set for $J(C_4)$. Let $\{x_1, x_2, x_3, \ldots, x_n\}$ be the set of vertices of $J(C_n)$ corresponding to the edges $E = \{e_1, e_2, e_3, \ldots, e_n\}$ of C_n and $\deg((J(v_j))) = n - 3$. Let $S = \{x_1, x_2, x_3, \ldots, x_n\}$. Clearly, S covers all the edges of $J(C_n)$. Hence S is a g_1-set of $J(C_n)$. Therefore, $|S| = g_1(J(C_n)) = \deg((J(v_j))) + 1$.

Corollary 2.43 For any cycle C_n, $n \geq 5$, $g_1(J(C_n)) = g_1(J(C_n))$.

Corollary 2.44 For any cycle C_n, $n \geq 5$, $g_1(J(C_n)) = g_1(J(C_{n-2}))$.

Corollary 2.45 For any cycle C_n, $n \geq 5$, $g_{1\alpha}(J(C_n)) = n - 2$.

CONCLUSION

In this paper, we obtained the results on edge geodetic parameters of several special graphs.

ACKNOWLEDGEMENT

The authors are thankful to anonymous referees for their fruitful comments and suggestions, which have improved the paper.
References

