International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451
© Research India Publications. http://www.ripublication.com

Automated Text Clustering and Labeling using Hypernyms

Tammishetti Vishnu
Department of Information Technology

Konda Himakireeti
Department of Information Technology

Sree Nidhi Institute of Science and Technology Sree Nidhi Institute of Science and Technology

Abstract

Automated text clustering and labeling is a process of dividing
a corpus of documents into one (or) more cluster(s) and then
choosing an appropriate label for each of the clusters which
will be descriptive of that particular cluster. This lets the users
or anyone wishing to use these documents get an easy and
quick understanding of the documents with the help of the
labels we provided. These labels are aimed at being the words
which are descriptive of the words or phrases in the cluster.
This process results in one or a few clusters and their label(s).
So, a corpus, a collection of documents is divided into clusters
using the K-Means clustering algorithm which divides the
data into predefined number of clusters. It works on numbers
only, so we calculate Tf-idf(Term Frequency and Inverse
Document Frequency) and use this data to cluster the data
using K-Means. We use Wordnet API to find the synonyms
and then find the hypernyms. We then label the cluster based
on the hypernym with highest frequency. This procedure can
be used with a light or no variation for document labeling
also. When these documents are required, a glance at these
cluster labels must be enough to get the basic idea of the
corpus under consideration. This might help a lot especially
when there are a lot of documents and data to be looked at.
So, in this paper of ours we describe an approach of doing so.

1. INTRODUCTION

Data invariably helps us in many places or circumstances.
Having data can be considered a boon. Having adequate data
helps in many ways like analysis, forecasting and what not. It
helps in understanding the situations better, it helps in
understanding some patterns like in stocks, oil price and the
list goes on. Earlier, data was very scarce. There wasn’t
adequate amount of data available for analysis, as a matter of
fact any other job involving the need of data. Having
sufficient data can even play an important role in saving lives.
If provided with the data about weather patterns and all,
tsunamis can be predicted and required safety measures can be
taken. Things can be handled. All these things put emphasis
on the importance of data.

With the advent of internet and many more modern
technologies, promising results have been shown. A lot of
data is now readily available over the internet and most of it is
free to access for everyone. According to Forbes article by
Bernard Marr, there are about two and a half million bytes of

447

data created every day at the current pace. The article says
that 90% of the data available over the internet is created only
in the past two years. This will of course commensurate with
time.

This increase in data might seem like a boon and it is. But the
only problem is that large portion (almost all of it) of the data
available is unstructured. This is one of the biggest problems
today. Unstructured data is the data which is not in a pre-
defined way or simply not organized. This problem is in dire
need to be addressed. A lot of unstructured textual is also
available which need to be organized for usage in future.
Hence the techniques or methods which can be used to
mollify this problem are very much necessary.

Clustering and labeling them appropriately might help ease
the situation up to a certain extent. Clustering is, taking
similar or relative text and making it into one group called a
cluster. Whereas labeling is nothing but assigning a word or a
phrase which best describes a particular cluster. This
optimistically will result in creating structured data out of
unstructured ones. This can add meaning to the data. We can
identify a particular document or a cluster of words by its
label. This can also be used to label documents. This will help
the users get a basic idea or overview of what these
documents are or what is this cluster about. So, this clustering
and labeling will help structuring the textual data and will
improve user readability.

This paper of ours is a proposed method to achieve the above
described results. We take a corpus that is a collection of
documents which will be the data to be clustered and labeled.
We calculate the Term frequency-Inverse document frequency
and transform the data into one or more clusters. Then, we use
the WordNet to find the synonyms of the words followed by
finding their hypernyms and finally allocating a good label for
that particular cluster.

This paper is further organized into two sections. Section one
will be about the proposed approach and section 2 will show
the results of the experiments conducted based on the
approach described followed by the conclusion.

Note: We used python for this approach. So, all the examples
shown in this paper are achieved through python and its
various modules. Python has a package “nltk” which provides
methods which ease up the process.

mailto:tvishnu911@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451
© Research India Publications. http://www.ripublication.com

2. THE APPROACH
The whole approach is depicted by the following flowchart.

Gathering data

3

Preprocessing

O

Processing:
1.Calculating tf-idf
2.Clustering

O

Labeling

Figure 1. Flow chart of the technique

2.1 Gathering data

This is the first step, the input data. The data to be clustered is
gathered. This data maybe anything, some random text or a
document or even a collection of documents called a corpus.
The random text maybe used to get a label for that and a
document can also be used in the same way. A corpus of
documents can be input to make some well-defined clusters.
For more comprehensive understanding, this paper will be
based on the input of a corpus of documents. Let the input
be, D¢.

Where, D stands for a corpus of documents.
Dc: D1, Dz, D3, ey Dn.

Where, Dibeing a document on its own.

2.2. Preprocessing

This is one of the pivotal steps in this approach to achieve
good results. As a matter of fact, this preprocessing plays an
important role in any of the data related methods.
Preprocessing deals with transforming data into an acceptable
format for the process. It is basically readying the data,
making it suitable to work on. Not doing this will have a
negative effect on further process and will have a bad effect
on the outcome.

448

Preprocessing for this approach takes 4 simple yet effective
steps.

2.2.1 Tokenizing:

Tokenizing is the first and foremost step. Tokenizing refers to
dividing a piece of text into tokens, words in our case, based
on specific parameters. When the documents are input, they
must be divided into sentences and these must further be
divided into words using a Tokenizer. This is quite easy and it
returns a list of words which are in the documents. This list
allows us to implement the process in an efficient manner. We
perform all the further operations on this set of tokens only.

2.2.2 Punctuation removal:

Punctuations like “ !, ?, ..” will only be a burden to deal with.
Whatever we are doing, is on the words. We don’t have to
care about the punctuation. These punctuations only delay the
process but not help it in any way unless we are trying to get
the emotion of the text. Which we are not. We are only
looking for a label which best describes a particular set of
words. Hence, we didn’t find a reason to keep these under
consideration any further.

So, in this step, we are going to strip of any punctuations to
proceed further.

2.2.3 Stop words removal:

Stop words removal is the most important step. Stop words
are those which have to be filtered off before proceeding with
natural language processing. These are the words which are
most common in the language. A stop word will only be
slowing down the process as they don’t really carry a lot of
information. A stop word can be “the” or “is” or “at” or “on”
etc. As we consider each and every word or token, having
these in the list will not be of use and moreover will serve as a
disadvantage in the further process. Hence removing these
will help a lot.

So, in this preprocessing, we perform the mentioned
operations so that our process can be more efficient.

2.2.4 Stemming and Lemmatization:

Stemming basically refers to stripping of the end or beginning
of the word by taking some common prefixes and suffixes
into consideration.

Consider the following example,

Form Suffix Stem
studies -es studi
studying -ing study

Figure 2. Understanding Stemming

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451
© Research India Publications. http://www.ripublication.com

In figure 2, the words studies and “studying” have been
stripped, actually stemmed to “studi” and study. “studi”
actually cannot be used when we search for synonyms or
hypernyms. Hence we consider Lemmatization.
Lemmatization considers the morphological information of
the words also.

For the same example,

Form Morphological information Lemma
Third person, singular number, present tense of

studies theverb study study

studying Gerund of the verb study study

Figure 3. Understanding Lemmatization

Now after Lemmatization (Figure 3), we got study which can
be worked with.

Note: All these pre-processing methods can be implemented
in python as well as some other languages.

2.3 Processing

Processing in this paper’s sense is clustering the textual data
into different clusters.

This happens in two steps,

1) Finding tf-idf vector
2) Clustering
After these two steps have been applied, we would be having

a desired number of clusters of words based on their
significance calculated using tf-idf.

2.3.1 tf-idf:

tf-idf stands for Term frequency-Inverse Document frequency.
This is widely used in text mining and information retrieval.
This is a highly effective method.

What tf-idf does is it takes into account all the words in the
collection of documents and computes each of the words
significance with respect to that document. Simply put, it tells
how important a particular word is.

Tf-idf is found for each and every word that made out of the
preprocessing stage. To get a clear idea,

2.3.1.1 Term frequency:

This is the frequency of a particular word in a particular
document. Term frequency of a word is the ratio of no. of
occurrences of that word to the total no. of words in the
document.

Ex: Consider a document d1,
“Hello this is a sentence”
Now, the term frequency,
tf(“this”,d1)=1/5

449

As there is one occurrence of “this” in a total of 5 words,
term-frequency of “this” in d1 is 1/5.

2.3.1.2 Inverse document frequency:

Idf is how much information that particular word provides. It
answers questions like how frequent this occurs or how rare
this occurs. This helps in finding out the significance or
importance of a particular word.

Ex: Consider two documents d1, d2.
d1="this is first document”

d2="this is second document”

Now, idf(“this”,D)=log(2/2)=0.

Where D=d1, d2.

Similarly, idf(“first”,D)=log(2/1)=0.301

Now to calculate tf-idf we just have to multiply the term
frequency and inverse document frequency.

TF-idf(“first”,d1,D)=tf(“first”,d1) * idf(“first”,D)
Tf-idf(“first”,d1,D)=(1/4) * 0.301
Tf-idf(“first”,d1,D) = 0.075.

The generic algorithm is as follows,

Using python and scikit learn we can directly generate
something called TfidfVectorizer which automaticall
computes the tf-idfs for us. Let’s take a look,

texts = ["Penny bought bright blue fishes.”, "Penny bought
bright blue and orange fish.", "The cat ate a fish at the
store.”, "Penny went to the store. Penny ate a bug. Penny saw
a fish.", "It meowed once at the bug, it is still meowing at the
bug and the fish", "The cat is at the fish store. The cat is
orange. The cat is meowing at the fish.", "Penny is a fish"].

ate blue bought bright bug cat fish

0.000000 0447123 0447123 0447123 0.000000 0.000000 0.000000

0.000000 0452762 0452762 0.452762 0.000000 0.000000 0.259093

0.571840 0.000000 0.000000 0.000000 0.000000 0.571840 0.327236

0.302651 0.000000 0.000000 0.000000 0.302651 0.000000 0.173192

0.000000 0.000000 0.000000 0.000000 0.768166 0.000000 0.219792

0.000000 0.000000 0.000000 0.000000 0.000000 0.830757 0.316934

®m ;M kB O KM = O

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0610644

fishes meowed meowing saw store went

0.000000
0.000000

orange penny

0.331817

0.538647 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.452762 0.336002 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.488790 0.000000

0.000000 0.000000 0.000000 0.000000 0673806 0.364602 0258696 0.364602

0.000000 0.462702 0384083 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0276819 0276919 0.000000 0.000000 0236701 0.000000

0.000000 0.000000 0000000 0.000000 0.791905 0.000000 0.000000 0.000000

Figure 4. Results of tf-idf.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451
© Research India Publications. http://www.ripublication.com

We input some text sentences in form of “texts”, we used
python’s “TfidfVectorizer” to generate the tfidf values in our
required form to further process.

Pre-processing is all done implicitly in python 3.7.x.

2.3.2 Clustering:

The main objective of this paper is to structure the data and
label it. What other way to structure than group similar data
together. Clustering is basically a process aimed at doing that
very operation. It is used to group similar things into a cluster(
think it of like a group or collection of similar things). So,
clustering is a process of making clusters out of the input data.

There are quite a few clustering algorithms like K-Means
clustering, Hierarchical clustering and their versions.

These two are the most widely used ones. However, we are
focused only on K-Means clustering as we found it is better in
terms of application and results.

2.3.2.1 K-Means clustering:

K-Means clustering is used to cluster n observations into k
groups where k<n.

In other words, K-Means clustering is use to make “K”
clusters out of the given observations. Each cluster will be
formed in such a way that all the observations in it are similar
to each other in the very same cluster than other clusters. Let’s
take an example, given some random names and addresses,
there can be a cluster of names and another cluster of
addresses. Hence, it formed a cluster of only similar things. A
name is conceptually more similar to another name than it is
to an address.

This can be called a lazy method as it performs most of the
computation when it has to perform the classification of the
new observation. This is an instance based clustering
technique. Its training experience is all the observations it
previously encountered. Its performance increases with
increasing number of observations fed to it.

K-Means creates “K” clusters, given K an integer. If K=3, it
creates 3 clusters. That is, it classifies each of the observation
into either one of the three clusters.

2.3.2.2 Working:

Initially, k is chosen and k base points are taken randomly.
These are called centroids. Each centroid is a data point, or an
observation. Whole k-means works on Euclidean distance
property i.e. the distance between two observations in the
Euclidean space. Euclidean space is where the points are
plotted. Whenever a new observation is encountered, its
distance to the k number of clusters is calculated. It is
classified to be a part of the cluster whose centroid is the
closest to the new point.

After classification of every new observation, the centroid is
recomputed (Figure 6).

450

Let’s take an example where k=2, we have the centroids

represented by “x” mark in the following figure.

)
S

2)

Figure 5. K-Means working - Initial stage

After re-computing the centroids,

&
.
s

O

Figure 6. K-Means working - After re-compting the centroid

The following (Figure 7) is a figure of outcome of K-means
clustering with k=3.

k-Means Clusters

+

3

o
®
8

Cluster 1 +
Cluster 2 X
Cluster 30

Figure 7. Example of K-Means having 3 centroids i.e., K=3

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451
© Research India Publications. http://www.ripublication.com

This clustering is a major step as this is how we cluster the
textual data into clusters which will be labeled. Like most of
the algorithms, even K-Means works with only numerical
data. So, to convert the textual data we have into numerical
data, we calculate the tf-idf of each and every word of the data
we have after preprocessing. We generate a vector of Tf-idf
values and we feed it to the K-Means algorithm and obtain
“K” clusters.

This whole operation can be done using python its sklearn
module. Now after generating the clusters, we label them.

2.4 Labeling:

This is the last phase of our procedure. In this step, we label
the obtained clusters. A good label is the one which best
describes the data in it. So far in our approach, we tokenized
the data, we removed the stopwords, we calculated Tf-idf and
then we clustered them. Now we have different clusters
containing words. We have to choose a best descriptor of
these words. We do so by generating the synonyms of all the
words in the clusters using the Wordnet interface provided by
Python. We have to first check if the word in in WordNet. If
not we remove it from our cluster. We then generate the
hypernyms of the remaining.

2.4.1 Hypernym:

Hypernym is a word broad in meaning which encompasses
words more specific in meaning.

For example, color is a hypernym for red, blue etc.

So, we generate the hypernyms for each of the words
including their synonyms present in our cluster.

Python code:

In [85]: syns_final[7]

0ut[85]: Synset('field hockey.n.@1')

In [86]: syns_final[7].hypernyms()

Out[86]: [Synset('field game.n.81')]

Figure 8. Understanding hypernyms

From Figure 8, we can see that it generated “field game” as
the hypernym for Hockey.

This hypernym generation helps as it broadens the context. It
helps broadening the meaning of the words.

After these hypernyms are generated, we calculate the
frequency the hypernyms in a particular cluster. We assign the
hypernym with highest frequency or top hypernyms (as per
requirement) as the label of the cluster.

451

Example:

Consider a simple cluster.
cluster=['dog','cat',’leopard’,'melon','india’,'rat",'lion']

By finding the synonyms and hypernyms, we found that the
highest frequency hypernym we found was ‘feline’. This is
actually a good description of the above mentioned cluster as
Cat, Leopard and Lion fall under feline species.

3. CONCLUSION AND FUTURE DIRECTIONS

This process of clustering and labeling is aimed at dividing
textual data into chunks of labelled blocks of data. This is
very useful in organizing data and further helps in
understanding data quickly and efficiently. When properly
done, a quick glance will be enough to understand the brief
point of the data under consideration. However, this process is
highly dependent on the performance of the clustering
mechanism we used. If the cluster is comprising of vaguely
related words, the label assigned will invariably be vague as
well. For the future, we are aiming at developing or tweaking
the present clustering models which will help in forming
better clusters, which will lead to a concise label.

REFERENCES

[1] Rajaraman, A.; Ullman, J. D. (2011)."Data
Mining". Mining of Massive Datasets (PDF).pp. 1—
17. doi-10.1017/CB0O9781139058452.002. ISBN 9781
139058452.

Comprehensible and Accurate Cluster Labels in Text
Clustering Jerzy Stefanowski and Dawid Weiss
Institute of Computing Science, Poznan University of
Technology Piotrowo 2, 60-965 Poznan,
Poland{jerzy.stefanowski,dawid.weiss}@cs.put.poznan
.pl

Acrticle by Bernarnd marr
https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-
blowing-stats-everyone-should-read/#13c947f960ba

(2]

3]

Samuel J. Rivera, Barbara S. Minsker, Daniel B. Work,
Dan Roth. "A text mining framework for advancing
sustainability indicators”, Environmental Modelling &
Software,2014.

N. Yuvaraj, A. Sabari. "Twitter Sentiment
Classification Using Binary Shuffled Frog Algorithm",
Intelligent Automation & Soft Computing, 2016.

[4]

[5]

[6] Deniz Iren, Hajo A. Reijers. "Leveraging business
process improvement with natural language processing
and organizational semantic knowledge", Proceedings
of the 2017 International Conference on Software and

System Process - ICSSP 2017, 2017.

Text Documents clustering using K Means Algorithm
Mrs Sanjivani Tushar Deokar Assistant professor.

[7]

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba

