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Abstract 

Automated text clustering and labeling is a process of dividing 

a corpus of documents into one (or) more cluster(s) and then 

choosing an appropriate label for each of the clusters which 

will be descriptive of that particular cluster. This lets the users 

or anyone wishing to use these documents get an easy and 

quick understanding of the documents with the help of the 

labels we provided. These labels are aimed at being the words 

which are descriptive of the words or phrases in the cluster. 

This process results in one or a few clusters and their label(s). 

So, a corpus, a collection of documents is divided into clusters 

using the K-Means clustering algorithm which divides the 

data into predefined number of clusters. It works on numbers 

only, so we calculate Tf-idf(Term Frequency and Inverse 

Document Frequency) and use this data to cluster the data 

using K-Means. We use Wordnet API to find the synonyms 

and then find the hypernyms. We then label the cluster based 

on the hypernym with highest frequency. This procedure can 

be used with a light or no variation for document labeling 

also. When these documents are required, a glance at these 

cluster labels must be enough to get the basic idea of the 

corpus under consideration. This might help a lot especially 

when there are a lot of documents and data to be looked at. 

So, in this paper of ours we describe an approach of doing so. 

 

1. INTRODUCTION 

Data invariably helps us in many places or circumstances. 

Having data can be considered a boon. Having adequate data 

helps in many ways like analysis, forecasting and what not. It 

helps in understanding the situations better, it helps in 

understanding some patterns like in stocks, oil price and the 

list goes on. Earlier, data was very scarce. There wasn’t 

adequate amount of data available for analysis, as a matter of 

fact any other job involving the need of data. Having 

sufficient data can even play an important role in saving lives. 

If provided with the data about weather patterns and all, 

tsunamis can be predicted and required safety measures can be 

taken. Things can be handled. All these things put emphasis 

on the importance of data. 

With the advent of internet and many more modern 

technologies, promising results have been shown. A lot of 

data is now readily available over the internet and most of it is 

free to access for everyone. According to Forbes article by 

Bernard Marr, there are about two and a half million bytes of 

data created every day at the current pace. The article says 

that 90% of the data available over the internet is created only 

in the past two years. This will of course commensurate with 

time.  

This increase in data might seem like a boon and it is. But the 

only problem is that large portion (almost all of it) of the data 

available is unstructured. This is one of the biggest problems 

today. Unstructured data is the data which is not in a pre-

defined way or simply not organized. This problem is in dire 

need to be addressed. A lot of unstructured textual is also 

available which need to be organized for usage in future. 

Hence the techniques or methods which can be used to 

mollify this problem are very much necessary. 

Clustering and labeling them appropriately might help ease 

the situation up to a certain extent. Clustering is, taking 

similar or relative text and making it into one group called a 

cluster. Whereas labeling is nothing but assigning a word or a 

phrase which best describes a particular cluster. This 

optimistically will result in creating structured data out of 

unstructured ones. This can add meaning to the data. We can 

identify a particular document or a cluster of words by its 

label. This can also be used to label documents. This will help 

the users get a basic idea or overview of what these 

documents are or what is this cluster about. So, this clustering 

and labeling will help structuring the textual data and will 

improve user readability. 

This paper of ours is a proposed method to achieve the above 

described results. We take a corpus that is a collection of 

documents which will be the data to be clustered and labeled. 

We calculate the Term frequency-Inverse document frequency 

and transform the data into one or more clusters. Then, we use 

the WordNet to find the synonyms of the words followed by 

finding their hypernyms and finally allocating a good label for 

that particular cluster.  

This paper is further organized into two sections. Section one 

will be about the proposed approach and section 2 will show 

the results of the experiments conducted based on the 

approach described followed by the conclusion. 

Note: We used python for this approach. So, all the examples 

shown in this paper are achieved through python and its 

various modules. Python has a package “nltk” which provides 

methods which ease up the process.  
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2. THE APPROACH 

The whole approach is depicted by the following flowchart.  

 

Figure 1. Flow chart of the technique 

 

2.1 Gathering data 

This is the first step, the input data. The data to be clustered is 

gathered. This data maybe anything, some random text or a 

document or even a collection of documents called a corpus. 

The random text maybe used to get a label for that and a 

document can also be used in the same way. A corpus of 

documents can be input to make some well-defined clusters. 

For more comprehensive understanding, this paper will be 

based on the input of a corpus of documents. Let the input  

be, Dc . 

Where, Dc stands for a corpus of documents. 

Dc = D1, D2, D3, …., Dn.  

Where, Di being a document on its own. 

 

2.2. Preprocessing 

This is one of the pivotal steps in this approach to achieve 

good results. As a matter of fact, this preprocessing plays an 

important role in any of the data related methods. 

Preprocessing deals with transforming data into an acceptable 

format for the process. It is basically readying the data, 

making it suitable to work on. Not doing this will have a 

negative effect on further process and will have a bad effect 

on the outcome. 

Preprocessing for this approach takes 4 simple yet effective 

steps. 

 

2.2.1 Tokenizing: 

Tokenizing is the first and foremost step. Tokenizing refers to 

dividing a piece of text into tokens, words in our case, based 

on specific parameters. When the documents are input, they 

must be divided into sentences and these must further be 

divided into words using a Tokenizer. This is quite easy and it 

returns a list of words which are in the documents. This list 

allows us to implement the process in an efficient manner. We 

perform all the further operations on this set of tokens only. 

 

2.2.2 Punctuation removal: 

Punctuations like “ !, ?, ..” will only be a burden to deal with. 

Whatever we are doing, is on the words. We don’t have to 

care about the punctuation. These punctuations only delay the 

process but not help it in any way unless we are trying to get 

the emotion of the text. Which we are not. We are only 

looking for a label which best describes a particular set of 

words. Hence, we didn’t find a reason to keep these under 

consideration any further.  

So, in this step, we are going to strip of any punctuations to 

proceed further. 

 

2.2.3 Stop words removal: 

Stop words removal is the most important step. Stop words 

are those which have to be filtered off before proceeding with 

natural language processing. These are the words which are 

most common in the language. A stop word will only be 

slowing down the process as they don’t really carry a lot of 

information. A stop word can be “the” or “is” or “at” or “on” 

etc.  As we consider each and every word or token, having 

these in the list will not be of use and moreover will serve as a 

disadvantage in the further process. Hence removing these 

will help a lot.  

So, in this preprocessing, we perform the mentioned 

operations so that our process can be more efficient. 

 

2.2.4 Stemming and Lemmatization: 

Stemming basically refers to stripping of the end or beginning 

of the word by taking some common prefixes and suffixes 

into consideration. 

Consider the following example, 

 

Figure 2. Understanding Stemming 
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In figure 2, the words studies and “studying” have been 

stripped, actually stemmed to “studi” and study. “studi” 

actually cannot be used when we search for synonyms or 

hypernyms. Hence we consider Lemmatization. 

Lemmatization considers the morphological information of 

the words also.  

For the same example, 

 

Figure 3. Understanding Lemmatization 

Now after Lemmatization (Figure 3), we got study which can 

be worked with. 

Note: All these pre-processing methods can be implemented 

in python as well as some other languages. 

 

2.3 Processing 

Processing in this paper’s sense is clustering the textual data 

into different clusters. 

This happens in two steps, 

1) Finding tf-idf vector 

2) Clustering 

After these two steps have been applied, we would be having 

a desired number of clusters of words based on their 

significance calculated using tf-idf. 

 

2.3.1 tf-idf: 

tf-idf stands for Term frequency-Inverse Document frequency. 

This is widely used in text mining and information retrieval. 

This is a highly effective method.  

What tf-idf does is it takes into account all the words in the 

collection of documents and computes each of the words 

significance with respect to that document. Simply put, it tells 

how important a particular word is.  

Tf-idf is found for each and every word that made out of the 

preprocessing stage. To get a clear idea, 

 

2.3.1.1 Term frequency: 

This is the frequency of a particular word in a particular 

document. Term frequency of a word is the ratio of no. of 

occurrences of that word to the total no. of words in the 

document. 

Ex: Consider a document d1, 

“Hello this is a sentence” 

Now, the term frequency, 

tf(“this”,d1)= 1/5 

As there is one occurrence of “this” in a total of 5 words, 

term-frequency of “this” in d1 is 1/5. 

 

2.3.1.2 Inverse document frequency: 

Idf is how much information that particular word provides. It 

answers questions like how frequent this occurs or how rare 

this occurs. This helps in finding out the significance or 

importance of a particular word. 

Ex: Consider two documents d1, d2. 

d1=”this is first document” 

d2=”this is second document” 

Now, idf( “this”,D)=log(2/2)=0.  

Where D=d1, d2. 

Similarly, idf(“first”,D)=log(2/1)=0.301 

Now to calculate tf-idf we just have to multiply the term 

frequency and inverse document frequency. 

Tf-idf(“first”,d1,D)=tf(“first”,d1) * idf(“first”,D) 

Tf-idf(“first”,d1,D)=(1/4) * 0.301 

Tf-idf(“first”,d1,D) ≈ 0.075. 

The generic algorithm is as follows, 

Using python and scikit learn we can directly generate 

something called TfidfVectorizer which automaticall 

computes the tf-idfs for us. Let’s take a look, 

texts = ["Penny bought bright blue fishes.",    "Penny bought 

bright blue and orange fish.",    "The cat ate a fish at the 

store.",  "Penny went to the store. Penny ate a bug. Penny saw 

a fish.", "It meowed once at the bug, it is still meowing at the 

bug and the fish",  "The cat is at the fish store. The cat is 

orange. The cat is meowing at the fish.",    "Penny is a fish" ]. 

 

 

 

Figure 4. Results of tf-idf. 
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We input some text sentences in form of “texts”, we used 

python’s “TfidfVectorizer” to generate the tfidf values in our 

required form to further process. 

Pre-processing is all done implicitly in python 3.7.x. 

 

2.3.2 Clustering:  

The main objective of this paper is to structure the data and 

label it. What other way to structure than group similar data 

together. Clustering is basically a process aimed at doing that 

very operation. It is used to group similar things into a cluster( 

think it of like a group or collection of similar things). So, 

clustering is a process of making clusters out of the input data. 

There are quite a few clustering algorithms like K-Means 

clustering, Hierarchical clustering and their versions. 

These two are the most widely used ones. However, we are 

focused only on K-Means clustering as we found it is better in 

terms of application and results.  

 

2.3.2.1 K-Means clustering: 

K-Means clustering is used to cluster n observations into k 

groups where k≤n. 

In other words, K-Means clustering is use to make “K” 

clusters out of the given observations. Each cluster will be 

formed in such a way that all the observations in it are similar 

to each other in the very same cluster than other clusters. Let’s 

take an example, given some random names and addresses, 

there can be a cluster of names and another cluster of 

addresses. Hence, it formed a cluster of only similar things. A 

name is conceptually more similar to another name than it is 

to an address. 

This can be called a lazy method as it performs most of the 

computation when it has to perform the classification of the 

new observation. This is an instance based clustering 

technique. Its training experience is all the observations it 

previously encountered. Its performance increases with 

increasing number of observations fed to it.  

K-Means creates “K” clusters, given K an integer. If K=3, it 

creates 3 clusters. That is, it classifies each of the observation 

into either one of the three clusters.  

 

2.3.2.2 Working: 

Initially, k is chosen and k base points are taken randomly. 

These are called centroids. Each centroid is a data point, or an 

observation. Whole k-means works on Euclidean distance 

property i.e. the distance between two observations in the 

Euclidean space. Euclidean space is where the points are 

plotted. Whenever a new observation is encountered, its 

distance to the k number of clusters is calculated. It is 

classified to be a part of the cluster whose centroid is the 

closest to the new point.  

After classification of every new observation, the centroid is 

recomputed (Figure 6).  

Let’s take an example where k=2, we have the centroids 

represented by “x” mark in the following figure. 

 

Figure 5. K-Means working - Initial stage 

 

After re-computing the centroids, 

 

Figure 6. K-Means working - After re-compting the centroid 

The following (Figure 7) is a figure of outcome of K-means 

clustering with k=3. 

 

Figure 7. Example of K-Means having 3 centroids i.e., K=3 
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This clustering is a major step as this is how we cluster the 

textual data into clusters which will be labeled. Like most of 

the algorithms, even K-Means works with only numerical 

data. So, to convert the textual data we have into numerical 

data, we calculate the tf-idf of each and every word of the data 

we have after preprocessing. We generate a vector of Tf-idf 

values and we feed it to the K-Means algorithm and obtain 

“K” clusters. 

This whole operation can be done using python its sklearn 

module. Now after generating the clusters, we label them. 

 

2.4 Labeling: 

This is the last phase of our procedure. In this step, we label 

the obtained clusters. A good label is the one which best 

describes the data in it. So far in our approach, we tokenized 

the data, we removed the stopwords, we calculated Tf-idf and 

then we clustered them. Now we have different clusters 

containing words. We have to choose a best descriptor of 

these words. We do so by generating the synonyms of all the 

words in the clusters using the Wordnet interface provided by 

Python. We have to first check if the word in in WordNet. If 

not we remove it from our cluster. We then generate the 

hypernyms of the remaining. 

 

2.4.1 Hypernym: 

Hypernym is a word broad in meaning which encompasses 

words more specific in meaning.  

For example, color is a hypernym for red, blue etc. 

So, we generate the hypernyms for each of the words 

including their synonyms present in our cluster. 

Python code: 

 

Figure 8. Understanding hypernyms 

 

From Figure 8, we can see that it generated “field_game” as 

the hypernym for Hockey. 

This hypernym generation helps as it broadens the context. It 

helps broadening the meaning of the words. 

After these hypernyms are generated, we calculate the 

frequency the hypernyms in a particular cluster. We assign the 

hypernym with highest frequency or top hypernyms (as per 

requirement) as the label of the cluster. 

Example: 

Consider a simple cluster. 

cluster=['dog','cat',’leopard’,'melon','india','rat','lion'] 

By finding the synonyms and hypernyms, we found that the 

highest frequency hypernym we found was ‘feline’. This is 

actually a good description of the above mentioned cluster as 

Cat, Leopard and Lion fall under feline species. 

 

3. CONCLUSION AND FUTURE DIRECTIONS 

This process of clustering and labeling is aimed at dividing 

textual data into chunks of labelled blocks of data. This is 

very useful in organizing data and further helps in 

understanding data quickly and efficiently. When properly 

done, a quick glance will be enough to understand the brief 

point of the data under consideration. However, this process is 

highly dependent on the performance of the clustering 

mechanism we used. If the cluster is comprising of vaguely 

related words, the label assigned will invariably be vague as 

well. For the future, we are aiming at developing or tweaking 

the present clustering models which will help in forming 

better clusters, which will lead to a concise label. 
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