
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451

© Research India Publications. http://www.ripublication.com

447

Automated Text Clustering and Labeling using Hypernyms

Tammishetti Vishnu Konda Himakireeti

Department of Information Technology Department of Information Technology
Sree Nidhi Institute of Science and Technology Sree Nidhi Institute of Science and Technology

Abstract

Automated text clustering and labeling is a process of dividing

a corpus of documents into one (or) more cluster(s) and then

choosing an appropriate label for each of the clusters which

will be descriptive of that particular cluster. This lets the users

or anyone wishing to use these documents get an easy and

quick understanding of the documents with the help of the

labels we provided. These labels are aimed at being the words

which are descriptive of the words or phrases in the cluster.

This process results in one or a few clusters and their label(s).

So, a corpus, a collection of documents is divided into clusters

using the K-Means clustering algorithm which divides the

data into predefined number of clusters. It works on numbers

only, so we calculate Tf-idf(Term Frequency and Inverse

Document Frequency) and use this data to cluster the data

using K-Means. We use Wordnet API to find the synonyms

and then find the hypernyms. We then label the cluster based

on the hypernym with highest frequency. This procedure can

be used with a light or no variation for document labeling

also. When these documents are required, a glance at these

cluster labels must be enough to get the basic idea of the

corpus under consideration. This might help a lot especially

when there are a lot of documents and data to be looked at.

So, in this paper of ours we describe an approach of doing so.

1. INTRODUCTION

Data invariably helps us in many places or circumstances.

Having data can be considered a boon. Having adequate data

helps in many ways like analysis, forecasting and what not. It

helps in understanding the situations better, it helps in

understanding some patterns like in stocks, oil price and the

list goes on. Earlier, data was very scarce. There wasn’t

adequate amount of data available for analysis, as a matter of

fact any other job involving the need of data. Having

sufficient data can even play an important role in saving lives.

If provided with the data about weather patterns and all,

tsunamis can be predicted and required safety measures can be

taken. Things can be handled. All these things put emphasis

on the importance of data.

With the advent of internet and many more modern

technologies, promising results have been shown. A lot of

data is now readily available over the internet and most of it is

free to access for everyone. According to Forbes article by

Bernard Marr, there are about two and a half million bytes of

data created every day at the current pace. The article says

that 90% of the data available over the internet is created only

in the past two years. This will of course commensurate with

time.

This increase in data might seem like a boon and it is. But the

only problem is that large portion (almost all of it) of the data

available is unstructured. This is one of the biggest problems

today. Unstructured data is the data which is not in a pre-

defined way or simply not organized. This problem is in dire

need to be addressed. A lot of unstructured textual is also

available which need to be organized for usage in future.

Hence the techniques or methods which can be used to

mollify this problem are very much necessary.

Clustering and labeling them appropriately might help ease

the situation up to a certain extent. Clustering is, taking

similar or relative text and making it into one group called a

cluster. Whereas labeling is nothing but assigning a word or a

phrase which best describes a particular cluster. This

optimistically will result in creating structured data out of

unstructured ones. This can add meaning to the data. We can

identify a particular document or a cluster of words by its

label. This can also be used to label documents. This will help

the users get a basic idea or overview of what these

documents are or what is this cluster about. So, this clustering

and labeling will help structuring the textual data and will

improve user readability.

This paper of ours is a proposed method to achieve the above

described results. We take a corpus that is a collection of

documents which will be the data to be clustered and labeled.

We calculate the Term frequency-Inverse document frequency

and transform the data into one or more clusters. Then, we use

the WordNet to find the synonyms of the words followed by

finding their hypernyms and finally allocating a good label for

that particular cluster.

This paper is further organized into two sections. Section one

will be about the proposed approach and section 2 will show

the results of the experiments conducted based on the

approach described followed by the conclusion.

Note: We used python for this approach. So, all the examples

shown in this paper are achieved through python and its

various modules. Python has a package “nltk” which provides

methods which ease up the process.

mailto:tvishnu911@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451

© Research India Publications. http://www.ripublication.com

448

2. THE APPROACH

The whole approach is depicted by the following flowchart.

Figure 1. Flow chart of the technique

2.1 Gathering data

This is the first step, the input data. The data to be clustered is

gathered. This data maybe anything, some random text or a

document or even a collection of documents called a corpus.

The random text maybe used to get a label for that and a

document can also be used in the same way. A corpus of

documents can be input to make some well-defined clusters.

For more comprehensive understanding, this paper will be

based on the input of a corpus of documents. Let the input

be, Dc .

Where, Dc stands for a corpus of documents.

Dc = D1, D2, D3, …., Dn.

Where, Di being a document on its own.

2.2. Preprocessing

This is one of the pivotal steps in this approach to achieve

good results. As a matter of fact, this preprocessing plays an

important role in any of the data related methods.

Preprocessing deals with transforming data into an acceptable

format for the process. It is basically readying the data,

making it suitable to work on. Not doing this will have a

negative effect on further process and will have a bad effect

on the outcome.

Preprocessing for this approach takes 4 simple yet effective

steps.

2.2.1 Tokenizing:

Tokenizing is the first and foremost step. Tokenizing refers to

dividing a piece of text into tokens, words in our case, based

on specific parameters. When the documents are input, they

must be divided into sentences and these must further be

divided into words using a Tokenizer. This is quite easy and it

returns a list of words which are in the documents. This list

allows us to implement the process in an efficient manner. We

perform all the further operations on this set of tokens only.

2.2.2 Punctuation removal:

Punctuations like “ !, ?, ..” will only be a burden to deal with.

Whatever we are doing, is on the words. We don’t have to

care about the punctuation. These punctuations only delay the

process but not help it in any way unless we are trying to get

the emotion of the text. Which we are not. We are only

looking for a label which best describes a particular set of

words. Hence, we didn’t find a reason to keep these under

consideration any further.

So, in this step, we are going to strip of any punctuations to

proceed further.

2.2.3 Stop words removal:

Stop words removal is the most important step. Stop words

are those which have to be filtered off before proceeding with

natural language processing. These are the words which are

most common in the language. A stop word will only be

slowing down the process as they don’t really carry a lot of

information. A stop word can be “the” or “is” or “at” or “on”

etc. As we consider each and every word or token, having

these in the list will not be of use and moreover will serve as a

disadvantage in the further process. Hence removing these

will help a lot.

So, in this preprocessing, we perform the mentioned

operations so that our process can be more efficient.

2.2.4 Stemming and Lemmatization:

Stemming basically refers to stripping of the end or beginning

of the word by taking some common prefixes and suffixes

into consideration.

Consider the following example,

Figure 2. Understanding Stemming

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451

© Research India Publications. http://www.ripublication.com

449

In figure 2, the words studies and “studying” have been

stripped, actually stemmed to “studi” and study. “studi”

actually cannot be used when we search for synonyms or

hypernyms. Hence we consider Lemmatization.

Lemmatization considers the morphological information of

the words also.

For the same example,

Figure 3. Understanding Lemmatization

Now after Lemmatization (Figure 3), we got study which can

be worked with.

Note: All these pre-processing methods can be implemented

in python as well as some other languages.

2.3 Processing

Processing in this paper’s sense is clustering the textual data

into different clusters.

This happens in two steps,

1) Finding tf-idf vector

2) Clustering

After these two steps have been applied, we would be having

a desired number of clusters of words based on their

significance calculated using tf-idf.

2.3.1 tf-idf:

tf-idf stands for Term frequency-Inverse Document frequency.

This is widely used in text mining and information retrieval.

This is a highly effective method.

What tf-idf does is it takes into account all the words in the

collection of documents and computes each of the words

significance with respect to that document. Simply put, it tells

how important a particular word is.

Tf-idf is found for each and every word that made out of the

preprocessing stage. To get a clear idea,

2.3.1.1 Term frequency:

This is the frequency of a particular word in a particular

document. Term frequency of a word is the ratio of no. of

occurrences of that word to the total no. of words in the

document.

Ex: Consider a document d1,

“Hello this is a sentence”

Now, the term frequency,

tf(“this”,d1)= 1/5

As there is one occurrence of “this” in a total of 5 words,

term-frequency of “this” in d1 is 1/5.

2.3.1.2 Inverse document frequency:

Idf is how much information that particular word provides. It

answers questions like how frequent this occurs or how rare

this occurs. This helps in finding out the significance or

importance of a particular word.

Ex: Consider two documents d1, d2.

d1=”this is first document”

d2=”this is second document”

Now, idf(“this”,D)=log(2/2)=0.

Where D=d1, d2.

Similarly, idf(“first”,D)=log(2/1)=0.301

Now to calculate tf-idf we just have to multiply the term

frequency and inverse document frequency.

Tf-idf(“first”,d1,D)=tf(“first”,d1) * idf(“first”,D)

Tf-idf(“first”,d1,D)=(1/4) * 0.301

Tf-idf(“first”,d1,D) ≈ 0.075.

The generic algorithm is as follows,

Using python and scikit learn we can directly generate

something called TfidfVectorizer which automaticall

computes the tf-idfs for us. Let’s take a look,

texts = ["Penny bought bright blue fishes.", "Penny bought

bright blue and orange fish.", "The cat ate a fish at the

store.", "Penny went to the store. Penny ate a bug. Penny saw

a fish.", "It meowed once at the bug, it is still meowing at the

bug and the fish", "The cat is at the fish store. The cat is

orange. The cat is meowing at the fish.", "Penny is a fish"].

Figure 4. Results of tf-idf.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451

© Research India Publications. http://www.ripublication.com

450

We input some text sentences in form of “texts”, we used

python’s “TfidfVectorizer” to generate the tfidf values in our

required form to further process.

Pre-processing is all done implicitly in python 3.7.x.

2.3.2 Clustering:

The main objective of this paper is to structure the data and

label it. What other way to structure than group similar data

together. Clustering is basically a process aimed at doing that

very operation. It is used to group similar things into a cluster(

think it of like a group or collection of similar things). So,

clustering is a process of making clusters out of the input data.

There are quite a few clustering algorithms like K-Means

clustering, Hierarchical clustering and their versions.

These two are the most widely used ones. However, we are

focused only on K-Means clustering as we found it is better in

terms of application and results.

2.3.2.1 K-Means clustering:

K-Means clustering is used to cluster n observations into k

groups where k≤n.

In other words, K-Means clustering is use to make “K”

clusters out of the given observations. Each cluster will be

formed in such a way that all the observations in it are similar

to each other in the very same cluster than other clusters. Let’s

take an example, given some random names and addresses,

there can be a cluster of names and another cluster of

addresses. Hence, it formed a cluster of only similar things. A

name is conceptually more similar to another name than it is

to an address.

This can be called a lazy method as it performs most of the

computation when it has to perform the classification of the

new observation. This is an instance based clustering

technique. Its training experience is all the observations it

previously encountered. Its performance increases with

increasing number of observations fed to it.

K-Means creates “K” clusters, given K an integer. If K=3, it

creates 3 clusters. That is, it classifies each of the observation

into either one of the three clusters.

2.3.2.2 Working:

Initially, k is chosen and k base points are taken randomly.

These are called centroids. Each centroid is a data point, or an

observation. Whole k-means works on Euclidean distance

property i.e. the distance between two observations in the

Euclidean space. Euclidean space is where the points are

plotted. Whenever a new observation is encountered, its

distance to the k number of clusters is calculated. It is

classified to be a part of the cluster whose centroid is the

closest to the new point.

After classification of every new observation, the centroid is

recomputed (Figure 6).

Let’s take an example where k=2, we have the centroids

represented by “x” mark in the following figure.

Figure 5. K-Means working - Initial stage

After re-computing the centroids,

Figure 6. K-Means working - After re-compting the centroid

The following (Figure 7) is a figure of outcome of K-means

clustering with k=3.

Figure 7. Example of K-Means having 3 centroids i.e., K=3

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 2 (2019) pp. 447-451

© Research India Publications. http://www.ripublication.com

451

This clustering is a major step as this is how we cluster the

textual data into clusters which will be labeled. Like most of

the algorithms, even K-Means works with only numerical

data. So, to convert the textual data we have into numerical

data, we calculate the tf-idf of each and every word of the data

we have after preprocessing. We generate a vector of Tf-idf

values and we feed it to the K-Means algorithm and obtain

“K” clusters.

This whole operation can be done using python its sklearn

module. Now after generating the clusters, we label them.

2.4 Labeling:

This is the last phase of our procedure. In this step, we label

the obtained clusters. A good label is the one which best

describes the data in it. So far in our approach, we tokenized

the data, we removed the stopwords, we calculated Tf-idf and

then we clustered them. Now we have different clusters

containing words. We have to choose a best descriptor of

these words. We do so by generating the synonyms of all the

words in the clusters using the Wordnet interface provided by

Python. We have to first check if the word in in WordNet. If

not we remove it from our cluster. We then generate the

hypernyms of the remaining.

2.4.1 Hypernym:

Hypernym is a word broad in meaning which encompasses

words more specific in meaning.

For example, color is a hypernym for red, blue etc.

So, we generate the hypernyms for each of the words

including their synonyms present in our cluster.

Python code:

Figure 8. Understanding hypernyms

From Figure 8, we can see that it generated “field_game” as

the hypernym for Hockey.

This hypernym generation helps as it broadens the context. It

helps broadening the meaning of the words.

After these hypernyms are generated, we calculate the

frequency the hypernyms in a particular cluster. We assign the

hypernym with highest frequency or top hypernyms (as per

requirement) as the label of the cluster.

Example:

Consider a simple cluster.

cluster=['dog','cat',’leopard’,'melon','india','rat','lion']

By finding the synonyms and hypernyms, we found that the

highest frequency hypernym we found was ‘feline’. This is

actually a good description of the above mentioned cluster as

Cat, Leopard and Lion fall under feline species.

3. CONCLUSION AND FUTURE DIRECTIONS

This process of clustering and labeling is aimed at dividing

textual data into chunks of labelled blocks of data. This is

very useful in organizing data and further helps in

understanding data quickly and efficiently. When properly

done, a quick glance will be enough to understand the brief

point of the data under consideration. However, this process is

highly dependent on the performance of the clustering

mechanism we used. If the cluster is comprising of vaguely

related words, the label assigned will invariably be vague as

well. For the future, we are aiming at developing or tweaking

the present clustering models which will help in forming

better clusters, which will lead to a concise label.

REFERENCES

[1] Rajaraman, A.; Ullman, J. D. (2011)."Data

Mining". Mining of Massive Datasets (PDF).pp. 1–
17. doi:10.1017/CBO9781139058452.002. ISBN 9781

139058452.

[2] Comprehensible and Accurate Cluster Labels in Text

Clustering Jerzy Stefanowski and Dawid Weiss

Institute of Computing Science, Poznan University of

Technology Piotrowo 2, 60–965 Poznan,

Poland{jerzy.stefanowski,dawid.weiss}@cs.put.poznan

.pl

[3] Article by Bernarnd marr

https://www.forbes.com/sites/bernardmarr/2018/05/21/

how-much-data-do-we-create-every-day-the-mind-

blowing-stats-everyone-should-read/#13c947f960ba

[4] Samuel J. Rivera, Barbara S. Minsker, Daniel B. Work,

Dan Roth. "A text mining framework for advancing

sustainability indicators", Environmental Modelling &

Software,2014.

[5] N. Yuvaraj, A. Sabari. "Twitter Sentiment

Classification Using Binary Shuffled Frog Algorithm",

Intelligent Automation & Soft Computing, 2016.

[6] Deniz Iren, Hajo A. Reijers. "Leveraging business

process improvement with natural language processing

and organizational semantic knowledge", Proceedings

of the 2017 International Conference on Software and

System Process - ICSSP 2017, 2017.

[7] Text Documents clustering using K Means Algorithm

Mrs Sanjivani Tushar Deokar Assistant professor.

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/%2313c947f960ba

