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Abstract 

In this article, the free and forced vibrations of mass-spring is 

analyzed with finite element method. The time dependency is 

considered using Gauss Quadrature method of two points. It 

helps to study the dynamic responses for the undamped and 

damped system. The results are compared with analytical 

solution. Discretization error is computed using 𝐻1, 𝐿1, and 

𝐿2 norms. And its convergence is discussed. 
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1. INTRODUCTION 

The vibrations analysis for the system is an essential field in 

computational mechanics. In this article, the mechanical 

problem is expressed as an ordinary differential equation with 

Dirichlet condition. Azadi et al. [1] analyzed the free and forced 

vibration behaviors of an off-road vehicle. They proposed an 

approach for the free vibrations with natural frequencies of 

vehicle and concluded that the forced vibration react on 

displacement and acceleration of the driver. Rahmani and 

Mirtaheri [2] searched out the effect of masonry panels on the 

vibrations response of infilled steel frame building. Wang et al. 
[3] showed the additional damping by eddy current in the 

seawater environment to be same as the air environment. 

In this type of problem sometimes it is difficult to find 

analytical solution and if the analytical solution is known, it 

may contain complicated terms. So, some study is required to 

develop the solution in easy and compact form. In order to 

reduce this type of complication, numerical technique based on 

weak formulation has been proposed using Finite Element 

Method (FEM) [4-6]. In proposed scheme solution lie in some 

infinite dimensional space like Hilbert Sobolev space so 

differential equation can be solved by using computers. There 

are many numerical methods to solve differential equation like 

Finite Difference Method, Finite Element method, Boundary 

Integral, Spectral Method etc. but all the methods have some 

limitations, for example FDM is not able to solve differential 

equation with irregular boundaries and computational solution 

is obtained only on grid points so for remaining points some 

interpolation methods are required. Spectral method requires a 

global basis set expansion of the wave function whereas FEM 

does not require such expansion [7]. In FEM there is a reduction 

in the differentiation and is a more desirable property for the 

numerical computational. Then by discretization of the domain, 

construct a finite dimensional space  hV  where h  is the 

discretization parameter with property that the basis functions 

have small supports in domain. The FEM can be used to solve 

a large number of engineering problems. Here, we are using 

Galerkin approach for free and forced vibrations of one 

dimensional second order mass-spring system. These problems 

are little difficult to formulate and solve because vibrations 

problem involves various independent constraints. To 

overcome this type of situation, we propose FEM. Because of 

resonance, vibration is a major issue and for that reason system 

fails. For that weak formulation is worked out using weighted 

residual method. However, it is difficult to implement 

boundary conditions because of shape function. Here, we have 

discussed the gauss quadrature of two points method and 

describe the analysis of mass-spring with and without damping 

condition. The error analysis is also carried out to show the 

superiority of the proposed scheme. Using MATLAB 7.0, the 

validity and efficiency is validated for the proposed scheme. 

In section 2, we discuss the mathematical modelling of free and 

forced vibrations of mass-spring. After that we proposed our 

numerical scheme based on FEM for the posed problem in 

section 3. In section 4, proposed problem is validated. 

 

2.  MATHEMATICAL MODEL 

A string is attached with mass m. If we pull the mass in 

downward direction and release it, a vertical motion of string is 

observed. The motions without external force is free motions 

gives a homogeneous differential equation. Forced motions 

obtained when external force act on the body and is the result 

of non-homogeneous differential equation. Hence, the free and 

forced vibrations of mass spring is governed by ordinary 

differential equation 

( )my cy ky f t + + =          (1)  

When equation (1) is homogeneous, it gives rise to free motion. 

Forced vibration is the result of non-homogeneous ordinary 

differential equation (1). In the proposed discussion, we will 

consider ( )f t  as a sinusoidal force, and given by ( )cosH t

, where my  denotes the force of inertia, cy  gives damping 

force, and ky is the spring force. 

For free vibration eq. (1) results to homogeneous form as 

0my cy ky + + =         (2) 

Eq. (2) has complementary function, which is dependent upon 

following cases: 
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Case-i: Overdamping 

  ( ) ( )

1 2

t t
cy c e c e   − + − −= +  

Case-ii: Critical Damping 

  1 2( ) t
cy c c t e −= +      

Case-iii: Under Damping 

 1 2( cos sin )t
cy e c t c t  −= +      

  cos( )tce t  −= −     

where 
2 2 2 2

1 2

1

, tan
c

c c c
c

= + =         

Here, we are using method of undetermined coefficient for 

finding particular integral 

( ) cos sinpy t a t b t = + ,         (3) 

where

2 2

0

2 2 2 2 2 2

0

( )

( )

m
a H

m c
 

  

−
=

− +
            (4)          

( )
2

2 2 2

cb H
k m c



 
=

− +
         (5)  

 

3. NUMERICAL SCHEME 

In this section, we discuss the finite element approximation 

which is one of the discretization method, using the Galerkin 

approach for free and forced vibrations of mass-spring. Here, 

discretization method reduces the continuous system to a 

simple discrete system. For the proposed scheme initially we 

derive a weak form of mass-spring. 

Free and Forced vibrations of mass-spring problem is of the 

form: 

( ) , 0 ;my cy ky f t t L + + =       

( ) ( )0 0.y y L= =            (6) 

The above form of the equation is referred as the strong form. 

Let 0 1 1: 0 ...h M MT x x x x L+=     =  be a partition of the 

interval ( )0, L   into the subinterval ( )1 , ,j j jI x x−=  with length 

1 , 1, 2, ..., .j j j jI h x x j M−= = − =   

Define finite dimensional space  

( )

( ) ( )
0

h

0,1 : is piecewise quadratic function
,

on T and 0 1 0
h

v C v
V

v v

  
=  

= =  

 

with the basis function  
1

.
M

j j


=
  

Since y   is known at the boundary points 0   and L , it is not 

necessary to apply basis function corresponding to 
0 0x =  and 

1Mx L+ = . The orthogonality condition of the residual

( ) ( )R Y mY cY kY f t = + + −    to the test function space  0 ;hV

i.e. ( ) 0

hR Y V⊥  is defined as follow: 

( )( ) 0

0

( ) 0, ( )

L

hmY cY kY f t v t dt v t V + + − =           (7) 

Integrating by parts gives 

( )0

( ) ( ) ( ) ( )
0, sin (0) ( ) 0

( ) ( ) ( )

L mY t v t cY t v t
dt ce v v L

kY t v t f t v t
  + 

= = = 
+ − 

  

   (8) 

Determining ( )j jY x =  the approximate value at the node jx . 

Choose 
1

( ) ( )
M

j j
j

Y t t 
=

=  implies 
1

( ) ( ).
M

j j
j

Y t t 
=

 =   

Then, Eq. (8) can be written as  

( )

0 0
1 1 10

0

( ) ( ) ( )

( ) ,

LM M ML L

j j j j j j
j j j

L

m v t dt c v t dt k v t dt

f t v t

     
= = =

  + +

=

    



               

0( ) hv t V                  (9) 

Since every 0( ) hv t V   is a linear combination of basis function 

( )j t , we can write ( ) ( ),iv t t=  for 1, 2,...,i M= .   

Matrix form of the equation is 

     A B =        (10) 

where, A  is the stiffness matrix and B  is the load vector. 

 

4. NUMERICAL VALIDATION 

Here we are taking ( )1, 3, 2 ( ) 20 cos 2m c k and f t t= = = =

for proposed differential equation. 

Below is the numerical values for the undamped system for 

nodes n=50 
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Figure 1: Undamped system for 50-nodes 

0.0000 1.0207 0.9866 0.4142 

0.1248 1.0499 0.9541 0.3655 

0.2415 1.0730 0.9187 0.3177 

0.3500 1.0902 0.8805 0.2709 

0.4505 1.1017 0.8400 0.2256 

0.5432 1.1077 0.7973 0.1820 

0.6282 1.1084 0.7528 0.1404 

0.7057 1.1041 0.7067 0.1011 

0.7757 1.0950 0.6594 0.0644 

0.8385 1.0814 0.6111 0.0306 

0.8942 1.0635 0.5621 0.000 

0.9430 1.0415 0.5128  

0.9851 1.0158 0.4634  
 

In the presence of damping constant, for 3c =  and rest of the 

parameters are the same as above 

 
Figure 2: Damped system 

-0.0000 0.8514 1.0526 0.6261 

0.0859 0.8908 1.0404 0.5722 

0.1688 0.9263 1.0246 0.5160 

0.2485 0.9578 1.0050 0.4576 

0.3249 0.9853 0.9819 0.3970 

0.3979 1.0087 0.9552 0.3346 

0.4674 1.0282 0.9251 0.2704 

0.5334 1.0436 0.8916 0.2047 

0.5958 1.0550 0.8548 0.1376 

0.6545 1.0624 0.8149 0.0693 

0.7095 1.0658 0.7719 0.0000 

0.7607 1.0653 0.7261  

0.8080 1.0608 0.6774  
 

 

Figure 3: effect of damping constant 
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Damping in vibrations is shown in figure 3 that vibrations 

decreases with increase in damping. 

 

5. ERROR ANALYSIS 

Accuracy and error estimation is a crucial stage in establishing 

the acceptability of any numerical scheme, so here we derived 

the observed error estimates for the proposed problem in
1H ,

1L  

and 
2L  norm which are given by 

2

1

0

( '( ) '( ))

L

H y x v x dx= −  

1

1

| ( ) ( ( )) |
N

i
L y i exact x i

=

= −  

and  

( )
2

2

0

( ) ( )

L

L y x exact x dx= −   

After substituting numerical data we get, errors in terms of 

1 1,H L  and 
2L  norm as 0.0061 , 0.3139  and 0.0051 , 

respectively. 

 

6. CONCLUSION 

The proposed numerical approach based on FEM provides 

better accuracy for complicated solution of ordinary differential 

equations. The numerical results obtained using FEM 

converges to the exact solution as the number of nodes are 

increased and it improves the accuracy of approximate solution, 

moreover error terms obtained in the results are significant. 

Gauss Quadrature two points method is performed for the 

numerical integration. Main purpose of this effort is to develop 

a powerful and practical scheme for numerical solution of FEM 

which ensure the better output.    
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