Some Applications of Multivalent Functions Defined by Extended Fractional Differintegral Operator

Vinod Kumar¹, Prachi Srivastava²

¹,² Faculty of Mathematical & Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki, 225003, U.P., India.

Abstract

In the present paper an extended fractional differintegral operator \(\Omega_{\alpha}^{(\lambda,p)} \), suitable for the study of multivalent functions is introduced. The various results obtained here for each of these function classes include coefficient bound, inclusion relation for \((k,\theta)\)-neighborhood of subclass of analytic and multivalent functions with negative coefficient, Hadamard products, Integral means. Further, results based on partial sums of functions belonging to the class are derived.

2000 Mathematics Subject Classification: 30A10, 30C45

Keywords and Phrases: Analytic Functions, Extended Fractional Differintegral operator, Neighborhood, partial sums Hadamard Product.

1. INTRODUCTION

Let \(S_{p} \) denotes a class of functions of the form:

\[
f(z) = z^{p} + \sum_{n=1}^{\infty} a_{n} z^{n} (p < k; p, k \in \mathbb{N} = \{1,2,\ldots\}),
\]

which are analytic and p-valent in the open unit disk \(U = \{ z : |z| < 1 \} \). A function \(f \) belong to the class \(S_{p} \) is said to be p-valent starlike of order \(\alpha \) in \(U \) if and only if

\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, (0 \leq \alpha < p; z \in U). \tag{2}
\]

Also a function \(f \) belonging to the class \(S_{p} \) is said to be p-valent convex of order \(\alpha \) in \(U \) if and only if

\[
\Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha, (0 \leq \alpha < p; z \in U). \tag{3}
\]

We denote by \(S_{p}^{*}(\alpha) \) the class of all functions in \(S_{p} \) which are p-valent starlike of order \(\alpha \) in \(U \) and by \(K_{p}(\alpha) \) the class of all functions in \(S_{p} \) which are p-valent convex of order \(\alpha \) in \(U \). We denote that

\[
S_{p}(0) = S_{p}, S_{p}^{*}(\alpha) = S^{*}(\alpha), K_{p}(0) = K_{p}, K_{p}(\alpha) = K(\alpha), \text{ and}
\]

\[
f(z) \in K_{p}(\alpha) \iff \frac{zf'(z)}{p} \in S_{p}^{*}(\alpha). \tag{4}
\]

The classes \(S_{p}^{*}(\alpha) \) and \(K_{p}(\alpha) \) were studied by Patil and Thakare [24], Aouf [1] and Owa [20] for \(f \in S_{p} \) given by (1) and \(g \in S_{p} \) given by

\[
g(z) = z^{p} + \sum_{n=k}^{\infty} b_{n} z^{n}, (b_{n} \geq 0). \tag{5}
\]

The Hadamard product (or convolution) of \(f \) and \(g \) is given by

\[
(f * g)(z) = z^{p} + \sum_{n=k}^{\infty} a_{n} b_{n} z^{n} = (g * f)(z). \tag{6}
\]

If \(f(z) \) and \(g(z) \) are analytic in \(U \), we say that \(f(z) \) is subordinate to \(g(z) \), written symbolically as

\[
f \prec g \quad \text{in} \quad U \quad \text{or} \quad f(z) \prec g(z) \quad (z \in U),
\]

If there exists a Schwarz function \(w(z) \), which (by definition) is analytic in \(U \) with \(w(0) = 0 \) and \(\overline{\text{w}(w(z))} \) in \(U \) such that \(f(z) = g(w(z)), z \in U \), it is known that

\[
f(z) \prec g(z) \quad (z \in U) \quad \Rightarrow \quad f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).
\]

In particular, if the function \(g(z) \) is univalent in \(U \), then we have the following equivalence (see [17], [18])

\[
f(z) \prec g(z) \quad (z \in U) \quad \Leftrightarrow \quad f(0) = g(0) \quad \text{and} \quad f(U) \subset g(U).
\]

Furthermore, \(f(z) \) is said to be subordinate to \(g(z) \) in the disk if the Schwaz lemma that if \(f(z) \prec g(z) \) in \(U \), then \(f \prec g \) in \(U \), for every \(r(0 < r < 1) \).

Recently, Patel & .Mishra [23] (see also Aouf et al. [4], Liu [14], Liu and Patel [15], Sharma et al. [33], Srivastava et al. [30], Supramaniam et al. [34], Zhi-Gang Wang and Lei Shi [35]) introduced and investigated an extended fractional differintegral operator \(\Omega_{\alpha}^{(\lambda,p)} f(z) : S_{p} \rightarrow S_{p}^{*} \) for a function
(2) for a real number \(\lambda (-\infty < \lambda < p+1)\) by
\[
\Omega_z^{(\lambda,p)} f(z) = z^p + \sum_{n=0}^{\infty} \frac{\Gamma(n+p+1)\Gamma(p+1-\lambda)}{\Gamma(p+1)\Gamma(n+p+1-\lambda)} a_nz^n
\]
where \(a_n = C_{n,p} a_n\) and \(C_{n,p} = \frac{\Gamma(n+p+1)\Gamma(p+1-\lambda)}{\Gamma(p+1)\Gamma(n+p+1-\lambda)}\).

We also note that
\[
\Omega_z^{(0,p)} f(z) = f(z), \quad \Omega_z^{(1,p)} f(z) = \frac{zf'(z)}{p}
\]
and in general
\[
\Omega_z^{(k,p)} f(z) = \frac{\Gamma(p+1-k)}{\Gamma(p+1)} z^k D_z^k f(z)
\]
for \(k \in N, k < p+1\).

Where \(D_z^k f(z)\) is, respectively, the fractional integral of order \(-\lambda\) when \(-\infty < \lambda < 0\) and the fractional derivative of \(f(z)\) of order \(\lambda\) when \(0 \leq \lambda < p+1\).

Further, we define the class \(TS_p^{(\beta,\gamma,\xi)} (\lambda, l, \gamma, \beta, \xi)\) by
\[
TS_p^{(\beta,\gamma,\xi)} (\lambda, l, \gamma, \beta, \xi) = S_p^{(\beta,\gamma,\xi)} (\lambda, l, \gamma, \beta, \xi) \cap T_p
\]

We note that:
For \(\lambda = 0\), in (11), the class \(TS_p^{(\beta,\gamma,\xi)} (\lambda, l, \gamma, \beta, \xi)\) reduces to the class \(T_p^{(\beta,\gamma,\xi)} (\lambda, l, \gamma, \beta, \xi)\), which for \(p = 1\) reduces to \(T(\gamma, \beta, \xi)\) studies by Kulkarni [9].

In this paper, we aim at proving coefficient inequality, neighborhood, partial sums, integral means, and modified Hadamard product involving the extended fractional differintegral operator \(\Omega_z^{(\lambda,p)}\).

2. COEFFICIENT INEQUALITY

Unless otherwise mentioned, we shall assume in the remainder of this paper that
\[0 < \beta \leq 1, \frac{1}{2} \leq \xi \leq 1, 0 \leq \gamma < \frac{p}{2}, n \geq k, p < k,\] and \(C_{n,p}^{\lambda}\) is given by (8) with \(-\infty < \lambda < p+1\) and \(z \in U\).
Theorem 2.1 Let the function f be defined by (12). Then f is in the class $TS_p^\lambda(\beta, \gamma, \xi)$ if and only if
\[
\sum_{n=k}^\infty (n-p)(1-\beta) + 2\xi\beta(n-\gamma)C_{n,p}^\lambda a_n \leq 2\beta\xi(p-\gamma).
\] (13)

Proof. Assume that inequality (13) holds true. We find from (12) that
\[
2^\xi \left[z\left(\Omega_z^{(\lambda,p)} f(z)\right) \right] - p \left(\Omega_z^{(\lambda,p)} f(z)\right) - \beta \left[2^\xi \left[z\left(\Omega_z^{(\lambda,p)} f(z)\right) \right] - \gamma \left(\Omega_z^{(\lambda,p)} f(z)\right) \right] - \left\{ z\left[\left(\Omega_z^{(\lambda,p)} f(z)\right) \right] - p \left(\Omega_z^{(\lambda,p)} f(z)\right) \right\}
\]
\[
= \sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n - \beta \left[\sum_{n=k}^\infty (n-\gamma)C_{n,p}^\lambda a_n z^n \right] + \sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n
\]
\[
\leq \sum_{n=k}^\infty \left[(n-p) + 2^\xi \beta(n-\gamma) - \beta(n-p) \right]C_{n,p}^\lambda a_n - 2\beta\xi(p-\gamma)
\]
\[
= \sum_{n=k}^\infty (n-p)(1-\beta) + 2^\xi\beta(n-\gamma)\left(C_{n,p}^\lambda a_n - 2\beta\xi(p-\gamma)\right) \leq 0.
\]

Hence by the maximum modulus theorem, we have $f \in TS_p^\lambda(\beta, \gamma, \xi)$ conversely, let $f \in TS_p^\lambda(\beta, \gamma, \xi)$. Then
\[
\left| \frac{z\left(\Omega_z^{(\lambda,p)} f(z)\right)}{\Omega_z^{(\lambda,p)} f(z)} - p \right| < \beta
\]
\[
2^\xi \left| z\left(\Omega_z^{(\lambda,p)} f(z)\right) - \gamma \left(\Omega_z^{(\lambda,p)} f(z)\right) \right| - \left| z\left(\Omega_z^{(\lambda,p)} f(z)\right) - p \left(\Omega_z^{(\lambda,p)} f(z)\right) \right|< \beta
\]
that is,
\[
\sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n < \beta
\]
\[
2^\xi \left[(p-\gamma)z^n - \sum_{n=k}^\infty (n-\gamma)C_{n,p}^\lambda a_n z^n \right] + \sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n
\]
Now $\Re\{f(z)\} \leq |f(z)|$ for all z, we have
\[
\Re\left\{ \frac{\sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n}{2^\xi \left[(p-\gamma)z^n - \sum_{n=k}^\infty (n-\gamma)C_{n,p}^\lambda a_n z^n \right] + \sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n} \right\} < \beta
\] (15)

Choose value of z on the real axis so that $\frac{z\left(\Omega_z^{(\lambda,p)} f(z)\right)}{\Omega_z^{(\lambda,p)} f(z)}$ is real. Then upon clearing the denominator in (15) and letting $z \to 1$ through real values, we have
\[
\sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n z^n \leq \beta
\]
\[
2^\xi \left[(p-\gamma) - \sum_{n=k}^\infty (n-\gamma)C_{n,p}^\lambda a_n \right] + \sum_{n=k}^\infty (n-p)C_{n,p}^\lambda a_n
\]
That is
\[
\sum_{n=k}^{\infty} \left((n-p)(1-\beta)+2\xi\beta(n-\gamma) \right) C_{n,p}^k a_n \leq 2\beta \xi (p-\gamma)
\]
This is the required condition, which completes the proof of theorem 2.1.

Corollary 2.2 Let the function \(f \) be defined by (12). Then \(f \) is in the class \(TS^\lambda_p(\beta,\gamma,\xi) \) if and only if

\[
\sum_{n=k}^{\infty} \Psi_{(p,n)}^\lambda (\beta,\gamma,\xi) a_n \leq 1.
\]

(16)

Where, \(\Psi_{(p,n)}^\lambda (\beta,\gamma,\xi) = \frac{[(n-p)(1-\beta)+2\xi\beta(n-\gamma)]C_{n,p}^k}{2\beta \xi (p-\gamma)} \).

(17)

0 < \beta \leq 1, \frac{1}{2} \leq \xi \leq 1, 0 \leq \gamma < \frac{p}{2}, n \geq k, p < k, -\infty < \lambda < p + 1.

Corollary 2.3 Let the function \(f \) defined by (12) is in the class \(TS^\lambda_p(\beta,\gamma,\xi) \) then we have

\[
a_n \leq \frac{2\xi\beta(p-\gamma)}{[(n-p)(1-\beta)+2\xi\beta(n-\gamma)]C_{n,p}^k}, (n \geq k)
\]

(18)

The result is sharp for the function \(f \) given by

\[
f(z) = z^p - \frac{2\xi\beta(p-\gamma)}{[(n-p)(1-\beta)+2\xi\beta(n-\gamma)]C_{n,p}^k} z^n, n \geq k.
\]

(19)

3. NEIGHBORHOOD FOR THE CLASS \(TS^\lambda_p(\beta,\gamma,\xi) \)

Next, following the earlier investigations by Goodman [8], Rucheweyh [26], and others including Srivastava et al. [29], Orhan (121 and [20]), Altinas et al. [2] (see also [11], [16], [31], [3]), we define the \((k, \delta)\)-neighborhood of functions in the family \(TS^\lambda_p(\beta,\gamma,\xi) \).

Definition 3.1 For \(f \in T_p \) of the form (12) and \(\delta \geq 0 \) we define a \((k, \delta)\)-neighborhood of a function \(f(z) \) by

\[
N_{k,\delta}(f) = \left\{ g : g \in T_p, g(z) = z^p - \sum_{n=k}^{\infty} c_n z^n \& \sum_{n=k}^{\infty} n |a_n - c_n| \leq \delta \right\}.
\]

In particular, for the function, \(h(z) = z^p \)

We immediately have

\[
N_{k,\delta}(h) = \left\{ g : g \in T_p, g(z) = z^p - \sum_{n=k}^{\infty} c_n z^n \& \sum_{n=k}^{\infty} n |c_n| \leq \delta \right\}.
\]

Theorem 3.2 The class \(TS^\lambda_p(\beta,\gamma,\xi) \subset N_{k,\delta}(h) \) where \(\delta = \frac{(k+1-2p)}{\Psi_{(k,p)}^\lambda (\beta,\gamma,\xi)} \).

Proof For the function \(f(z) \in TS^\lambda_p(\beta,\gamma,\xi) \) of the form (12), corollary 1 immediately yields

\[
[(k-p)(1-\beta)+2\xi\beta(k-\gamma)]C_{k,p}^\lambda \sum_{n=k}^{\infty} a_n \leq 2\beta \xi (p-\gamma).
\]
\[
\sum_{n=k}^{\infty} a_n \leq \frac{2 \beta \xi (p - \gamma)}{(k - p)(1 - \beta) + 2 \xi \beta (k - \gamma)} C_{k,p}^\lambda \Psi_{(k,p)}^\lambda (\beta, \gamma, \xi)
\]

(20)

On the other hand, we also find from (16) and (20) that

\[
C_{k,p}^\lambda \sum_{n=k}^{\infty} a_n \leq 2 \beta \xi (p - \gamma) + [(1 - p)(1 - \beta) - 2 \xi \beta (k - \gamma)] C_{k,p}^\lambda \sum_{n=k}^{\infty} a_n
\]

\[
\leq 2 \beta \xi (p - \gamma) + [(1 - p)(1 - \beta) - 2 \xi \beta (k - \gamma)] \frac{2 \beta \xi (p - \gamma)}{(k - p)(1 - \beta) + 2 \xi \beta (k - \gamma)} C_{k,p}^\lambda
\]

\[
\leq \frac{2 \beta \xi (p - \gamma)(k + 1 - 2p)}{(k - p)(1 - \beta) + 2 \xi \beta (k - \gamma)} C_{k,p}^\lambda = \frac{(k + 1 - 2p)}{\Psi_{(k,p)}^\lambda (\beta, \gamma, \xi)} = \delta,
\]

Which in view of definition 3.1, proves Theorem 3.

4. PARTIAL SUMS

Following the earlier works by Silverman [27], N.C. Cho et al. [5] and others (see also [25], [13]), in this section we investigate the ratio of real parts of functions involving (12) and their sequence of partial sums defined by

\[
f_1(z) = z^p; \quad f_n(z) = z^p - \sum_{n=k}^{\infty} a_n z^n, r \in N
\]

(21)

And determine sharp lower bounds for

\[
\Re \left\{ \frac{f(z)}{f_n(z)} \right\}, \Re \left\{ \frac{f_n(z)}{f(z)} \right\}, \Re \left\{ \frac{f'(z)}{f_n'(z)} \right\}, \Re \left\{ \frac{f'(z)}{f(z)} \right\}.
\]

Theorem 4.1 If \(f \) of the form (12) satisfies condition (13), then

\[
\Re \left\{ \frac{f(z)}{f_n(z)} \right\} \geq \frac{\Psi_{(p,k+r)}^\lambda (\beta, \gamma, \xi) - 1}{\Psi_{(p,k+r)}^\lambda (\beta, \gamma, \xi)}
\]

(22)

and

\[
\Re \left\{ \frac{f_n(z)}{f(z)} \right\} \geq \frac{\Psi_{(p,k+r)}^\lambda (\beta, \gamma, \xi)}{\Psi_{(p,k+r)}^\lambda (\beta, \gamma, \xi) + 1}
\]

(23)

Where \(\Psi_{(p,n)}^\lambda (\beta, \gamma, \xi) \) is given by (17).

Proof. In order to prove (22), it is sufficient to show that

\[
\Psi_{(p,k+r)}^\lambda (\beta, \gamma, \xi) \left| \frac{f(z)}{f_n(z)} \right| \leq \frac{1 + z}{1 - z} (z \in U).
\]
We can write

\[\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \left[\frac{f(z)}{f_n(z)} - \left(\frac{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) - 1}{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi)} \right) \right] \]

\[= \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \left[\frac{1 - \sum_{n=k}^{\infty} a_n z^{-p}}{1 - \sum_{n=k+r}^{\infty} a_n z^{-p}} - \left(\frac{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) - 1}{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi)} \right) \right] \]

\[= \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \left[\frac{1 - \sum_{n=k}^{\infty} a_n z^{-p} - \sum_{n=k+r}^{\infty} a_n z^{-p}}{1 - \sum_{n=k+r}^{\infty} a_n z^{-p}} - \left(\frac{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) - 1}{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi)} \right) \right] \]

\[= \frac{1 + w(z)}{1 - w(z)}. \]

Then

\[w(z) = \frac{-\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n z^{-p}}{2 - 2 \sum_{n=k}^{\infty} a_n - \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n} \]

Obviously \(w(0) = 0 \) and

\[|w(z)| \leq \frac{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n}{2 - 2 \sum_{n=k}^{\infty} a_n - \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n} \]

Now, \(|w(z)| \leq 1\) if and only if

\[2\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n \leq 2 - 2 \sum_{n=k}^{\infty} a_n, \]

which is equivalent to

\[\sum_{n=k}^{\infty} a_n - \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \sum_{n=k+r}^{\infty} a_n \leq 1. \]

In view of (13), this is equivalent to showing that

\[\sum_{n=k}^{\infty} \left[\Psi^\lambda_{(p,n)}(\beta, \gamma, \xi) - 1 \right] a_n + \sum_{n=k+r}^{\infty} \left[\Psi^\lambda_{(p,n)}(\beta, \gamma, \xi) - \Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) \right] a_n \geq 0. \]

Thus we have completed the proof of (22), the proof of (23) is similar to (22) and will be omitted.

Theorem 4.2 If \(f(z) \) of the form (12) satisfies (13), then

\[\Re \left[\frac{f(z)}{f_n(z)} \right] \geq \frac{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi) - k - 1}{\Psi^\lambda_{(p,k+r)}(\beta, \gamma, \xi)} \]

and
\[\mathcal{R} \left\{ f_n(z) \right\} \geq \frac{\Psi^{k}_{(p,k+r)}(\beta, \gamma, \xi)}{\Psi^{k}_{(p,k+r)}(\beta, \gamma, \xi) + k + 1} \]

(25)

Where \(\Psi^{k}_{(p,k+r)}(\beta, \gamma, \xi) \) is given by (17).

5. INTEGRAL MEANS

The following subordination result due to Littewood [12] will be required in our investigation. The integral means of analytic functions was studied in [25], [19].

Lemma 5.1 if \(f(z) \) and \(g(z) \) are analytic in \(U \) with, \(f(z) \prec g(z) \), then

\[\int_{0}^{2\pi} |f(re^{i\theta})|^\mu \ d\theta \leq \sum_{k=0}^{2\pi} |g(re^{i\theta})|^\mu \ d\theta, \]

where \(\mu > 0, z = re^{i\theta} \) & \(0 < r < 1 \).

Application of Lemma 5.1 to function \(f(z) \) in the class \(TS^A_p(\beta, \gamma, \xi) \) gives the following result using known procedures.

Theorem 5.2 Let \(f(z) \in TS^A_p(\beta, \gamma, \xi) \) and \(f_2(z) = z^n - \frac{1}{\Psi^{A}_{(p,n)}(\beta, \gamma, \xi)} z^n \) where \(\Psi^{A}_{(p,n)}(\beta, \gamma, \xi) \) is given by (17), if \(f(z) \) satisfies

\[\sum_{n=k}^{\infty} |a_n| \leq \left| \frac{1}{\Psi^{A}_{(n,p)}(\beta, \gamma, \xi)} \right| \]

(26)

Then for \(\mu > 0 \) and \(z = re^{i\theta}, (0 < r < 1) \),

\[\int_{0}^{2\pi} |f(z)|^\mu \ d\theta \leq \int_{0}^{2\pi} |f_2(z)|^\mu \ d\theta. \]

(27)

Proof. By putting \(z = re^{i\theta}, (0 < r < 1) \), we see that

\[\int_{0}^{2\pi} |f(z)|^\mu \ d\theta = r^{\mu p} \int_{0}^{2\pi} \left| 1 - \sum_{n=k}^{\infty} a_n z^{-n-p} \right|^\mu \ d\theta. \]

And

\[\int_{0}^{2\pi} |f_2(z)|^\mu \ d\theta = r^{\mu p} \int_{0}^{2\pi} \left| 1 - \frac{1}{\Psi^{A}_{(n,p)}(\beta, \gamma, \xi)} z^{-n-p} \right|^\mu \ d\theta. \]

Applying lemma (5.1), we have to show that

\[1 - \sum_{n=k}^{\infty} a_n z^{-n-p} < 1 - \frac{1}{\Psi^{A}_{(n,p)}(\beta, \gamma, \xi)} z^{-n-p}, \]

Let us define the function \(w(z) \) by

\[1 - \sum_{n=k}^{\infty} a_n z^{-n-p} = 1 - \frac{1}{\Psi^{A}_{(n,p)}(\beta, \gamma, \xi)} (w(z))^{-n-p} \]

(28)
or by

$$\frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)}(w(z))^{\alpha-\beta} = \sum_{n=k}^{\infty} a_n z^{\alpha-\beta}$$

(29)

Since, for $z = 0$, $\frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)}(w(0))^{\alpha-\beta} = 0$,

there exists an analytic function $w(z)$ in U such that $w(0) = 0$.

Next, we prove the analytic function $w(z)$ satisfies $|w(z)| < 1$ ($z \in U$) for

$$\sum_{n=k}^{\infty} |a_n| \leq \left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)} \right|$$

By the equality (27), we know that

$$\left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)}(w(z))^{\alpha-\beta} \right| \leq \sum_{n=k}^{\infty} a_n z^{\alpha-\beta} < \sum_{n=k}^{\infty} |a_n|,$$

For $z \in U$, hence,

$$\left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)}(w(z))^{\alpha-\beta} - \sum_{n=k}^{\infty} a_n \right| < 0.$$

(30)

Letting $t = |w(z)|$ ($t \geq 0$) in (30), we define the function $G(t)$ by

$$G(t) = \left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)}(t)^{\alpha-\beta} - \sum_{n=k}^{\infty} a_n \right| \quad (t \geq 0).$$

If $G(1) \geq 0$, then we have $t < 1$ for $G(t) < 0$. Therefore, for $|w(z)| < 1$ ($z \in U$), we need

$$G(1) = \left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)} - \sum_{n=k}^{\infty} a_n \right| \geq 0,$$

that is,

$$\sum_{n=k}^{\infty} |a_n| \leq \left| \frac{1}{\psi_{(n,p)}(\beta,\gamma,\xi)} \right|.$$

Consequently, if the inequality (26) holds true, there exists an analytic function $w(z)$ with $w(0) = 0$, $|w(z)| < 1$ ($z \in U$), such that $f(z) = f_2(w(z))$. This completes the proof of Theorem (5).

6. MODIFIED HADAMARD PRODUCT

For the functions $f_j(z) = z^p - \sum_{n=k}^{\infty} a_{n,j} z^n$ ($a_{n,j} \geq 0; j = 1, 2; p, k \in N$),

$$f_1 * f_2 = f_2(w(z))$$

(31)

We denote by (f_1, f_2) the modified Hadamard product of functions f_1 and f_2, that is,
\[(f_1 * f_2)(z) = z^p - \sum_{n=k}^{\infty} a_{n,1} a_{n,2} z^n.\]
(32)

Theorem 6.1 Let the functions \(f_j (j = 1, 2)\), defined by (31) be in the class \(TS^\lambda_p (\beta, \gamma, \xi)\) then \((f_1 * f_2) \in TS^\lambda_p (\beta, \mu, \xi)\) where

\[
\mu = p - \frac{2\beta \xi (p-\gamma)^2 (k-p) [(1-\beta) + 2\beta \xi]}{[(k-p)(1-\beta) + 2\beta \xi (k-\gamma)]^2 C_{n,p}^{\lambda} - 4\beta^2 \xi^2 (p-\gamma)^2}
\]
(33)

The result is sharp.

Theorem 6.2 Let the function \(f_j (j = 1, 2)\) defined by (31), \(f_1 \in TS^\lambda_{n,p} (\beta, \mu_1, \xi)\) and \(f_2 \in TS^\lambda_{n,p} (\beta, \mu_2, \xi)\).

Then \((f_1 * f_2) \in TS^\lambda_{n,p} (\beta, \mu, \xi)\), where

\[
\mu = p - \frac{2\xi \beta (p-\mu_1)(p-\mu_2)(k-p) [(1-\beta) + 2\beta \xi]}{A_1(\mu_1, p, \beta, \xi, k) A_2(\mu_2, p, \beta, \xi, k) C_{n,p}^{\lambda} - 4\xi^2 \beta^2 (p-\mu_1)(p-\mu_2)}
\]
(34)

And

\[
A_1(\mu_1, p, \beta, \xi, k) = [(k-p)(1-\beta) + 2\beta \xi (k-\mu_1)]
\]
(35)

\[
A_2(\mu_2, p, \beta, \xi, k) = [(k-p)(1-\beta) + 2\beta \xi (k-\mu_2)]
\]
(36)

Theorem 6.3 Let the functions \(f_j (j = 1, 2)\) defined by (31) are in the class \(TS^\lambda_p (\beta, \gamma, \xi)\). Then the function

\[h(z) = z^p - \sum_{n=k}^{n} (a_{n,1}^2 + a_{n,2}^2) z^n\]
(37)

Belongs to the class \(TS^\lambda_p (\beta, \tau, \xi)\), where

\[
\tau = p - \frac{4\beta \xi (p-\gamma)^2 (n-p) [(1-\beta) + 2\beta \xi]}{[(n-p)(1-\beta) + 2\beta \xi (n-\gamma)]^2 C_{n,p}^{\lambda} - 8\beta^2 \xi^2 (p-\gamma)^2}
\]
(38)

The result is sharp for the functions \(f_j (j = 1, 2)\) defined by (31).

Conflict of Interest

The authors confirm that there is no conflict of interest to declare for this publication.

REFERENCES

