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Abstract 

This paper presents an ensemble decision trees-based 

approach for fault detection and isolation in a chemical 

process. This is one of the well-known machine learning 

techniques, which is also known as random forest (RF) 

classifier. RF has some advantages over other classification 

techniques like It can deal with substantial number of 

variables effectively without over-fitting, It is quick and 

simple to execute, provides good results even with large 

number of classes, parameter tuning is not a problem and 

identification of the important variables in classification. By 

considering every one of these characteristics of RF was 

tested on benchmark Tennessee Eastman (TE) process. 

Results conclude that it can be proved one of the potential 

tools for fault detection and isolation in industrial systems.  

Keywords: Fault diagnosis; Tennessee Eastman Process; 

Random forest;  

 

INTRODUCTION 

Although catastrophes and disasters may be irregular in 

chemical plants, but minor accidents are very common causes 

personal injury, illness, and material loses. Minor accidents 

are generally occurred due to faulty operating conditions. 

Fault is defined as a departure of an observed variable or a 

calculated parameter from an acceptable range. This departure 

may be occurred due to several reasons like sensor 

malfunctioning, control failure, valve choking etc. A good 

fault detection and diagnosis (FDD) system should be able to 

arrest these departures precisely and activate the necessary 

control actions. FDD works in four steps i.e., fault detection, 

isolation, estimation and reconstruction. Fault detection means 

to identify that something is going wrong with the process. 

Fault isolation detects the location of fault. Fault estimation 

will determine the fault magnitude and overall impact on the 

system. Finally, fault reconstruction takes the control action to 

bring the system back to the normal behavior. In this work, 

fault detection and isolation (FDI) were focused. Numerous 

methods have been proposed in last three decades to deal with 

FDI related problems in industrial systems. These methods 

can be divided into three categories: Quantitative model-based 

methods, qualitative model-based methods, and process 

history-based methods. A quantitative model-based method 

uses mathematical models (based on first principles) of 

physical system, whereas qualitative model-based method 

uses available information and knowledge of a physical 

system, process history-based methods require neither first 

principles-based modeling approach nor qualitative 

knowledge; instead, they need a large amount of historical 

data that contain the typical trends and fault information 

enabling the development of effective FDI system. In general, 

chemical processes are complex and non-linear in nature, so, 

it is hard to develop mathematical models or extract exact 

information and knowledge of such type of systems to build 

an effective FDI system. For these systems, researcher 

resorted to historical data-based methods, which proved to be 

more helpful than any other techniques. But these methods 

demand lot of historical data in faulty and normal operating 

conditions.  These days, plants are vigorously instrumented, 

so historical data is easily accessible. All the machine learning 

techniques, for example artificial neural networks (ANN), 

support vector machines (SVM), RF etc, belong to the class of 

historical data-based methods. Indeed a considerable amount 

of work has been done in the past to create effective FDI 

system utilizing such methods. SVM and ANN have been 

assessed extensively by the FDD community e.g., [4-16]. 

However each technique has its own advantages and 

disadvantages.  

This paper focuses on the application and evaluation of RF 

classifier for FDI in TE process. Though random forest 

classifier has been used for FDI for other systems like [17-21], 

even in [18], researcher used RF on TE process but they just 

considered only two faults and mainly focused on to utilize 

RF variable importance measures to understand system 

dynamics, whereas in our study we considered 15 faults and 

focused on all the properties of RF like from the literature it is 

evident that RF has some advantages over other classification 

techniques like It can deal with substantial number of 

variables effectively without over-fitting, It is quick and 

simple to execute, provides good results even with large 

number of classes, parameter tuning is not a problem, 

identification of the important variables in classification and 

produces an internal unbiased estimate of the generalization 

error during the forest building process. By considering every 

one of these characteristics of RF, it was tested on TE process. 

 

RANDOM FOREST  

RF classifier is actually an ensemble of decision trees, which 

was suggested by Breiman [22-24]. The rationale behind 

using an ensemble of decision trees is that a set of classifiers 
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do perform better classifications than an individual classifier 

does. Each tree in the ensemble is grown at the behest of a 

randomly generated subset of observations and variables from 

the training data and the final predictions are made by 

utilizing some combining strategy (e.g., averaging in case of 

regression and majority of votes in classification) over the 

ensemble. Since each of these trees is grown using an 

injection of randomness, these procedures are called random 

forests. RF increases the diversity of the trees by making them 

grow from different training data subsets created through 

bagging or bootstrap aggregating. When we use a single 

decision tree for the classification, it faces the problem of 

pruning and over-fitting, whereas RF does not face the 

problem of over-fitting and trees are grown to full extent. 

Decision tree is grown by using a set of binary rules i.e., 
recursive binary splitting to calculate a target value. But 

unlike of decision tree, in RF at each node, a given number 

(denoted by 𝑚) of input variables are randomly chosen and 

the best split is calculated only within this subset. To find out 

the best split at each node, one of the two criteria i.e., Gini 

index or Cross-entropy is used [25]. The Gini index was used 

as a best split criterion in this study. Class prediction for a 

given instance will be based on combined result of all the 

trees involved in the prediction model. In case of 

classification, class with majority of votes will be a winner.  

According to Breiman [24], each tree in the ensemble is 

grown as follows: [e.g., Fig.1] –   

 

 

Figure 1. Decision tree building process in RF for classification [21] 

 

 

 

 

From the data set, a bootstrap sample is drawn by random 

sampling with replacement. Each subset selected using 

bagging to make each individual ith tree grow usually contains 

2/3 of the dataset and 1/3 samples are kept aside which are 
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known as out-of-bag (OBB) samples. Note that a different 

OOB subset is formed for every ith-tree. These OOB elements, 

which are not considered for the training of the ith -tree, can be 

classified by the ith-tree to evaluate performance. Furthermore, 

when the RF makes a tree grow, it uses the best split of a 

random subset of input features or predictive variables in the 

division of every node. Therefore, this can decrease the 

strength of every single tree, but it reduces the correlation 

between the trees, which reduces the generalization error [24]. 

Here 𝑚 is essentially the only one parameter needed to be 

adjusted in the algorithm. If there are a total of 𝑀 input 

variables, 𝑚 (𝑚 << 𝑀) variables out of 𝑀 are randomly 

selected at each node and the best split on these 𝑚 is 

employed to split the node. The value of 𝑚 is held constant 

during the forest building process. The tree is grown to the 

maximum size (i.e., until no further splits are possible) and 

not pruned back. Repeat the above steps until ntree (a 

sufficiently large number) such trees are grown. In other 

words, each tree is grown using a particular bootstrap sample, 

so ntree bootstrap samples will be drawn from the training 

data set. For estimating the importance of each input variable 

in prediction, firstly, the error 𝑒 is calculated for OOB data, 

using the original training data set. Then for each input 

variable, 𝑥𝑝, where 𝑝 Є {1, … . . , 𝑘}, the  𝑝𝑡ℎ variable is 

randomly permuted to generate a new set of samples. The 

OOB estimate of error 𝑒𝑝 with the new set of samples is 

computed and the difference of these two errors (𝑒-𝑒𝑝) will be 

a measure of the 𝑝𝑡ℎ variable importance.  

TE BENCHMARK PROCESS 

This section gives a brief introduction of industrial benchmark 

TE process. This process was developed by Downs and Fogel 

[26] for the purpose of process monitoring, process control 

and FDD studies. This is widely accepted as a benchmark for 

control and FDD studies. RF method was tested on this 

process to demonstrate its characteristics. Fig.2 illustrates the 

process flow diagram of this process. This process has five 

major units, i.e. reactor, condenser, compressor, separator and 

stripper. Four reactants and two products are there in the 

process. Additionally, an inert and a by-product are also 

present making a total of 8 components. This process 

measures total 53 variables (41 are process variables and 12 

are manipulated variables) (see [27] for variables description). 

This simulator has the facility to generate data for 21 faults 

(see Table 1 for type of faults). Several simulation schemes 

were developed over the years; we followed Ricker [28]. We 

have considered only initial 15 known faults in our analysis. 

Data-set and code are available on 

http://depts.washington.edu/control/LARRY/TE/download.ht

ml.Total 4500 samples were generated, out of which 3375 

were used for training and 1125 for testing. Simulator was run 

for 51 hours and sampling time was 10 minutes (300 samples 

for each class/fault), because the disturbance was introduced 

after 1 hour and lasts for remaining 50 hours. 

 

 

 

Figure 2. The Tennessee Eastman process 
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Table 1. Descriptions of process faults in TE process 

Fault No. Process variable Type 

IDV(1) A/C feed ratio, B composition 

constant 

step 

IDV(2) B composition, A/C feed ratio 

constant 

step 

IDV(3) D feed temperature step 

IDV(4) Reactor cooling water inlet 

temperature 

step 

IDV(5) Condenser cooling water inlet 

temperature 

step 

IDV(6) A feed loss step 

IDV(7) C header pressure loss-reduced 

availability 

step 

IDV(8) A, B, and C feed composition Random 

variation 

IDV(9) D feed temperature Random 

variation 

IDV(10) C feed temperature Random 

variation 

IDV(11) Reactor cooling water inlet 

temperature 

Random 

variation 

IDV(12) Condenser cooling water inlet 

temperature 

Random 

variation 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16) Unknown Unknown 

IDV(17) Unknown Unknown 

IDV(18) Unknown Unknown 

IDV(19) Unknown Unknown 

IDV(20) Unknown Unknown 

IDV(21) The valve fixed at steady state 

position 

Constant 

position 

 

RESULTS AND DISCUSSION 

Effect of the number of trees and predictive variables (𝒎) 

on the classifier’s accuracy 

MATLAB ® (The MathWorks, Inc., Natick, MA, USA) 

software was used for result generation. Initially, 1000 trees 

were trained with 3375 training samples for different values 

of  𝑚. Total 53 variables are there in the process, though, the 

default value of 𝑚 is approximately 7, however the range of 

𝑚 was taken from 4-18 with the increment of 2. Fig.3 

illustrates OOB error at different values of 𝑚. 

 

Figure 3. OOB error at different values of m 

 

The ensemble of 1000 trees provided OOB error less than 

20% at each value of m (except at 𝑚 = 4 ). After 100 trees the 

change in OOB error was insignificant, however adding more 

trees in the forest, does not create a problem, because over-

fitting is not a problem in RF, but training time will increase. 

So, it was decided to fix the number of trees at 250 (because 

we can take any number of trees above 100, after 100 trees 

there is not any significant variation in OOB error). Fig.4 

illustrates the overall classification accuracy of ensemble of 

250 trees on 1125 testing samples at different values of 𝑚. 

Maximum classification accuracy was achieved at 𝑚 = 12. 

 

 

Figure 4. Overall classification accuracy with variation in m 

So, the value of 𝑚 was fixed at 12.  

 

Effect of the number of classes on the classifier’s accuracy 

After obtaining the best values of number of trees and 𝑚, 

number of classes were varied and observed the effect on the 

classification accuracy of the ensemble. Number of samples 

were the same i.e., 3375 while increasing gradually the 
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number of considered classes. The results obtained are shown 

in Fig.5. 

Fig.5 illustrates the variation in classification accuracy with 

increasing number of classes. Generally, the tendency is that 

with increasing number of classes the classification accuracy 

should continuously be decreasing, but classification accuracy 

reaches to a maximum with seven classes in Fig.5. This 

abnormal behavior can be more clearly observed taking into 

account Fig.6, which illustrates classification accuracy 

achieved for each fault/class. The ensemble classifies faults 

2,4,5,6 and 7 with very good accuracy, which improves the 

overall classification accuracy. But, with 9 classes, the overall 

accuracy suddenly drops, because fault 3 & 9 were very badly 

identified, infect classifier has confusion between these two 

faults, which is very much clear from Table 2 also. Table 2 

shows the classification accuracy for individual class. Each 

class was tested for 75 samples. Third and ninth row of the 

Table 2 clearly indicates that 32 samples of fault 3 were 

misclassified as fault 9, whereas 44 samples of fault 9 were 

misclassified as fault 3. If there was not an overlapping 

between class 3 and 9, the ensemble would provide 

classification accuracy of more than 82.5%.  

 

 

 
 

Figure 5. Classification accuracy with increase  

in number of classes. 

Figure 6. Classification accuracy for individual classes 

 

Table 2. Confusion matrix 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 % Accuracy 

F1 56 2 0 0 0 0 1 12 0 2 0 0 0 1 1 74.67 

F2 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 100 

F3 0 0 35 0  0 0 0 32 1 0 0 4 0 3 45.33 

F4 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 100 

F5 0 0 0 0 73 0 0 0 0 0 0 2 0 0 0 97.33 

F6 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 100 

F7 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 100 

F8 9 0 0 0 0 0 0 66 0 0 0 0 0 0 0 88 

F9 0 0 44 0 0 0 0 0 26 0 0 0 0 0 5 37.33 

F10 0 0 9 0 0 0 0 0 6 56 0 2 0 0 2 74.67 

F11 0 2 0 0 0 0 1 1 1 2 49 1 0 17 1 64 

F12 0 0 1 0 4 0 0 0 2 0 3 60 0 0 5 81.33 

F13 0 0 0 0 0 0 0 0 0 0 0 0 75 0 0 100 

F14 0 0 0 0 0 0 0 0 0 0 1 1 0 73 0 97.33 

F15 0 0 6 0 0 0 0 0 11 1 0 6 0 0 51 66.67 
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Variable importance in prediction 

As a part of the algorithm building exercise, RF also gives 

variable importance as its natural outcome. This information 

can be utilized to understand the system dynamics. By using 

this quality of RF we identified the important variables in TE 

process, which are important in fault/class prediction.  

Fig.7 clearly illustrates that Variables 2, 8, 17, 26, 32, 36, 37, 

40, 46, 50, and 53 have no importance in prediction. For each 

variable, you can permute the values of this variable across all 

of the observations in the data set and compute how much 

worse the misclassification error becomes after the 

permutation. This can be repeated for each variable. Plot the 

increase in misclassification error for each input variable, 

the bigger this value, the more important the variable. By 

removing those 11 unimportant variables, once again the 

ensemble was trained with 250 trees and default value of 𝑚. 

Fig.8 shows that ensemble provided almost same OOB error 

and classification accuracy for the testing samples in both the 

cases (see Table 3). Training time also reduced substantially 

with same classification accuracy due to less number of 

variables. 

 

 

 

Figure 7. Variable importance in prediction Figure 8. Comparision of OOB error with all and important 

variables 

 

Table 3.Classification accuracy with all and important 

variables 

 Classification accuracy with testing 

samples 

With all the 

variables 

81.78 

With important 

variables 

81.79 

 

CONCLUSIONS  

It is evident from the results that RF is easy to understand and 

implement. It is easy to set parameters in RF and parameter 

search is limited to a defined range. It does not face the 

problem of over-fitting. RF has the ability to handle large 

number of variables and classes efficiently and identify the 

unimportant variables not participating in prediction. As far as 

classification accuracy is concerned, it has provided 

approximately 82% with 15 fault classes, which is very much 

satisfactory in the condition of overlapping between class 3 

and 9.  
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