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Abstract

This paper presents an ensemble decision trees-based
approach for fault detection and isolation in a chemical
process. This is one of the well-known machine learning
techniques, which is also known as random forest (RF)
classifier. RF has some advantages over other classification
techniques like It can deal with substantial number of
variables effectively without over-fitting, It is quick and
simple to execute, provides good results even with large
number of classes, parameter tuning is not a problem and
identification of the important variables in classification. By
considering every one of these characteristics of RF was
tested on benchmark Tennessee Eastman (TE) process.
Results conclude that it can be proved one of the potential
tools for fault detection and isolation in industrial systems.

Keywords: Fault diagnosis; Tennessee Eastman Process;
Random forest;

INTRODUCTION

Although catastrophes and disasters may be irregular in
chemical plants, but minor accidents are very common causes
personal injury, illness, and material loses. Minor accidents
are generally occurred due to faulty operating conditions.
Fault is defined as a departure of an observed variable or a
calculated parameter from an acceptable range. This departure
may be occurred due to several reasons like sensor
malfunctioning, control failure, valve choking etc. A good
fault detection and diagnosis (FDD) system should be able to
arrest these departures precisely and activate the necessary
control actions. FDD works in four steps i.e., fault detection,
isolation, estimation and reconstruction. Fault detection means
to identify that something is going wrong with the process.
Fault isolation detects the location of fault. Fault estimation
will determine the fault magnitude and overall impact on the
system. Finally, fault reconstruction takes the control action to
bring the system back to the normal behavior. In this work,
fault detection and isolation (FDI) were focused. Numerous
methods have been proposed in last three decades to deal with
FDI related problems in industrial systems. These methods
can be divided into three categories: Quantitative model-based
methods, qualitative model-based methods, and process
history-based methods. A quantitative model-based method
uses mathematical models (based on first principles) of
physical system, whereas qualitative model-based method
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uses available information and knowledge of a physical
system, process history-based methods require neither first
principles-based  modeling  approach nor  qualitative
knowledge; instead, they need a large amount of historical
data that contain the typical trends and fault information
enabling the development of effective FDI system. In general,
chemical processes are complex and non-linear in nature, so,
it is hard to develop mathematical models or extract exact
information and knowledge of such type of systems to build
an effective FDI system. For these systems, researcher
resorted to historical data-based methods, which proved to be
more helpful than any other techniques. But these methods
demand lot of historical data in faulty and normal operating
conditions. These days, plants are vigorously instrumented,
so historical data is easily accessible. All the machine learning
techniques, for example artificial neural networks (ANN),
support vector machines (SVM), RF etc, belong to the class of
historical data-based methods. Indeed a considerable amount
of work has been done in the past to create effective FDI
system utilizing such methods. SVM and ANN have been
assessed extensively by the FDD community e.g., [4-16].
However each technique has its own advantages and
disadvantages.

This paper focuses on the application and evaluation of RF
classifier for FDI in TE process. Though random forest
classifier has been used for FDI for other systems like [17-21],
even in [18], researcher used RF on TE process but they just
considered only two faults and mainly focused on to utilize
RF variable importance measures to understand system
dynamics, whereas in our study we considered 15 faults and
focused on all the properties of RF like from the literature it is
evident that RF has some advantages over other classification
techniques like It can deal with substantial number of
variables effectively without over-fitting, It is quick and
simple to execute, provides good results even with large
number of classes, parameter tuning is not a problem,
identification of the important variables in classification and
produces an internal unbiased estimate of the generalization
error during the forest building process. By considering every
one of these characteristics of RF, it was tested on TE process.

RANDOM FOREST

RF classifier is actually an ensemble of decision trees, which
was suggested by Breiman [22-24]. The rationale behind
using an ensemble of decision trees is that a set of classifiers
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do perform better classifications than an individual classifier
does. Each tree in the ensemble is grown at the behest of a
randomly generated subset of observations and variables from
the training data and the final predictions are made by
utilizing some combining strategy (e.g., averaging in case of
regression and majority of votes in classification) over the
ensemble. Since each of these trees is grown using an
injection of randomness, these procedures are called random
forests. RF increases the diversity of the trees by making them
grow from different training data subsets created through
bagging or bootstrap aggregating. When we use a single
decision tree for the classification, it faces the problem of
pruning and over-fitting, whereas RF does not face the
problem of over-fitting and trees are grown to full extent.

All the predictors involved in the process

Decision tree is grown by using a set of binary rules i.e.,
recursive binary splitting to calculate a target value. But
unlike of decision tree, in RF at each node, a given number
(denoted by m) of input variables are randomly chosen and
the best split is calculated only within this subset. To find out
the best split at each node, one of the two criteria i.e., Gini
index or Cross-entropy is used [25]. The Gini index was used
as a best split criterion in this study. Class prediction for a
given instance will be based on combined result of all the
trees involved in the prediction model. In case of
classification, class with majority of votes will be a winner.

According to Breiman [24], each tree in the ensemble is
grown as follows: [e.g., Fig.1] -
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Figure 1. Decision tree building process in RF for classification [21]

From the data set, a bootstrap sample is drawn by random
sampling with replacement. Each subset selected using
bagging to make each individual i tree grow usually contains
2/3 of the dataset and 1/3 samples are kept aside which are
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known as out-of-bag (OBB) samples. Note that a different
OOB subset is formed for every i"™-tree. These OOB elements,
which are not considered for the training of the i -tree, can be
classified by the i"-tree to evaluate performance. Furthermore,
when the RF makes a tree grow, it uses the best split of a
random subset of input features or predictive variables in the
division of every node. Therefore, this can decrease the
strength of every single tree, but it reduces the correlation
between the trees, which reduces the generalization error [24].
Here m is essentially the only one parameter needed to be
adjusted in the algorithm. If there are a total of M input
variables, m (m << M) variables out of M are randomly
selected at each node and the best split on these m is
employed to split the node. The value of m is held constant
during the forest building process. The tree is grown to the
maximum size (i.e., until no further splits are possible) and
not pruned back. Repeat the above steps until ntree (a
sufficiently large number) such trees are grown. In other
words, each tree is grown using a particular bootstrap sample,
so ntree bootstrap samples will be drawn from the training
data set. For estimating the importance of each input variable
in prediction, firstly, the error e is calculated for OOB data,
using the original training data set. Then for each input
variable, x,, where p €{1,.....,k}, the pt" variable is
randomly permuted to generate a new set of samples. The
OOB estimate of error e, with the new set of samples is
computed and the difference of these two errors (e-e,) will be

a measure of the pt* variable importance.

TE BENCHMARK PROCESS

This section gives a brief introduction of industrial benchmark
TE process. This process was developed by Downs and Fogel
[26] for the purpose of process monitoring, process control
and FDD studies. This is widely accepted as a benchmark for
control and FDD studies. RF method was tested on this
process to demonstrate its characteristics. Fig.2 illustrates the
process flow diagram of this process. This process has five
major units, i.e. reactor, condenser, compressor, separator and
stripper. Four reactants and two products are there in the
process. Additionally, an inert and a by-product are also
present making a total of 8 components. This process
measures total 53 variables (41 are process variables and 12
are manipulated variables) (see [27] for variables description).
This simulator has the facility to generate data for 21 faults
(see Table 1 for type of faults). Several simulation schemes
were developed over the years; we followed Ricker [28]. We
have considered only initial 15 known faults in our analysis.
Data-set and code are available on
http://depts.washington.edu/control/LARRY/TE/download.ht
ml.Total 4500 samples were generated, out of which 3375
were used for training and 1125 for testing. Simulator was run
for 51 hours and sampling time was 10 minutes (300 samples
for each class/fault), because the disturbance was introduced
after 1 hour and lasts for remaining 50 hours.
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Figure 2. The Tennessee Eastman process
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Table 1. Descriptions of process faults in TE process

Fault No. |Process variable Type
IDV(1) AJC feed ratio, B composition step
constant
IDV(2) B composition, A/C feed ratio step
constant
IDV(3) D feed temperature step
IDV(4) Reactor cooling water inlet step
temperature
IDV(5) Condenser cooling water inlet step
temperature
IDV(6) A feed loss step
IDV(7) C header pressure loss-reduced step
availability
IDV(8) A, B, and C feed composition Random
variation
IDV(9) D feed temperature Random
variation
IDV(10) |C feed temperature Random
variation
IDV(11) |Reactor cooling water inlet Random
temperature variation
IDV(12) |Condenser cooling water inlet Random
temperature variation
IDV(13) |Reaction kinetics Slow drift
IDV(14) |Reactor cooling water valve Sticking
IDV(15) |Condenser cooling water valve Sticking
IDV(16)  |Unknown Unknown
IDV(17)  |Unknown Unknown
IDV(18)  |Unknown Unknown
IDV(19)  |[Unknown Unknown
IDV(20)  |[Unknown Unknown
IDV(21) |The valve fixed at steady state Constant
position position

RESULTS AND DISCUSSION

Effect of the number of trees and predictive variables (m)
on the classifier’s accuracy

MATLAB ® (The MathWorks, Inc., Natick, MA, USA)
software was used for result generation. Initially, 1000 trees
were trained with 3375 training samples for different values
of m. Total 53 variables are there in the process, though, the
default value of m is approximately 7, however the range of
m was taken from 4-18 with the increment of 2. Fig.3
illustrates OOB error at different values of m.
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Figure 3. OOB error at different values of m

The ensemble of 1000 trees provided OOB error less than
20% at each value of m (except at m = 4 ). After 100 trees the
change in OOB error was insignificant, however adding more
trees in the forest, does not create a problem, because over-
fitting is not a problem in RF, but training time will increase.
So, it was decided to fix the number of trees at 250 (because
we can take any number of trees above 100, after 100 trees
there is not any significant variation in OOB error). Fig.4
illustrates the overall classification accuracy of ensemble of
250 trees on 1125 testing samples at different values of m.
Maximum classification accuracy was achieved atm = 12.
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Figure 4. Overall classification accuracy with variation in m

So, the value of m was fixed at 12.

Effect of the number of classes on the classifier’s accuracy

After obtaining the best values of number of trees and m,
number of classes were varied and observed the effect on the
classification accuracy of the ensemble. Number of samples
were the same i.e., 3375 while increasing gradually the
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number of considered classes. The results obtained are shown
in Fig.5.

Fig.5 illustrates the variation in classification accuracy with
increasing number of classes. Generally, the tendency is that
with increasing number of classes the classification accuracy
should continuously be decreasing, but classification accuracy
reaches to a maximum with seven classes in Fig.5. This
abnormal behavior can be more clearly observed taking into
account Fig.6, which illustrates classification accuracy
achieved for each fault/class. The ensemble classifies faults
2,4,5,6 and 7 with very good accuracy, which improves the
overall classification accuracy. But, with 9 classes, the overall
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Figure 5. Classification accuracy with increase
in number of classes.

accuracy suddenly drops, because fault 3 & 9 were very badly
identified, infect classifier has confusion between these two
faults, which is very much clear from Table 2 also. Table 2
shows the classification accuracy for individual class. Each
class was tested for 75 samples. Third and ninth row of the
Table 2 clearly indicates that 32 samples of fault 3 were
misclassified as fault 9, whereas 44 samples of fault 9 were
misclassified as fault 3. If there was not an overlapping
between class 3 and 9, the ensemble would provide
classification accuracy of more than 82.5%.

curacy (%)

Figure 6. Classification accuracy for individual classes

Table 2. Confusion matrix

F1|F2 | F3|F4 | F5|F6|F7|F8|F9 | F1I0 | F11 | F12 | F13 | F14 | F15 % Accuracy

F1 |56 | 2 | 0| 0|00 11120 2 0 0 0 1 1 74.67
F2 oO(7wsj0|0]J]0|0]O0]O0]O0 0 0 0 0 0 0 100
F3 00 ([3]O0 0| 0] 0|32 1 0 0 4 0 3 45.33
F4 o(o0j0|75|)0|0]0)|O0]O0 0 0 0 0 0 0 100
F5 o(o0j0|0]|73/0]0)|O0]O0 0 0 2 0 0 0 97.33
F6 o(o0j0|O0O]JO0O|75]0)|0]O0 0 0 0 0 0 0 100
F7 ojo0}0j0|0O]O0O]|75|0]O0 0 0 0 0 0 0 100
F8 91000 0] 0] 0|66]|0 0 0 0 0 0 0 88
F9 0| 0|44 0| 0)|0)| 0| 0|26 0 0 0 0 0 5 37.33
FlO | 0| 0| 9| 0|0 0| 0] O0]|G©G6 56 0 2 0 0 2 74.67
Fi1 | 0 | 2 |0 | O | O | O 1] 1 1 2 49 1 0 17 1 64
Fi2 1 0| 0|21 |04 |0]0]O0]|2 0 3 60 0 0 5 81.33
FI3| 0|0j0|0O]O0O]|O0|O0]0]|O 0 0 0 75 0 0 100
Fi4 1 0|00 O0O]O0O|O0|O0]0]|O 0 1 1 0 73 0 97.33
Fi5 | 0| 0| 6 | 0|0 | 00|01 1 0 0 0 51 66.67
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Variable importance in prediction

As a part of the algorithm building exercise, RF also gives
variable importance as its natural outcome. This information
can be utilized to understand the system dynamics. By using
this quality of RF we identified the important variables in TE
process, which are important in fault/class prediction.

Fig.7 clearly illustrates that Variables 2, 8, 17, 26, 32, 36, 37,
40, 46, 50, and 53 have no importance in prediction. For each
variable, you can permute the values of this variable across all
of the observations in the data set and compute how much

Out-Of-Bag Feature Importance

r r

:
0 10 20 30 40 50 60

Feature Number

Figure 7. Variable importance in prediction

Table 3.Classification accuracy with all and important

variables
Classification accuracy with testing
samples

with all the | 81.78

variables

With  important | 81.79

variables

CONCLUSIONS

It is evident from the results that RF is easy to understand and
implement. It is easy to set parameters in RF and parameter
search is limited to a defined range. It does not face the
problem of over-fitting. RF has the ability to handle large
number of variables and classes efficiently and identify the
unimportant variables not participating in prediction. As far as
classification accuracy is concerned, it has provided
approximately 82% with 15 fault classes, which is very much
satisfactory in the condition of overlapping between class 3
and 9.
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worse the misclassification error becomes after the
permutation. This can be repeated for each variable. Plot the
increase in misclassification error for each input variable,
the bigger this value, the more important the variable. By
removing those 11 unimportant variables, once again the
ensemble was trained with 250 trees and default value of m.
Fig.8 shows that ensemble provided almost same OOB error
and classification accuracy for the testing samples in both the
cases (see Table 3). Training time also reduced substantially
with same classification accuracy due to less number of
variables.
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Figure 8. Comparision of OOB error with all and important
variables
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