Common Coupled Fixed Point in C*-algebras Valued Metric Spaces

Saleh Omran1,2, Moustafa M. Salama1,3

1. Mathematics and Statistics Department, Faculty of Sciences, Taif University, KSA.
2. Department of Mathematics South Valley University Qena, Egypt.
3. Department of Computer-Based Engineering Applications, Informatics Research Institute, City of Scientific Research and Technology Applications, Egypt.

Abstract
In this paper we introduced a Common coupled fixed-point theorem in the C*-algebras valued metric spaces with certain contraction condition.

INTRODUCTION
We begin with the some basic definitions and facts about structures of C*-algebra and Fixed Point Theory. We also give some facts which play a central role in the C*-algebra valued metric spaces.

A C*-algebra is a complex Banach algebra with a conjugate-linear involution*: \(A \rightarrow A \), such that
\[
(x^*)^* = x, (xy)^* = y^*x^*, (x + y)^* = x^* + y^* \text{, } ||x^*|| = ||x||^2
\]
for all \(x, y \) in \(A \). The C*-condition \(||x*: = ||x||^2 \) implies that the involution is an isometry in the sense that \(||x^*|| = ||x|| \) for all \(x \) in \(A \).

A C*-algebra is called unital if it possesses a unit. It follows easily that \(||1|| = 1 \).

In general C*-algebra is non-commutative, for the commutative C*-algebra its completely determined by Gelfand, as in the following

Theorem 1.1 [Gelfand,3]. If \(A \) is a non-zero commutative C*-algebra, then the Gelfand representation
\[
\varphi: A \rightarrow C_0(\Omega(A)), \ a \mapsto \hat{a} \text{ is an isometric } * \text{-isomorphism.}
\]

Theorem 1.2 [2] Every C*-algebra has a faithful representation on some Hilbert space.

This theorem was proved in [2] and means that every C*-algebra is isometrically isomorphic to a normclosed *-algebra in \(B(H) \), for some Hilbert space \(H \). This is one of the most important results in the theory of C*-algebras. We now introduce some basics of Positive C*-algebras, we refer to [2] and [3] for more details and proofs. An element \(a \) in a C*-algebras is called self adjoint if \(a = a^* \), denote \(A_{sa} \) the set of all self adjoint elements in \(A \), \(a \in A \) is called positive element if \(a \in A_{sa} \) and \(\text{Sp}(a) \subset \mathbb{R}^+ \). We write \(a \geq 0 \) if \(a \) is positive. And denote by \(A_+ \) the set of all positive elements in \(A \). The set \(A_+ \) is a closed cone in the sense that
\[
(a + b \in A_+, if a, b \in A_+ and A + (−A_+) = [0])
\]

Lemma 1.3 [3]. Let \(A \) be a unital C*-algebra and let \(a \in A \). Then the following are equivalent:

(i) \(a \geq 0 \),
(ii) \(a = b^2 \) for some \(b \in A_{sa} \),
(iii) \(a = bb^* \) for some \(b \in A \).

For a given \(a, b \in A_+ \), we denote \(a \leq b \) if \(b - a \geq 0 \), \(A_+ \) becomes a partially ordered vector space.

Theorem 1.4 [3]. Suppose that \(A \) is unital C*-algebra with a unit 1.

1. If \(a \geq 0 \) and \(a = a^* \), then \(1 - a \) is invertible and
\[||a(1 - a)^{-1}|| < 1 \]
2. Suppose that \(a, b \in A \) with \(a, b \geq \theta \) and \(ab = ba \), then \(\theta \leq \theta \).
3. Suppose that \(a, b \in A \) with \(a \leq b \), then \(||a|| \leq ||b|| \).
4. Suppose that \(c \geq 0 \) and \(a \in A \) then \(a^*c^*a \geq 0 \).

C*-ALGEBRAS VALUED METRIC SPACE
In the next we introduced the definition of the C*-algebras valued metric spaces and give some examples. Moreover we introduced the meaning of Cauchy sequence and convergent.

The main reference in this section is [6] and there is a generalization for these results was introduced in [4]

Definition 2.1. Let \(X \) be a nonempty set. Suppose the mapping \(d: X \times X \rightarrow A \) satisfies:

(1) \(0 \leq d(x, y) \) for all \(x, y \in X \) and \(0 = d(x, y) \iff x = y \)
(2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \)
(3) \(d(x, y) \leq d(x, z) + d(z, y) \) for all \(x, y, z \in X \)

Then \(d \) is called a a C*-algebra valued metric on \(X \) and \((X, A, d) \) is called C*-algebra valued metric space.

Definition 2.2. Let \((X, A, d) \) be a C*-algebra valued metric space and \(\{x_n\} \subset X \) is a sequence in \(X \). If \(x \in X \) and \(\varepsilon > 0 \) there is \(N \) such that for all \(n > N, \|d(x, x_n)\| \leq \varepsilon \), then \(\{x_n\} \) is called a convergent sequence in \(X \) to \(x \) and denote it by \(\lim_{n \rightarrow 10} x_n = x \).
Moreover, if for any \(\varepsilon > 0 \) there is \(N \) such that for all \(n, m > N, \|x_n - x_m\| \leq \varepsilon \), then \((x_n) \) is called a cauchy sequence in \(X \).

Definition 2.3. The tripled \((X, \mathcal{A}, d)\) is a completed \(C^* \)-algebras valued metric space if every cauchy sequence is convergent.

Example 2.4. If \(X \) is a Banach space, then \((X, \mathcal{A}, d)\) is a completed \(C^* \)-algebras valued metric space with the metric
\[
d(x,y) = \|x - y\|, x, y \in X.
\]

Example 2.5. Let \(X = \mathbb{C} \) and \(\mathcal{A} = M_{2 \times 2}(\mathbb{C}) \). Then \((X, \mathcal{A}, d)\) is a \(C^* \)-algebras valued metric space, where
\[
d(x,y) = \begin{bmatrix} |x - y| & 0 \\ 0 & \alpha |x - y| \end{bmatrix}
\]

Theorem 3.2: Let \((X, A, d)\) be a complete \(C^* \)-valued metric space, and let \(F, G : X \rightarrow X \) be mappings such that
\[
d(F(x, y), G(u, v)) \leq w(x, y, u, v) a^* \quad \text{for all } x, y, u, v \in X,
\]
where \(w(x, y, u, v) \in [d(x, u), d(y, v), \frac{1}{2}(d(F(x, y), x) + d(G(u, v), u))] a^* \). Then, \(F, G \) have a unique common coupled fixed point.

Proof: Let \(x_0, y_0 \) be two arbitrary elements in \(X \), choose \(x_1, y_1 \in X \) such that \(x_1 = F(x_0, y_0) \) and \(y_1 = F(x_0, y_0) \). Again choose \(x_2, y_2 \in X \) such that \(x_2 = G(x_1, y_1) \) and \(y_2 = G(x_1, y_1) \). Continuing this process, we can construct two sequences \((x_n)\) and \((y_n)\) in \(X \) such that \(x_{n+1} = F(x_n, y_n) \), \(y_{n+1} = F(y_n, x_n) \), \(x_{n+2} = G(x_{n+1}, y_{n+1}) \), \(y_{n+2} = G(y_{n+1}, x_{n+1}) \) for \(n = 0, 1, 2, \ldots \). Then we have the following cases:

Case 1: \(w(x, y, u, v) = d(x, u) \).

From
\[
d(x_{2n+1}, x_{2n+2}) = d(F(x_{2n}, y_{2n}), G(x_{2n+1}, y_{2n+1})) \leq a \cdot d(x_{2n}, x_{2n+1}) a^*.
\]
and
\[
d(y_{2n+1}, y_{2n+2}) = d(F(y_{2n}, x_{2n}), G(y_{2n+1}, x_{2n+1})) \leq a \cdot d(y_{2n}, y_{2n+1}) a^*.
\]
Then from (1) and (2) we have
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq a \cdot d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) a^*.
\]

Case 2: \(w(x, y, u, v) = d(y, v) \).

By similar arguments to case 1 we get
\[
d(x_{2n+1}, x_{2n+2}) = d(F(x_{2n}, y_{2n}), G(x_{2n+1}, y_{2n+1})) \leq a \cdot d(x_{2n}, x_{2n+1}) a^*.
\]
and
\[
d(y_{2n+1}, y_{2n+2}) = d(F(y_{2n}, x_{2n}), G(y_{2n+1}, x_{2n+1})) \leq a \cdot d(y_{2n}, y_{2n+1}) a^*.
\]
Then from (1) and (2) we have
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq a \cdot d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}) a^*.
\]

Case 3: \(w(x, y, u, v) = \frac{1}{2}(d(F(x, y), x) + d(G(u, v), u)) \).

We get
\[
d(x_{2n+1}, x_{2n+2}) = d(F(x_{2n}, y_{2n}), G(x_{2n+1}, y_{2n+1})) \leq \frac{a}{2} \cdot d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}) a^*.
\]
Similarly we have
\[
d(y_{2n+1}, y_{2n+2}) = d(F(y_{2n}, x_{2n}), G(y_{2n+1}, x_{2n+1})) \leq \frac{a}{2} (d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}))a^* \\
\]
(8)

From (7), (8)
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq \frac{a}{2} (d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}) + d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}))a^* \\
\]
(9)

Case 4: \(w(x, y, u, v) = \frac{1}{2}(d(F(x, y), u) + d(G(u, v), x))\). Similarly we obtain
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq \frac{a}{2} (d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}) + d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}))a^* \\
\]
(9)

Recall all above argument for each case we get

Case1:
\[
d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) \leq a (d(x_{2n}, x_{2n+1}) + d(y_{2n}, y_{2n+1}))a^* \\
\leq a^2 (d(x_{2n-1}, x_{2n}) + d(y_{2n-1}, y_{2n}))(a^*)^2 \leq \ldots \leq a^{2n+1} (d(x_0, x_1) + d(y_0, y_1))(a^*)^{2n+1} \\
\]
(10)

Put \(d(x_{2n+1}, x_{2n+2}) + d(y_{2n+1}, y_{2n+2}) = d_{n+1} \)

And \(d(x_0, x_1) + d(y_0, y_1) = d_{0,1} \)

We can rewrite eqn (9) in the following form
\[
d_{2n+1, 2n+2} \leq a^{2n+1} (d_{0,1})(a^*)^{2n+1} \text{ and then for each } n \in N_1 \text{ we obtain}
\]
\[
d_{n,n+1} \leq a^n (d_{0,1})(a^*)^n \text{ from lemma 1.4, we have}
\]
\[
\|d_{n,n+1}|| \leq ||a^n|| ||d_{0,1}|| (a^*)^n \\
\]
Since \(A\) is multiplicative, we get \(\|d_{n,n+1}|| \leq ||a^n|| ||d_{0,1}|| ||a^*||^n \) also \(||a|| = ||a^*|| \) so we get \(\|d_{n,n+1}|| \leq ||a||^{2n} ||d_{0,1}|| \)

choose \(||a||^2 = h < 1 \) se we have
\[
\|d_{n,n+1}|| \leq h^n ||d_{0,1}|| . \text{ for } m > n \text{ we get}
\]
\[
\|d_{n,m}|| \leq h^n(1 + h + h^2 + \ldots + h^n-m) ||d_{0,1}|| = \frac{h^n}{1-h} ||d_{0,1}|| \rightarrow 0 \text{ as } n, m \rightarrow \infty \\
\]
So \(\|d_{n,m}|| \leq 0, \text{ as } n, m \rightarrow \infty , \text{ therefore } d_{n,m} \text{ is Cauchy sequence in } X. \)

So \((x_n), (y_n)\), are Cauchy sequences in \(X. \) Since \(X\) is complete we get \(x\) and \(y\) such that \(x_m \rightarrow x, y_m \rightarrow y,\) as \(n, m \rightarrow \infty \) now, we prove that \(F(x, y) = G(x, y) = x\) and \(F(y, x) = G(y, x) = y\), for that \(d(F(x, y), x) \leq d(F(x, y), x_{2n+2}) + d(x_{2n+2}, x) = d(F(x, y), G(x_{2n+1}, y_{2n+1})) + d(x_{2n+2}, x) \leq a \cdot d(x, x_{2n+1})a^* + d(x_{2n+2}, x) \) since \((x_n)\) is Cauchy sequence \(d(F(x, y), x) \leq a \cdot d(x, x_{2n+1})a^* \) by using lemma 2.1
\[
\|d(F(x, y), x)|| \leq ||a|| ||d(x, x_{2n+1})|| ||a^*|| = ||a||^2 ||d(x, x_{2n+1})|| \rightarrow 0 \text{ as } n \rightarrow \infty \\
\]
Therefore \(d(F(x, y), x) = 0 \) and then \(F(x, y) = x. \)

Using similar arguments, we get
\[
d(G(x, y), x) \leq d(G(x, y), x_{2n+1}) + d(x_{2n+1}, x) = d(G(x, y), F(x_{2n}, y_{2n})) + d(x_{2n+1}, x) \leq a \cdot d(x, x_{2n})a^* + d(x_{2n+1}, x) \) since \((x_n)\) is Cauchy sequence \(d(G(x, y), x) \leq a \cdot d(x, x_{2n})a^* \) by using lemma 2.1
\[
\|d(G(x, y), x)|| \leq ||a|| ||d(x, x_{2n})|| ||a^*|| = ||a||^2 ||d(x, x_{2n})|| \rightarrow 0 \text{ as } n \rightarrow \infty \\
\]
Therefore \(d(G(x, y), x) = 0 \) and then \(G(x, y) = x. \)

Similarly we can show that \(F(y, x) = G(y, x) = y \) thus \((x, y)\) is a common coupled fixed point of a mappings \(F \) and \(G\)

To see \((x, y)\) is unique let \((x_0, y_0)\) be other common coupled fixed point of a mappings \(F \) and \(G\)

Let \(d(x, x_0) = d(F(x, x_0), G(x, x_0)) \leq a \cdot d(x, x_0)a^*. \)
\[\|d(x, x_0)\| \leq \|a\|^2 \|d(x, x_0)\| \to 0 \text{ as } n \to \infty \]

So \(d(x, x_0) = 0 \) therefore \(x = x_0 \) and similarly \(y = y_0 \).

Case 2: If \(w(x, y, u, v) = d(y, v) \), we follow the same arguments as in case 1, and get the Uniqueness and existence of the common coupled fixed points of the mappings \(F \) and \(G \).

Case 3: \(w(x, y, u, v) = \frac{1}{2} (d(F(x, y), x) + d(G(u, v), u)) \) from equation (9)

\[
d_{2n+1,2n+2} \leq \frac{a}{2} (d_{2n,2n} + d_{2n+1,2n+1}) \text{ from lemma 1.4} \\
d_{2n+1,2n+2} \leq \frac{1}{2} \|a\| (d_{2n,2n} + d_{2n+1,2n+1}) + \frac{1}{2} \|a\|^2 (d_{2n+1,2n+1} + d_{2n+2,2n+2}) \\
d_{2n+1,2n+2} \leq \frac{1}{2} \|a\|^2 (d_{2n,2n} + d_{2n+1,2n+1}) \text{ so for each } n \text{ we have} \\
\|a\|^2 (d_{n+1,2n+1}) \to 0 \text{ as } n \to \infty \\
\text{For } n > m \text{ one can find } \|a\|^2 (d_{n+1,2n+1}) \to 0 \text{ as } n, m \to \infty \\
\text{So \((x_n, y_m) \), are Couchy sequences in } X \text{. Since } X \text{ is complete we get } x, y \text{ such that } x_n \to x, y_m \to y \text{ as } n, m \to \infty \text{.} \\
d(F(x, y), x) \leq d(F(x, y), x_{2n+2}) + d(x_{2n+2}, x) \leq d(F(x, y), x_{2n+2}) = d(F(x, y), G(x_{2n+1}, y_{2n+1})) \leq \frac{a}{2} (d(F(x, y), x) + d(G(x_{2n+1}, y_{2n+1}), x))a^* \\
\leq \frac{1}{2} (d(F(x, y), x) + d(x_{2n+2}, x))a^* \\
\|d(F(x, y), x)\| \leq \frac{\|a\|^2}{2} \|d(F(x, y), x)\| \\
\|d(F(x, y), x)\| (1 - \frac{\|a\|^2}{2}) \leq 0 \\
\|d(F(x, y), x)\| = 0 \text{ this implies that } d(F(x, y), x) = 0 \text{ and this gives } F(x, y) = x \text{ by a similar way } G(x, y) = x, F(y, x) = y \text{ and } G(y, x) = y. \\
\text{Thus } (x, y) \text{ is a common coupled fixed point of a mappings } F \text{ and } G \\
\text{To see } (x, y) \text{ is unique let } (x_0, y_0) \text{ be other common coupled fixed point of a mappings } F \text{ and } G \\
\text{Let } d(x, x_0) = d(F(x, x_0), G(x, x_0) \leq a \ d(x, x_0)a^*. \\
d(x, x_0) = d(F(x, x_0), G(x, x')) \leq \frac{a}{2} \ |d(F(x, x_0), x) + d(G(x, x_0), x) a \\
d(x, x_0) \leq \frac{a}{2} \ |d(F(x, x_0), x) + d(G(x, x_0), x) a \\
\|d(x, x_0)\| \leq \frac{\|a\|^2}{2} \|d(x, x_0)\| \to 0 \\
\|d(x, x_0)\| \to 0 \text{ then } x = x_0 \text{ similarly } y = y_0 \\
\text{Thus } (x, y) \text{ is a common coupled fixed point is a unique} \\
\text{Case 4: If } w(x, y, u, v) = \frac{1}{2} (d(F(x, y), u) + d(G(u, v), x)), \text{ we follow the same arguments as in case 3, and get the Uniqueness and existence of the common coupled fixed points of the mappings } F \text{ and } G.
CONCLUSIONS
We proved a main theorem in common coupled fixed point theorem in C^*-algebras valued metric space using suitable contraction condition that generalize the results obtained in case of real valued metric space.

ACKNOWLEDGMENT
The authors would like to thank Taif University for support in project number 1-438-5833 and would like to thank the referees for their valuable comments that improved the quality of this paper. However there is an extended result contributed by the first author and Ö.Özer will be given and submit in separated part.

REFERENCES