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Abstract:  

Estimating software efforts poses high challenge to both 

customers and developers. When the estimated effort is not 

precise, the management may be in menace of agreeing 

systems that may go beyond their budget, substandard with 

poorly developed functions and time consuming more than 

deadline. Hence, estimation of effort in an effective manner 

has become a significant task in the software development 

process, despite various difficulties ahead in doing so. The 

process also includes multiple steps to validate the minimized 

error. This paper introduces a novel approach for effort 

estimation based on diverse databases. The approach exploits 

neural network to aid in effort estimation with reduced cost 

and failure ratio. The neural network, which is presented here, 

is enhanced by incorporating optimization process. The 

optimization process selects weights for the neural network in 

such a way that improvement can be made on the classification 

model. In our method, the optimization process is carried out 

using Artificial Bee Colony (ABC) algorithm. The 

performance of the proposed model is investigated using 

parameters such as Mean Absolute Relative Error (MARE) 

and Mean Magnitude of Relative Error (MMRE). Performance 

comparison with existing models proves the competitive 

performance of the proposed model over the conventional 

models. 

 

INTRODUCTION 

The primary aim of software engineering can be portrayed as 

designing tools and techniques that aid in developing high 

quality, steady and maintainable applications. Several 

measurements are used by the developers and managers to 

validate and increase the quality of the application [7]. Any 

software product on openly available source components 

depends on many business and technical targets such as 

improved quality, short and firm development deadlines, 

limited development expenditures, source code accessibility, 

etc [3]. While evolution takes place in software, its structure 

has a primary impact on enhancement intensive locations, for 

instance, enhancing the implemented functionality [14, 15]. 

Software cost and efforts estimation is become a challenge for 

IT industries. There are lots of methods existing for efforts and 

cost estimation, but people do not know how to use these 

methods [22]. 

The software quality models must have the ability to identify 

crucial elements accurately. The elements that are determined 

as crucial must allow the application for specific certification 

tasks. The certification task may range from inspecting 

physically to static and dynamic analysis, testing and 

automatic formal analysis techniques. The software quality 

models also help in defining the reliability of the dispatched 

products. Numerous statistical models have been reported to 

estimate fault – proneness of program modules in software 

engineering [4]. 

Software project management is responsible for precisely 

envisaging the work – effort and duration to develop and/or 

manage a software system. The process is called software cost 

estimation [17], which is well-known for its significance on 

software project management. In order to make the managerial 

decision making process a successful phenomenon, estimation 

of software development effort must be accurate. Since the 

development cost is directly proportional to the project 

complexity, the early stage of development requires precise 

cost estimation [2]. It also acts as an essential component of 

infrastructure projects. Increased estimation accuracy helps the 

project managers to find alternatives and to get rid of 

underestimating technical and business solutions. When the 

project reaches the final stage, the accuracy of estimated cost 

will be high because of precise and comprehensive 

information at this stage [1]. 

The process of software cost estimation by analogy can be said 

as a prominent machine learning methodology. It can also be 

referred as a basic form of case based reasoning. The analogy 

based estimation is performed on the basis of assumption that 
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like software projects it incurs the same project costs. 

Nevertheless, categorical variables on cost have to be handled 

by improved techniques [11]. Size, efforts to be put forth, 

development duration, adopted technology and ensured quality 

are the potential subjects of estimation in software 

development. Despite various effort models have been 

introduced, they consider software size as significant 

parameter, when the development effort has to be considered 

as the most significant subject. For instance, function point is a 

measurement model of software size. It exploits logical 

function terms that make both users and owners understand 

easily. However, the measured size remains constant, because 

it considers only the functional requirements irrespective of 

the contribution of programming language, design technology 

and development skills [13]. 

The cost estimation process may face the following problems. 

 Difficulty ahead in mapping cost – affecting factors 

with output metrics, because these factors exhibit 

nonlinearity 

 Difficulties in measuring the metrics because of 

incompleteness and imprecision of data acquired at 

initial stage 

 Though numerous models prevail for estimation, 

challenges remain in identifying suitable model for 

the current circumstance and 

 Difficulties in combined usage of algorithmic and 

non – algorithmic models [12]. 

Nowadays, the community is highly relying on information 

technology and software systems. This necessitates an 

appropriate estimation method as it has a wide impact on 

project cost and quality. Numerous estimation models have 

been reported in the literature, where more researchers sill 

intend to formulate better estimation models [18]. The rest of 

the paper is organized as follows. Section 2 presents a review 

report on recent research works. Section 3 details the proposed 

methodology, which includes effort estimation using neural 

network and optimization process. Section 4 discusses the 

results of the proposed technique. 

 

RELATED RESEARCHES 

The focus on using soft computing techniques for estimating 

software effort has been significantly increased through 

various research works. This Section presents the review on 

few of the methodologies. 

Rao et al [5] have estimated cost using a computationally 

efficient Functional Link Artificial Neural Network (FLANN). 

By reducing the computational complexity, the neural net can 

be used for online applications. The network has exhibited a 

simple architecture without any full back propagation training 

and hidden layer. The adaptive neural network has worked 

efficiently by firstly using COCOMO approach for estimating 

the software cost and then by using FLANN with backward 

propagation. The entire network has remained as “white box” 

because of its comprehensive analysis on every neuron. The 

simple architecture and appropriate training by back 

propagation algorithm has ensured better accuracy than other 

methods. 

Reddy et al. [6] have introduced a model to estimate the 

software effort. The model was based on artificial neural 

network and designed in such a way that the network 

performance can be adequately improved so as to meet the 

COCOMO model requirements. Multilayer feed forward 

neural network has been used for the model and its parameters, 

which has aided in estimating the software development effort. 

Back propagation learning has trained the network by iterative 

comparison of actual effort and network’s prediction, when a 

training set has been given as input. The neural network model 

has outperformed over other model in terms of estimation 

accuracy, when experimentation has been carried out on 

COCOMO dataset. 

Though various research eras have crossed, no attempt has 

been made to identify the most established software effort 

estimation methods to ensure superior accuracy. Moreover, it 

has been reported in the literature that there is no consistent 

performance by any of M estimation methods that have been 

considered for study. Certain assertions have been made to 

develop ensembles of various estimation methods rather than 

identifying best estimation method. Ekrem et al. [8] have 

introduced a method, which has unified nine learners with ten 

preprocessing techniques so that 9 10 ¼ 90 solo methods can 

be developed. Experimentation has been carried out using 20 

datasets and investigation has been done using seven error 

measurements. The experimental outcome has revealed top n 

(here, n ¼ 13) individual methods, which have exhibited 

performance stability on varying datasets and error 

measurements. The obtained best 2, 4, 8, and 13 individual 

methods have been unified to produce 12 multi – methods that 

have been further subjected to compare with the individual 

methods. 

Given a small significant content, there should be a concise 

information and minimal value added to the complex learning 

schemes. Ekrem et al. [9] have introduced a QUICK method, 

which has determined the Euclidean distance between 

instances (rows) and features (columns) of SEE data. Further, 

it has pruned synonyms and outliers, which are similar 

features and distant instances, respectively, followed by 

evaluating the reduced data. The data reduction has been done 

by comparing predictions that have been obtained from (1) a 

simple learner and (2) a state – of – the – art learner (CART), 

which used reduced data and collective data, respectively. 

Performance investigation has been carried in hold – out 

experiments using mean and median MRE, MAR, PRED and 

MBRE. 

Since software cost estimation process estimates the amount of 

effort and time to put forth to develop a software system, it is 

considered as the most significant process. It is also 

considered as a crucial task. A precise estimate can provide a 

strong fundamental for the development procedure. Anupama 

et al [10] have explained Constructive Cost Model 

(COCOMO), which is a renowned software cost estimation 

model. Artificial neural network with perceptron learning 

algorithm has facilitated the implementation of the model. The 
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training and validation of the network have been carried out 

using COCOMO dataset. 

In the recent era, effort to put forth in a software project is the 

most analyzed variable and estimating the effort has been 

found as the most tedious task in a project management 

process. However, a software cost estimation technique 

facilitates this task by estimating the amount of effort to put 

forth and development duration to construct the software 

system. It has been considered as a significant task to help the 

software sectors in managing the development process 

proficiently. Numerous cost estimation models have been 

reported in the literature, where each model has portrayed its 

own merits and demerits in envisaging the development cost 

and effort. Anupama et al. [16] have worked out on estimating 

software cost using back propagation neural networks. The 

developed model can cope up with renowned COCOMO 

model and work for its performance improvement. It has the 

ability to handle imprecision and uncertainty of the input and 

to improve the reliability of the estimated software cost. The 

experimentation of the model has been carried out on three 

openly available software development datasets. 

The software cost estimation process is a difficult and time 

consuming task. Analogy – based estimation of software effort 

has been claimed as one of the viable techniques in the field. 

However, the method remains incapable in a circumstance of 

precise handling of categorical data. Initially, the software 

effort estimation models were developed based on regression 

analysis and mathematical models. But nowadays, the models 

are on the basis of simulation, soft computing, genetic 

algorithm, neural network, fuzzy logic modeling, etc. Ziauddin 

et al. [17] have attempted to increase the software effort 

estimation accuracy by exploiting fuzzy logic model. The 

approach has fuzzified the input variables of COCOMO II 

model and defuzzified the output variable to obtain the 

estimated effort. The linguistic terms for COCOMO II model 

have been defined using triangular fuzzy membership 

functions. 

Software development effort estimation was considered a 

fundamental task for software development life cycle as well 

as for managing project cost, time and quality. Therefore, 

accurate estimation was a substantial factor in projects success 

and reducing the risks. In recent years, software effort 

estimation has received a considerable amount of attention 

from researchers and became a challenge for software 

industry. In the last two decades, many researchers and 

practitioners proposed statistical and machine learning-based 

models for software effort estimation. Ghatasheh [23] have 

proposed Firefly Algorithm as a metaheuristic optimization 

method for optimizing the parameters of three COCOMO-

based models. These models include the basic COCOMO 

model and other two models proposed in the literature as 

extensions of the basic COCOMO model. The developed 

estimation models are evaluated using different evaluation 

metrics. 

 

 

 

PROPOSED METHOD FOR SOFTWARE EFFORT 

ESTIMATION 

Software designing faces a significant task, called software 

effort estimation, which is a process of estimating the effort to 

put forth to construct a software system. However, the process 

of software effort estimation is a tedious task and hence it 

remains as a potential research platform since past few 

decades. The cost and time estimates can be used for initial 

coarse validation and for monitoring the progress of project 

development at the development stage, whereas, they can be 

used for evaluating the productivity of the project at the final 

stage. As a whole, effort estimation aids in developing fulfilled 

proficient software. Our method exploits soft computing for 

estimating the software effort, where classification is 

performed using neural network. The weights of the neural 

network are optimized using optimization algorithm. 

 

A.Steps involved in the Effort Estimation Process 

Generally, various software parameters are used by the 

estimation process to determine the effort to put forth for 

developing the particular software. Figure 1 portrays the steps 

that constitute the proposed effort estimation process. The 

dataset is comprised of numerous parameters that are used to 

determine the actual and estimated efforts followed by 

calculating MRE value. Consequently, these values are 

classified by applying classification process for which neural 

network is used. It helps to identify the suitable parameter 

value to perform the process. In our method, the neural 

network is enhanced by optimizing the weights using 

optimization algorithm. Here, ABC is used to solve the 

purpose. Unifying ABC here helps in improving the 

classification process. Eventually, an effort value from the 

classifier is obtained and it is considered as the near – best 

effort value with reduced error rates. 

 

Figure 1. Proposed software effort estimation model. 
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The dataset is comprised of numerous parameter values that 

have to be subjected to classification. Hence, these values are 

applied to the neural network for classification of relevant 

parameters. The following section details the classification 

process of neural network. 

 

B. Training in Neural Network 

The software parameter values are acquired from the dataset 

and given as input to the neural network classifier to perform 

classification. The general training of neural network enable 

mapping the input to a specific output. The neural network is 

highly compatible with the classification process. The feed 

forward neural network is exploited in the training phase of 

the proposed method. Comparison is made between the 

parameter values and the input files followed by classifying 

the suitable parameters. A neural network is comprised of 

three layers namely, input layer, hidden layer and output layer. 

The basic architecture of the feed forward neural network can 

be observed from Figure 2. 

 

Figure 2. General Feed Forward Neural Network 

Architecture. 

 

ABC, which is an optimization algorithm, works in the 

proposed method to allocate weights on different nodes of the 

neural network. In other words, ABC determines relative 

weights. 

 

Proposed Artificial Bee Colony for Optimization of weights 

in Neural Network: 

In an ABC model, a food source position refers to a possible 

solution for the optimization problem, whereas nectar quantity 

of a food source refers to the quality (fitness) of the respective 

solution. The objective of bees is set as to determine the best 

solution [20]. Each employed bee shares the information with 

an onlooker bee and flies back to the food source, which was 

visited by it in the previous wandering. This process is 

undertaken since the memory keeps the record of the food 

source. The employed bee selects a new food source using the 

visual knowledge about the neighborhood of the one stored in 

the memory and assesses the nectar amount [19]. 

 

Employee Bee Phase 

There are three bee groups in the artificial bee colony. They 

are employed bees, onlooker bees and scout bees. An 

employed bee is a bee that flies back to its previously visited 

food source, whereas an onlooker bee is a bee resides in the 

dancing area to decide on the food source to be selected. Scout 

bees are bees that undergo random wandering for food source. 

The employed bees contribute the first half of the colony, 

whereas the rest is contributed by onlooker bees. Each 

employed bee contributes by a food source. In other words, the 

number of food sources around the hive and the number of 

employed bees is same. 

Initially, the employed bees select random set of food source 

positions for which the nectar amounts are calculated. They 

reach the hive and distribute the nectar information of the food 

sources to the onlooker bees, which are in the dancing region 

of the hive. In the perspective of algorithm, arbitrary set of 

initial population ip   with n  solutions, where each solution 

is the food source position and pS is the population size is 

generated. The solution representation can be given as 

niwherehi 1,  is an N-dimensional vector and N is the 

number of parameters to be optimized. Once the population is 

initialized, it is subjected to the iterative process that involves 

employed bees, onlooker bees and scout bees. 

 

Onlooker Bee Phase 

This phase enables the onlooker bees to select the food sources 

based on the nectar information obtained from the employed 

bees and to generate new set of solutions. Generally, the 

onlooker bee is font of food source area, which has substantial 

nectar information shared by the employed bees in the dancing 

region of the hive. The probability of selecting a food source 

by an onlooker bee is directly proportional to the nectar 

amount of the food source. Hence, the employed bee dancing 

with higher nectar value assigns an onlooker bee for the food 

position. The probability of selecting a food source ( sF ) by an 

onlooker bee can be given as follows. 





n

k
k

i
s

f

f
F

1

                                           (1)

 
where, 

if refers to fitness of the solution and 

n refers to the number of food sources which is equal to the 

number of employed bees. 

The onlooker bee reaches the selected food source and selects 

a new neighborhood of the selected food source based on 

visual knowledge. The visual knowledge is obtained by 

comparing both the food positions. When the bee abandons a 

food source due to its lesser nectar value, the scout bee 

generates a new random food source and fills the abandoned 

position. The onlooker bee modifies the food source position 
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stored in the memory and hence finds new food source and 

validates the nectar amount (fitness) of it. 

If we consider an old position kig ,
and a new position kih ,

, 

the relationship can be given as 

jigggh kjkikikiki  ),( ,,,,, 
            

(2)
 

Where, 

},...,2,1{ nj   

},...,2,1{ Nk   

ki , is an arbitrary number in the range [−1, 1]. 

The position update equation interprets that a decrease in the 

deviation between the parameters of kig ,
and kjg ,

leads to a 

decrease in the perturbation on the position kig ,
 . Hence 

adaptive reduction in the step length happens, when optimal 

solution in the search space has reached. Reformulating the 

position updating step leads to the following equation. 

)( ,,,,, kjkikikiki gggh  
                           

(3) 

A time domain representation can be given for the position 

update equation by considering kig ,
 as lX  when kih ,

is taken 

as
1l

X . Hence, we obtain 

)( ,,,1 kjkikil ggXX
l





                         

(4) 

As lXX
l


1
 refers to discrete version of the derivative of 

order 1 , we can write 

)(][ ,,,1 kjkikil ggXD  

                          
(5) 

 

Scout Bee phase 

The scout bees are the employed bees whose food sources are 

abandoned by the employed and onlooker bees. They search 

randomly and replace the abandoned food sources by new 

food sources. This process can be simulated by replacing the 

abandoned solution by randomly generated solution. A food 

source is said to be abandoned, when the position does not 

provide any improvements over a pre-defined number of 

iterations, often termed as limits. A typical ABC algorithm 

enables the scout bees to search the solutions arbitrarily within 

the vicinity of the hive. This style of search may be 

advantageous at the beginning stages of iterations, but it may 

fail at the final stage of iterations. Hence, global search is 

recommended for scout bee at the initial stage and local search 

at the final stage of iterations. As there may not be any 

improvement even from the best food source at the final 

iterations, the scout bees are selected and removed from the 

population. Hence, ABC works out to determine the suitable 

weight for each network node to increase the classification 

performance. 

 

RESULT AND DISCUSSION 

The proposed method is implemented in Netbeans 7.4, which 

is a renowned platform to use for effort estimation process 

because of its compatibility. The platform offers variety of 

applications that can be developed from a set of components, 

which are often referred as modules. As Netbeans has the 

collective set of modules as built – in functions to develop 

program, it is convenient for any user to initiate the work 

immediately. The study considers Desharnais dataset, which 

has 81 projects with incompleteness in 4 projects that can be 

removed. There are nine independent variables and one 

dependant variable in the dataset. 

Despite numerous error measures are in practice, the most 

renowned error measure is Mean Absolute Relative Error 

(MARE). 

  
 n

e eAeAeEMARE
1

)/(
                  

(6) 

where, 

eE - Estimated effort 

eA -Actual effort 

 

A. Experimental Results 

The obtained experimental outcomes from the proposed 

method are tabulated in Table 1. The actual effort and the 

estimated efforts are determined for various sizes followed by 

determining the Magnitude of Relative Error (MRE) for each 

entry. The actual effort is typically lesser than the estimated 

effort. As per the equation (8) given below in the performance 

evaluation section, MMRE for the efforts are determined for 

the execution time 
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Table 1. Effort Estimates and MRE 

 

No Original effort Estimated effort MRE 

 

1 7538.342 2199.522 0.708222 

2 5037.401 2357.995 0.531902 

3 797.177 380.125 0.523161 

4 4926.516 1696.964 0.655545 

5 3341.558 996.325 0.701838 

6 4195.771 1207.623 0.712181 

7 3157.767 1095.779 0.652989 

8 5510.152 1661.626 0.698443 

9 4817.673 3108.069 0.354861 

10 2445.469 995.483 0.592928 

11 5735.558 1730.208 0.698337 

12 7249.34 3546.582 0.510772 

13 1452.7 913.559 0.37113 

14 5002.478 1745.231 0.651127 

15 5674.268 2139.205 0.622999 

16 3098.382 775.079 0.749844 

17 4038.353 1269.224 0.685708 

18 7007.879 1530.824 0.781557 

19 7885.784 1900.384 0.759011 

20 1633.202 399.754 0.755233 

21 9488.004 5987.829 0.368905 

22 8337.024 2111.167 0.746772 

23 7422.679 2544.948 0.657139 

24 7847.99 4252.522 0.458139 

25 7045.08 1694.464 0.759483 

26 6071.397 1417.001 0.76661 

27 5218.878 1544.466 0.704062 

28 8758.911 1971.126 0.774958 

29 6666.486 2881.585 0.567751 

30 7795.007 1842.441 0.763638 

 

B. Performance Analysis 

The equations that are given below are used to determine MRE 

and MMRE. 

eAeEeAMRE /)-(
                          

(7) 

where, 

eE - Estimated effort 

eA -Actual effort. 

The MMRE calculation for the estimated effort can 

be done using equation (7). The proposed method has 

accomplished better MMRE than other fuzzy – based works. 





n

i
iMRE

n
MMRE

1

1

                        

(8) 

where n= number of data * attributes taken 
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Figure 4. Graphical representation for Effort Estimates 

 

The graphical illustration of the obtained effort value from the 

proposed method is affixed in Figure 4 in which the actual 

effort is relatively higher than the estimated effort values. 

The accomplished improvement in effort estimation is 

observed using MMRE and MARE of the proposed method 

prior optimization and post optimization process. The obtained 

values are tabulated below. 

 

Table 2. Parameter values before and after applying ABC 

algorithm for optimization. 

Parameters Proposed Results in (%) 

Before Optimization After Optimization 

MMRE 13.608 0.6428 

MARE 65.639 19.28524 

 

The performance improvement accomplished from post – 

optimization process is better illustrated using the following 

figure, where the error values obtained from prior optimization 

and post optimization are plotted. 

 

Figure 5. Parameter values before and after applying ABC 

algorithm for optimization 

 

The effectiveness of the proposed method is then proved by 

compariing it with existing methods through MMRE 

measurements obtained from proposed and existing methods. 

The values are tabulated in Table 2, where MMRE is given in 

percentage. 

Table 3. MMRE measurements for the proposed and existing 

methods. 

METHODS MMRE (%) 

Proposed Method 0.6428 

Fuzzy method 30. 6 

Analogy with fuzzy number 26.89 

 

Figure 6 portrays the graphical illustration of comparative 

results between the proposed method and the existing method 

based on MRE and MMRE measurements. Here, the 

comparison interms of MMRE is made between the proposed 

system and the existing methods given in [21]. The graphical 

illustration demonstrates that the proposed method 

outperforms the existing methods in terms of efficiency. 

 

 

Figure 6. The comparison of MMRE measure for the 

proposed method 

 

CONCLUSION 

Designing a software system requires software effort 

estimation significantly. Numerous research works have been 

carried out to increase the precision of effort estimate of the 

software system. This paper has proposed a novel approach to 

estimate the software effort precisely. The approach has been 

contributed by neural network classification process and an 

optimization process. The neural network has classified 

various software parameters. For betterment of classification 

performance, ABC has been used to optimize the weights of 

neural network. Error parameters such as MRE, MMRE and 

MARE have been determined and performance comparison 

has been made with the existing method. The experimental 

outcomes have demonstrated the proposed system outperform 

the existing method in estimating the software effort more 

precisely. 
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