
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3890

An Efficient Software Effort Estimation by Combining Neural Network and

Optimization Technique

1Azath. H, 2Dr. P. Amudhavalli, 3Dr. S. Rajalakshmi and 4Dr. M. Marikannan

1Research Scholar, Karpagam Academy of Higher Education, Coimbatore, India.

Orcid Id: 0000-0002-7734-7745
2Research Supervisor & Professor, Department of Computer Science and Engineering, Karpagam Academy of Higher Education,

Coimbatore, India.
Orcid Id: 0000-0001-6979-4847

3Professor & Head, Department of Computer Science and Engineering, Cheran College of Engineering, Karur, India.
Orcid Id: 0000-0003-4768-1029

4Professor, Department of Computer Science and Engineering, IRTT, Erode, India.

Orcid Id: 0000-0002-6983-1238

Abstract:

Estimating software efforts poses high challenge to both

customers and developers. When the estimated effort is not

precise, the management may be in menace of agreeing

systems that may go beyond their budget, substandard with

poorly developed functions and time consuming more than

deadline. Hence, estimation of effort in an effective manner

has become a significant task in the software development

process, despite various difficulties ahead in doing so. The

process also includes multiple steps to validate the minimized

error. This paper introduces a novel approach for effort

estimation based on diverse databases. The approach exploits

neural network to aid in effort estimation with reduced cost

and failure ratio. The neural network, which is presented here,

is enhanced by incorporating optimization process. The

optimization process selects weights for the neural network in

such a way that improvement can be made on the classification

model. In our method, the optimization process is carried out

using Artificial Bee Colony (ABC) algorithm. The

performance of the proposed model is investigated using

parameters such as Mean Absolute Relative Error (MARE)

and Mean Magnitude of Relative Error (MMRE). Performance

comparison with existing models proves the competitive

performance of the proposed model over the conventional

models.

INTRODUCTION

The primary aim of software engineering can be portrayed as

designing tools and techniques that aid in developing high

quality, steady and maintainable applications. Several

measurements are used by the developers and managers to

validate and increase the quality of the application [7]. Any

software product on openly available source components

depends on many business and technical targets such as

improved quality, short and firm development deadlines,

limited development expenditures, source code accessibility,

etc [3]. While evolution takes place in software, its structure

has a primary impact on enhancement intensive locations, for

instance, enhancing the implemented functionality [14, 15].

Software cost and efforts estimation is become a challenge for

IT industries. There are lots of methods existing for efforts and

cost estimation, but people do not know how to use these

methods [22].

The software quality models must have the ability to identify

crucial elements accurately. The elements that are determined

as crucial must allow the application for specific certification

tasks. The certification task may range from inspecting

physically to static and dynamic analysis, testing and

automatic formal analysis techniques. The software quality

models also help in defining the reliability of the dispatched

products. Numerous statistical models have been reported to

estimate fault – proneness of program modules in software

engineering [4].

Software project management is responsible for precisely

envisaging the work – effort and duration to develop and/or

manage a software system. The process is called software cost

estimation [17], which is well-known for its significance on

software project management. In order to make the managerial

decision making process a successful phenomenon, estimation

of software development effort must be accurate. Since the

development cost is directly proportional to the project

complexity, the early stage of development requires precise

cost estimation [2]. It also acts as an essential component of

infrastructure projects. Increased estimation accuracy helps the

project managers to find alternatives and to get rid of

underestimating technical and business solutions. When the

project reaches the final stage, the accuracy of estimated cost

will be high because of precise and comprehensive

information at this stage [1].

The process of software cost estimation by analogy can be said

as a prominent machine learning methodology. It can also be

referred as a basic form of case based reasoning. The analogy

based estimation is performed on the basis of assumption that

mailto:writetoazath@yahoo.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3891

like software projects it incurs the same project costs.

Nevertheless, categorical variables on cost have to be handled

by improved techniques [11]. Size, efforts to be put forth,

development duration, adopted technology and ensured quality

are the potential subjects of estimation in software

development. Despite various effort models have been

introduced, they consider software size as significant

parameter, when the development effort has to be considered

as the most significant subject. For instance, function point is a

measurement model of software size. It exploits logical

function terms that make both users and owners understand

easily. However, the measured size remains constant, because

it considers only the functional requirements irrespective of

the contribution of programming language, design technology

and development skills [13].

The cost estimation process may face the following problems.

 Difficulty ahead in mapping cost – affecting factors

with output metrics, because these factors exhibit

nonlinearity

 Difficulties in measuring the metrics because of

incompleteness and imprecision of data acquired at

initial stage

 Though numerous models prevail for estimation,

challenges remain in identifying suitable model for

the current circumstance and

 Difficulties in combined usage of algorithmic and

non – algorithmic models [12].

Nowadays, the community is highly relying on information

technology and software systems. This necessitates an

appropriate estimation method as it has a wide impact on

project cost and quality. Numerous estimation models have

been reported in the literature, where more researchers sill

intend to formulate better estimation models [18]. The rest of

the paper is organized as follows. Section 2 presents a review

report on recent research works. Section 3 details the proposed

methodology, which includes effort estimation using neural

network and optimization process. Section 4 discusses the

results of the proposed technique.

RELATED RESEARCHES

The focus on using soft computing techniques for estimating

software effort has been significantly increased through

various research works. This Section presents the review on

few of the methodologies.

Rao et al [5] have estimated cost using a computationally

efficient Functional Link Artificial Neural Network (FLANN).

By reducing the computational complexity, the neural net can

be used for online applications. The network has exhibited a

simple architecture without any full back propagation training

and hidden layer. The adaptive neural network has worked

efficiently by firstly using COCOMO approach for estimating

the software cost and then by using FLANN with backward

propagation. The entire network has remained as “white box”

because of its comprehensive analysis on every neuron. The

simple architecture and appropriate training by back

propagation algorithm has ensured better accuracy than other

methods.

Reddy et al. [6] have introduced a model to estimate the

software effort. The model was based on artificial neural

network and designed in such a way that the network

performance can be adequately improved so as to meet the

COCOMO model requirements. Multilayer feed forward

neural network has been used for the model and its parameters,

which has aided in estimating the software development effort.

Back propagation learning has trained the network by iterative

comparison of actual effort and network’s prediction, when a

training set has been given as input. The neural network model

has outperformed over other model in terms of estimation

accuracy, when experimentation has been carried out on

COCOMO dataset.

Though various research eras have crossed, no attempt has

been made to identify the most established software effort

estimation methods to ensure superior accuracy. Moreover, it

has been reported in the literature that there is no consistent

performance by any of M estimation methods that have been

considered for study. Certain assertions have been made to

develop ensembles of various estimation methods rather than

identifying best estimation method. Ekrem et al. [8] have

introduced a method, which has unified nine learners with ten

preprocessing techniques so that 9 10 ¼ 90 solo methods can

be developed. Experimentation has been carried out using 20

datasets and investigation has been done using seven error

measurements. The experimental outcome has revealed top n

(here, n ¼ 13) individual methods, which have exhibited

performance stability on varying datasets and error

measurements. The obtained best 2, 4, 8, and 13 individual

methods have been unified to produce 12 multi – methods that

have been further subjected to compare with the individual

methods.

Given a small significant content, there should be a concise

information and minimal value added to the complex learning

schemes. Ekrem et al. [9] have introduced a QUICK method,

which has determined the Euclidean distance between

instances (rows) and features (columns) of SEE data. Further,

it has pruned synonyms and outliers, which are similar

features and distant instances, respectively, followed by

evaluating the reduced data. The data reduction has been done

by comparing predictions that have been obtained from (1) a

simple learner and (2) a state – of – the – art learner (CART),

which used reduced data and collective data, respectively.

Performance investigation has been carried in hold – out

experiments using mean and median MRE, MAR, PRED and

MBRE.

Since software cost estimation process estimates the amount of

effort and time to put forth to develop a software system, it is

considered as the most significant process. It is also

considered as a crucial task. A precise estimate can provide a

strong fundamental for the development procedure. Anupama

et al [10] have explained Constructive Cost Model

(COCOMO), which is a renowned software cost estimation

model. Artificial neural network with perceptron learning

algorithm has facilitated the implementation of the model. The

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3892

training and validation of the network have been carried out

using COCOMO dataset.

In the recent era, effort to put forth in a software project is the

most analyzed variable and estimating the effort has been

found as the most tedious task in a project management

process. However, a software cost estimation technique

facilitates this task by estimating the amount of effort to put

forth and development duration to construct the software

system. It has been considered as a significant task to help the

software sectors in managing the development process

proficiently. Numerous cost estimation models have been

reported in the literature, where each model has portrayed its

own merits and demerits in envisaging the development cost

and effort. Anupama et al. [16] have worked out on estimating

software cost using back propagation neural networks. The

developed model can cope up with renowned COCOMO

model and work for its performance improvement. It has the

ability to handle imprecision and uncertainty of the input and

to improve the reliability of the estimated software cost. The

experimentation of the model has been carried out on three

openly available software development datasets.

The software cost estimation process is a difficult and time

consuming task. Analogy – based estimation of software effort

has been claimed as one of the viable techniques in the field.

However, the method remains incapable in a circumstance of

precise handling of categorical data. Initially, the software

effort estimation models were developed based on regression

analysis and mathematical models. But nowadays, the models

are on the basis of simulation, soft computing, genetic

algorithm, neural network, fuzzy logic modeling, etc. Ziauddin

et al. [17] have attempted to increase the software effort

estimation accuracy by exploiting fuzzy logic model. The

approach has fuzzified the input variables of COCOMO II

model and defuzzified the output variable to obtain the

estimated effort. The linguistic terms for COCOMO II model

have been defined using triangular fuzzy membership

functions.

Software development effort estimation was considered a

fundamental task for software development life cycle as well

as for managing project cost, time and quality. Therefore,

accurate estimation was a substantial factor in projects success

and reducing the risks. In recent years, software effort

estimation has received a considerable amount of attention

from researchers and became a challenge for software

industry. In the last two decades, many researchers and

practitioners proposed statistical and machine learning-based

models for software effort estimation. Ghatasheh [23] have

proposed Firefly Algorithm as a metaheuristic optimization

method for optimizing the parameters of three COCOMO-

based models. These models include the basic COCOMO

model and other two models proposed in the literature as

extensions of the basic COCOMO model. The developed

estimation models are evaluated using different evaluation

metrics.

PROPOSED METHOD FOR SOFTWARE EFFORT

ESTIMATION

Software designing faces a significant task, called software

effort estimation, which is a process of estimating the effort to

put forth to construct a software system. However, the process

of software effort estimation is a tedious task and hence it

remains as a potential research platform since past few

decades. The cost and time estimates can be used for initial

coarse validation and for monitoring the progress of project

development at the development stage, whereas, they can be

used for evaluating the productivity of the project at the final

stage. As a whole, effort estimation aids in developing fulfilled

proficient software. Our method exploits soft computing for

estimating the software effort, where classification is

performed using neural network. The weights of the neural

network are optimized using optimization algorithm.

A.Steps involved in the Effort Estimation Process

Generally, various software parameters are used by the

estimation process to determine the effort to put forth for

developing the particular software. Figure 1 portrays the steps

that constitute the proposed effort estimation process. The

dataset is comprised of numerous parameters that are used to

determine the actual and estimated efforts followed by

calculating MRE value. Consequently, these values are

classified by applying classification process for which neural

network is used. It helps to identify the suitable parameter

value to perform the process. In our method, the neural

network is enhanced by optimizing the weights using

optimization algorithm. Here, ABC is used to solve the

purpose. Unifying ABC here helps in improving the

classification process. Eventually, an effort value from the

classifier is obtained and it is considered as the near – best

effort value with reduced error rates.

Figure 1. Proposed software effort estimation model.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3893

The dataset is comprised of numerous parameter values that

have to be subjected to classification. Hence, these values are

applied to the neural network for classification of relevant

parameters. The following section details the classification

process of neural network.

B. Training in Neural Network

The software parameter values are acquired from the dataset

and given as input to the neural network classifier to perform

classification. The general training of neural network enable

mapping the input to a specific output. The neural network is

highly compatible with the classification process. The feed

forward neural network is exploited in the training phase of

the proposed method. Comparison is made between the

parameter values and the input files followed by classifying

the suitable parameters. A neural network is comprised of

three layers namely, input layer, hidden layer and output layer.

The basic architecture of the feed forward neural network can

be observed from Figure 2.

Figure 2. General Feed Forward Neural Network

Architecture.

ABC, which is an optimization algorithm, works in the

proposed method to allocate weights on different nodes of the

neural network. In other words, ABC determines relative

weights.

Proposed Artificial Bee Colony for Optimization of weights

in Neural Network:

In an ABC model, a food source position refers to a possible

solution for the optimization problem, whereas nectar quantity

of a food source refers to the quality (fitness) of the respective

solution. The objective of bees is set as to determine the best

solution [20]. Each employed bee shares the information with

an onlooker bee and flies back to the food source, which was

visited by it in the previous wandering. This process is

undertaken since the memory keeps the record of the food

source. The employed bee selects a new food source using the

visual knowledge about the neighborhood of the one stored in

the memory and assesses the nectar amount [19].

Employee Bee Phase

There are three bee groups in the artificial bee colony. They

are employed bees, onlooker bees and scout bees. An

employed bee is a bee that flies back to its previously visited

food source, whereas an onlooker bee is a bee resides in the

dancing area to decide on the food source to be selected. Scout

bees are bees that undergo random wandering for food source.

The employed bees contribute the first half of the colony,

whereas the rest is contributed by onlooker bees. Each

employed bee contributes by a food source. In other words, the

number of food sources around the hive and the number of

employed bees is same.

Initially, the employed bees select random set of food source

positions for which the nectar amounts are calculated. They

reach the hive and distribute the nectar information of the food

sources to the onlooker bees, which are in the dancing region

of the hive. In the perspective of algorithm, arbitrary set of

initial population ip with n solutions, where each solution

is the food source position and pS is the population size is

generated. The solution representation can be given as

niwherehi 1, is an N-dimensional vector and N is the

number of parameters to be optimized. Once the population is

initialized, it is subjected to the iterative process that involves

employed bees, onlooker bees and scout bees.

Onlooker Bee Phase

This phase enables the onlooker bees to select the food sources

based on the nectar information obtained from the employed

bees and to generate new set of solutions. Generally, the

onlooker bee is font of food source area, which has substantial

nectar information shared by the employed bees in the dancing

region of the hive. The probability of selecting a food source

by an onlooker bee is directly proportional to the nectar

amount of the food source. Hence, the employed bee dancing

with higher nectar value assigns an onlooker bee for the food

position. The probability of selecting a food source (sF) by an

onlooker bee can be given as follows.





n

k
k

i
s

f

f
F

1

 (1)

where,

if refers to fitness of the solution and

n refers to the number of food sources which is equal to the

number of employed bees.

The onlooker bee reaches the selected food source and selects

a new neighborhood of the selected food source based on

visual knowledge. The visual knowledge is obtained by

comparing both the food positions. When the bee abandons a

food source due to its lesser nectar value, the scout bee

generates a new random food source and fills the abandoned

position. The onlooker bee modifies the food source position

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3894

stored in the memory and hence finds new food source and

validates the nectar amount (fitness) of it.

If we consider an old position kig ,
and a new position kih ,

,

the relationship can be given as

jigggh kjkikikiki ),(,,,,, 

(2)

Where,

},...,2,1{ nj 

},...,2,1{ Nk 

ki , is an arbitrary number in the range [−1, 1].

The position update equation interprets that a decrease in the

deviation between the parameters of kig ,
and kjg ,

leads to a

decrease in the perturbation on the position kig ,
 . Hence

adaptive reduction in the step length happens, when optimal

solution in the search space has reached. Reformulating the

position updating step leads to the following equation.

)(,,,,, kjkikikiki gggh  

(3)

A time domain representation can be given for the position

update equation by considering kig ,
 as lX when kih ,

is taken

as
1l

X . Hence, we obtain

)(,,,1 kjkikil ggXX
l






(4)

As lXX
l


1
 refers to discrete version of the derivative of

order 1 , we can write

)(][,,,1 kjkikil ggXD  

(5)

Scout Bee phase

The scout bees are the employed bees whose food sources are

abandoned by the employed and onlooker bees. They search

randomly and replace the abandoned food sources by new

food sources. This process can be simulated by replacing the

abandoned solution by randomly generated solution. A food

source is said to be abandoned, when the position does not

provide any improvements over a pre-defined number of

iterations, often termed as limits. A typical ABC algorithm

enables the scout bees to search the solutions arbitrarily within

the vicinity of the hive. This style of search may be

advantageous at the beginning stages of iterations, but it may

fail at the final stage of iterations. Hence, global search is

recommended for scout bee at the initial stage and local search

at the final stage of iterations. As there may not be any

improvement even from the best food source at the final

iterations, the scout bees are selected and removed from the

population. Hence, ABC works out to determine the suitable

weight for each network node to increase the classification

performance.

RESULT AND DISCUSSION

The proposed method is implemented in Netbeans 7.4, which

is a renowned platform to use for effort estimation process

because of its compatibility. The platform offers variety of

applications that can be developed from a set of components,

which are often referred as modules. As Netbeans has the

collective set of modules as built – in functions to develop

program, it is convenient for any user to initiate the work

immediately. The study considers Desharnais dataset, which

has 81 projects with incompleteness in 4 projects that can be

removed. There are nine independent variables and one

dependant variable in the dataset.

Despite numerous error measures are in practice, the most

renowned error measure is Mean Absolute Relative Error

(MARE).

  
 n

e eAeAeEMARE
1

)/(

(6)

where,

eE - Estimated effort

eA -Actual effort

A. Experimental Results

The obtained experimental outcomes from the proposed

method are tabulated in Table 1. The actual effort and the

estimated efforts are determined for various sizes followed by

determining the Magnitude of Relative Error (MRE) for each

entry. The actual effort is typically lesser than the estimated

effort. As per the equation (8) given below in the performance

evaluation section, MMRE for the efforts are determined for

the execution time

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3895

Table 1. Effort Estimates and MRE

No Original effort Estimated effort MRE

1 7538.342 2199.522 0.708222

2 5037.401 2357.995 0.531902

3 797.177 380.125 0.523161

4 4926.516 1696.964 0.655545

5 3341.558 996.325 0.701838

6 4195.771 1207.623 0.712181

7 3157.767 1095.779 0.652989

8 5510.152 1661.626 0.698443

9 4817.673 3108.069 0.354861

10 2445.469 995.483 0.592928

11 5735.558 1730.208 0.698337

12 7249.34 3546.582 0.510772

13 1452.7 913.559 0.37113

14 5002.478 1745.231 0.651127

15 5674.268 2139.205 0.622999

16 3098.382 775.079 0.749844

17 4038.353 1269.224 0.685708

18 7007.879 1530.824 0.781557

19 7885.784 1900.384 0.759011

20 1633.202 399.754 0.755233

21 9488.004 5987.829 0.368905

22 8337.024 2111.167 0.746772

23 7422.679 2544.948 0.657139

24 7847.99 4252.522 0.458139

25 7045.08 1694.464 0.759483

26 6071.397 1417.001 0.76661

27 5218.878 1544.466 0.704062

28 8758.911 1971.126 0.774958

29 6666.486 2881.585 0.567751

30 7795.007 1842.441 0.763638

B. Performance Analysis

The equations that are given below are used to determine MRE

and MMRE.

eAeEeAMRE /)-(

(7)

where,

eE - Estimated effort

eA -Actual effort.

The MMRE calculation for the estimated effort can

be done using equation (7). The proposed method has

accomplished better MMRE than other fuzzy – based works.





n

i
iMRE

n
MMRE

1

1

(8)

where n= number of data * attributes taken

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3896

Figure 4. Graphical representation for Effort Estimates

The graphical illustration of the obtained effort value from the

proposed method is affixed in Figure 4 in which the actual

effort is relatively higher than the estimated effort values.

The accomplished improvement in effort estimation is

observed using MMRE and MARE of the proposed method

prior optimization and post optimization process. The obtained

values are tabulated below.

Table 2. Parameter values before and after applying ABC

algorithm for optimization.

Parameters Proposed Results in (%)

Before Optimization After Optimization

MMRE 13.608 0.6428

MARE 65.639 19.28524

The performance improvement accomplished from post –

optimization process is better illustrated using the following

figure, where the error values obtained from prior optimization

and post optimization are plotted.

Figure 5. Parameter values before and after applying ABC

algorithm for optimization

The effectiveness of the proposed method is then proved by

compariing it with existing methods through MMRE

measurements obtained from proposed and existing methods.

The values are tabulated in Table 2, where MMRE is given in

percentage.

Table 3. MMRE measurements for the proposed and existing

methods.

METHODS MMRE (%)

Proposed Method 0.6428

Fuzzy method 30. 6

Analogy with fuzzy number 26.89

Figure 6 portrays the graphical illustration of comparative

results between the proposed method and the existing method

based on MRE and MMRE measurements. Here, the

comparison interms of MMRE is made between the proposed

system and the existing methods given in [21]. The graphical

illustration demonstrates that the proposed method

outperforms the existing methods in terms of efficiency.

Figure 6. The comparison of MMRE measure for the

proposed method

CONCLUSION

Designing a software system requires software effort

estimation significantly. Numerous research works have been

carried out to increase the precision of effort estimate of the

software system. This paper has proposed a novel approach to

estimate the software effort precisely. The approach has been

contributed by neural network classification process and an

optimization process. The neural network has classified

various software parameters. For betterment of classification

performance, ABC has been used to optimize the weights of

neural network. Error parameters such as MRE, MMRE and

MARE have been determined and performance comparison

has been made with the existing method. The experimental

outcomes have demonstrated the proposed system outperform

the existing method in estimating the software effort more

precisely.

REFERENCE

[1] Jamshid Sodikov, "Cost Estimation of Highway

Projects in Developing Countries: Artificial Neural

Network Approach", Journal of the Eastern Asia

Society for Transportation Studies, Vol. 6, pp.1036-

1047, 2005.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3890-3897

© Research India Publications. http://www.ripublication.com

3897

[2] Ch. Satyananda Reddy and KVSVN Raju, "An Optimal

Neural Network Model for Software Effort Estimation"

Int. J. of Software Engineering, IJSE Vol.3, No.1,2010.

[3] Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen and

Imed Hammouda, "Update Propagation Practices in

Highly Reusable Open Source Components", In. proc.of

20th World Computer Congress on Open Source

Software, Milano, Italy, Vol. 275, pp.159-170, Sep 7-

10, 2008.

[4] Yue Jiang, Bojan Cukic and Yan Ma, “Techniques for

Evaluating Fault prediction models”, Springer Journal

of Software Engineering, pp. 561–595, 2008.

[5] B. Tirimula Rao, B. Sameet, G. KiranSwathi, K.

Vikram Gupta, Ch. Ravi Teja and S. Sumana, "A Novel

Neural Network Approach for Software Cost

Estimation Using Functional Link Artificial Neural

Network (FLANN)", International Journal of Computer

Science and Network Security, VOL.9 No.6,2009.

[6] Ch. Satyananda Reddy and KVSVN Raju, "A Concise

Neural Network Model for Estimating Software Effort",

International Journal of Recent Trends in Engineering,

Issue. 1, Vol. 1,2009.

[7] Jehad Al Dallal, "Mathematical Validation of Object-

Oriented Class Cohesion Metrics", International Journal

of Computers, Vol. 4, No.2, 2010.

[8] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung,

"On the Value of Ensemble Effort Estimation", IEEE

transactions on software engineering, Vol. 38, No. 6,

2012.

[9] Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David

Cok and Ray Madachy, "Active Learning and Effort

Estimation:Finding the Essential Content of Software

Effort Estimation Data", IEEE Transactions on

Software Engineering, Vol.39, No.8,2013.

[10] Anupama Kaushik, Ashish Chauhan, Deepak Mittal and

Sachin Gupta, "COCOMO Estimates Using Neural

Networks", I.J. Intelligent Systems and Applications,

Vol.9, pp.22-28, 2012.

[11] S.Malathi and Dr.S.Sridhar, "Estimation of Effort in

Software Cost Analysis For Heterogenous Dataset

Using Fuzzy Analogy, “International Journal of

Computer Science and Information Security,Vol.10,

No.10, 2012.

[12] Divya Kashyap, Ashish Tripathi and Prof. A. K. Misra,

"Software Development Effort and Cost Estimation:

Neuro-Fuzzy Model", Journal of Computer

Engineering, Vol.2, No.4, pp.12-14, 2012.

[13] Mohammad Saber Iraji and Homayun Motameni,

"Object Oriented Software Effort Estimate with

Adaptive Neuro Fuzzy use Case Size Point

(ANFUSP)", I.J. Intelligent Systems and Applications,

Vol.6, pp. 14-24,2012

[14] Parag C. Pendharkar, "Probabilistic estimation of

software size and effort", Expert Systems with

Applications, Vol. 37, pp.4435–4440,2010.

[15] Andrzej Olszak, Eric Bouwers, Bo Nrregaard Jrgensen

and JoostVisser, "Detection of Seed Methods for

Quantification of Feature Confinement", Inproc.of the

50th International Conference on Objects, Models,

Components, Patterns, 2012.

[16] Anupama Kaushik, A.K. Soni and Rachna Soni, "A

Simple Neural Network Approach to Software Cost

Estimation", Global Journal of Computer Science and

Technology Neural & Artificial Intelligence, Vol.13,

No.1, 2013.

[17] Ziauddin, Shahid Kamal, Shafiullah khan and Jamal

Abdul Nasir, "A Fuzzy Logic Based Software Cost

Estimation Model", International Journal of Software

Engineering and Its Applications, Vol. 7, No. 2,2013.

[18] Ihtiram Raza Khan and Prof. M. Afshar Alam,

"Software cost estimation using a Neuro-Fuzzy

algorithmic approach", International Journal of

Computer Science and Management Research, Vol. 2

No.7,2013.

[19] Dervis Karaboga, Bahriye Akay, A comparative study

of Artificial Bee Colony algorithm, Journal of Applied

Mathematics and Computation, Vol. 214, Pp. 108–132,

2009.

[20] Dervis Karaboga and Celal Ozturk, Fuzzy clustering

with artificial bee colony algorithm, Journal of

Scientific Research and Essays, Vol. 5, No. 14, pp.

1899-1902, 2010.

[21] S.Malathi and Dr.S.Sridhar, "Estimation Of Effort In

Software Cost Analysis For Heterogenous Dataset

Using Fuzzy Analogy",International Journal of

Computer Science and Information Security,Vol.10,

No.10,2012.

[22] Poonam Rijwani, Sonal Jain and Dharmesh Santani,

"Software Effort Estimation: A Comparison Based

Perspective", International Journal of Application or

Innovation in Engineering & Management, Vol.3,

No.12, 2014.

[23] Nazeeh Ghatasheh, Hossam Faris, Ibrahim Aljarah and

Rizik M. H. Al-Sayyed, "Optimizing Software Effort

Estimation Models Using Firefly Algorithm”, Journal

of Software Engineering and Applications, Vol.8,

pp.133-142,2015.

