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Abstract 

One of the most popular approaches for generating non-dominated 

solutions of a multi-objective optimization problem is the 

evolutionary algorithms. The need of an approximation to the non-

dominated set for the decision maker for selecting a final preferred 

solution is required in several real-life applications . Unfortunately, 

the cardinality of the Pareto optimal solutions' set may be very large 

or even infinite. On the other hand, due to the overflow of 

information, the decision maker (DM) may not be concerned in 

having an excessively large number of Pareto optimal solutions to 

deal with. In this paper, a new enhanced evolutionary algorithm is 

presented, our proposed algorithm has been enriched with modified 

k-means cluster scheme, On the first hand, in phase I, K-means 

clustering method is implemented to partition the population into a 

determined number of subpopulation with-dynamic-size, where 

distinct genetic algorithms (GAs) operators can be applied to each 

sub-population, instead of one GAs operator applied to the whole 

population. On the other hand, phase II uses K-means algorithm in 

order to make the algorithms practical by allowing a decision maker 

to control the resolution of the Pareto-set approximation by choosing 

an appropriate k value ( no of required clusters). To prove the 

excellence of the proposed approach compared to state-of-the-art 

evolutionary algorithms, diverse numerical studies will be done using 

a suite of multimodal test functions taken from the literature. 

Keywords: K-means cluster algorithm, evolutionary approaches, 

constrained optimization, multiobjective optimization 

 

INTRODUCTION  

Multiobjective Optimization Problems (MOPs) are those 

having more than one objective. There are a set of possible 

solutions and there is no unique optimum solution. these 

solutions are optimal in the wider sense that no other solutions 

in the search space are dominate them when all objectives are 

considered. As in [1,2], these solutions are called Pareto 

optimal solutions. Surely, MOPs appear in several areas of 

knowledge for example economics [3-6], machine learning [6-

8] and electrical power system [9-12]. A few developed 

evolutionary algorithms are constructed for solving the 

constrained multi-objective optimization problems. In spite of 

the several studies for solving the constrained optimization 

problems; there are no enough studies concerning the 

procedure for handling constraints. As an instance, in [13], 

treating constraints as high-priority objectives was suggested 

by Fonseca. In [14] by Harada, a few effective constraint-

handling guidelines were suggested and a Pareto descent 

repair method was constructed. For MOPs, because the 

objective vector cannot be directly assigned as the fitness 

function value, it is always needed a correctly constructed 

algorithm for fitness assignment. Using the Pareto dominance 

relationship, the values of the fitness functions are assigned by 

most of the existing MOEAs [15-16]. 

AL Malki et al.[17] have presented Hybrid Genetic K-Means 

algorithm for Identifying the Most Significant Solutions from 

Pareto Front. They have implemented clustering techniques to 

organize and classify the solutions for various problems. In 

[18], the Hybrid Genetic Algorithm with K-Means has been 

presented by Al Malki et al. to solve the Clustering Problems. 

They have succeeded to eliminate the empty cluster problem 

by using a hybrid form of the k-means algorithm and GAs. 

Their proposition was be proved by the results of simulation 

tests via various data collections. The use of K-means 

clustering technique in [19] enable the algorithm to implement  

various operators of GA to each subpopulation rather than 

utilizing a single GA operator for all population.  

In this article, a new optimization algorithm is proposed 

which runs in two stages: in the first stage, the algorithm 

combines all principal characteristics of K-means with GA 

clustering method and uses it as a search engine to produce 

the correct Pareto optimal front. The use of K-means 

clustering technique enable the algorithm to implement  

various operators of GA to each subpopulation rather than 

utilizing a single GA operator for all population.   

Then in the second phase, k  -means cluster algorithm is 

adopted as reduction algorithm in order to improve the spread 

of the solutions found so far. Our proposed algorithm has been 

enriched with modified k-means cluster scheme, the use of k  

-means also makes the algorithms practical by allowing a 

decision maker to control the resolution of the Pareto-set 

approximation by choosing an appropriate k  value. k -means 

clustering aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the 

nearest mean.  Finally, various kinds of multi-objective  

benchmark problems have been reported to stress the 

importance of hybridization algorithms in generating Pareto 

optimal sets.  Simulation results with the proposed approach 

will be compared to those reported in the literature. The 

comparison will demonstrate the superiority of the proposed 

approach and confirms its potential to solve the multi-

objective optimization problems. 

The organization of this paper is as follows: Multi-objective 

optimization problem is presented in Section 2. Overview of 

GAs are presented in Section 3. Clustering Algorithms are 

introduced in Section 4. K-Means for clustering problems is 

introduced in section 5. The proposed algorithm is presented 

http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Mean
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in section 6. The Simulation results are discussed in Section 7. 

Finally, we conclude the paper in Section8. 

 

MULTIOBJECTIVE OPTIMIZATION (MO)  

Mathematically, a general minimization problem of 

M objectives can be presented as [20-21]:  

      

() ()

()
()

Minimize:                            ,  1, 2, ...,
   1

subject to the constraints:    0,  1, 2, ..., .

i

j

f x f x i M

g x j J

ûè ø= = îê ú
ü

¢ = îý  

and [ ]1 2, ,..., ,nx x x x=  where the dimension of the 

decision variable space is equal n , the i-th objective function 

is
 
()if x  and the j-th inequality constraint is ()jg x . Then 

the main task of the MO problem is to find x  that optimize 

()if x . The evaluation of the solutions uses the concept of 

the Pareto dominance because the notion of an optimum 

solution in MO is different compared to the single objective 

optimization (SO).  

Definition 1: (Pareto dominance). A vector 

( )1 2, ,..., Mu u u u= is said to dominate a vector 

( )1 2, ,..., Mv v v v=  (u dominate v denoted by  u v ), 

for a MO minimization problem, if and only if 

        

{ } { } (),..., ,  ,..., :                                          2i i i ii i M u v i i M u v" Í ¢ Ø$ Í <

 

where M  is the dimension of the objective space. 

Definition 2: (Pareto optimality). A solution ,u UÍ  is 

called a Pareto optimal iff there is no other solution (v UÍ ), 

such that u  is dominated by v . These solutions are called 

non dominated solutions. The set of all such non dominated 

solutions constitutes the Pareto-Optimal Set. 

 

OVERVIEW OF THE GA  

The techniques of natural selection are the primary concept of 

GAs. Any optimization variable, (xn), is converted into a gene 

as a real number or a string of bits. All variables' genes, 

1,....., nx x
, form a chromosome, that depicts all individuals. 

Depending on the specific problem, an array of real numbers, 

binary string, a list of components in a database could be 

considered as a chromosome. Each possible solution is 

represented by an individual, and the set of individuals form a 

population. From a population the fittest is chosen for matting. 

Matting is done by merging genes from distinct parents to 

generate a child, called a crossover. Finally, the children are 

added to the population and the process repeats over again, 

thus symbolizing an artificial Darwinian environment as 

illustrated in Figure 1. The optimization shall stop if and only 

if the population has converged or the generation has been 

reached the maximum number. 

 

Figure 1. GAs outline for optimization problems. 

 

CLUSTERING ALGORITHM  

Clustering is an approach of partitioning of data into similar 

objects sets. Each set, called cluster, consists of mutually 

similar objects and different to objects of other clusters [22]. 

Clustering is a very important area of research, which has 

various applications in several fields such as in psychiatry 

[23], market research [24], archaeology [25], pattern 

recognition [26], medicine [27] and engineering [28]. 

In the literature, clustering has various proposed algorithms. 

Due to its simplicity and accuracy, the K-means clustering is 

possibly the most commonly-used clustering algorithm [29]. 

 

K-Means Clustering Technique  

In 1967, Macqueen produced the K-means clustering 

algorithm [30]. Due to the easiness of K-means clustering 

algorithm, it is used in many fields. The K-means clustering 

algorithm separates data into k sets as it is a partitioning 

clustering approach [31]. The K-means clustering algorithm is 

more prominent because it is an intelligent algorithm that can 

cluster massive data rapidly and efficiently. 

The basic idea of K-means algorithm is to classify the data D 

into k different clusters where D is the data set, k is the 

number of desired clusters.     More precisely, the following 

are the main steps of the K-means clustering algorithm 

(Figure 2): 

Step 1: Define a number of desired clusters, k. 

Step 2: Choose the initial cluster centroids randomly, which 

represent temporary means of the clusters. 

Step 3: Compute the Euclidean distance from each object to 

each cluster and each object is assigned to the closest 

cluster with the smallest square distance.                      

 Step 4: For each cluster, the new centroid is computed, and 

each centroid value is now replaced by the respective 

cluster centroid                                                             

Step 5: Repeat steps 3 and 4 until no point changes its cluster. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3789-3809 

© Research India Publications.  http://www.ripublication.com 

3791 

 

Figure (2): K-means algorithm procedure(Taken from [32]). 

 

THE PROPOSED APPROACH 

In this section, the proposed algorithm that we are dealing 

with is informally described. Our proposed algorithm consists 

of two phases. In phase I, K-means clustering technique is 

implemented to partition the population into a determined 

number of subpopulation with-dynamic-sizes. On the other 

hand, phase II applies K-means algorithm to make the 

algorithms practical by allowing the decision maker to control 

the precision of the Pareto-set approximation by choosing a 

suitable number of the needed clusters. 

 

Phase I 

Step1: Population  Initialization: Two disconnected sub-

populations are used by the algorithm, the individuals that 

initialized randomly satisfying the search space (The lower 

and upper bounds) form the first one, while the reference 

points that satisfying all constraints (feasible points) form the 

second one. However, we have concentrated on how elitism 

could be introduced to guarantee convergence to the true 

Pareto-optimal solutions. For that, an ñarchiving/selectionò 

plan is proposed that ensures instantaneously the advance to 

reach the Pareto-optimal set and coverage of the entire range 

of the non-dominated solutions. An externally limited size 

archive ( )t
A  of non-dominated solutions is preserved and 

iteratively updated in the presence of new solutions based on 

the concept of e-dominance by the proposed algorithm. 

Step 2: Repair Algorithm: By repairing infeasible individuals, 

the main task of this algorithm is to recognize all feasible 

individuals from the infeasible ones. Via this algorithm, the 

infeasible individuals in a certain population are developed 

gradually till they become feasible ones. As explained in [10], 

the repair operation is done as follows. Let S  be the feasible 

domain and wÎS  be a search point (individual). Since better 

reference point has better chances to be selected, the 

algorithm selects one of the reference points, let it beÍr S , 

and generates random points (1 ) ,    [0,1]= + - ÍZ raw a a  

from the segment defined betweenw,r , but the segment may 

be extended equally [33, 34] on both sides determined by a 

user specified parameter [0,1]mÍ .   

In such a case the algorithm selects one of the reference points 

(Better reference point has better chances to be selected), say 

Ír S and creates random points 

(1 ) ,    [0,1]= + - ÍZ raw a a  from the segment defined 

betweenw,r , but the segment may be extended equally [33, 

34] on both sides determined by a user specified 

parameter [0,1]mÍ . So, an up-to-date feasible individual is 

represented as: 

1

2

. (1 ).
, (1 2 ) , [0,1]

(1 ). .

z r

z r

gw g
g m d m d

g w g

= + - û
= + - Íü

= - +ý
  (3) 

Step3: Classifying a population according to non-domination: 

In this step, the objective functions of each solution are 

evaluated and the non-dominated sets of solutions are selected 

according to non-domination concept by using the following 

algorithm [35-36]. Figure(3) illustrate the classifying a 

population according to non-domination. 
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¶ Start with m = 1. 

¶ The solutions mx  and nx  are compared for 

domination for all 1, 2, ,= POPn N  and ¸m n .  

¶ If mx  is dominated by nx , for any n, mark mx  as 

ódominatedô, and it is Inefficient. 

¶ Increase m by one and return to Step 2. If all 

solutions in the population are considered, go to Step 

5 

¶ The solutions which are not marked ódominatedô are 

non-dominated solutions 

¶ Save the non-dominated solutions in an external 

archive. 

Figure (3): Classifying a population according to non-

domination 

 

Step 4: Selection Stage: Through a weighted combination, a 

dynamic-weight approach [37] is used to aggregate, the multi-

objective functions into a single combined fitness function. 

The main characteristic of dynamic-weight approach is that 

the weights attached to the multiple objective functions are 

not fixed but randomly specified. Consequently, the direction 

of the search is not specific. The multiple objective functions 

are combined into a scalar fitness solution as follows: 

( ) ... ( ) ... ( );
1 1

Z w f x w f x w f xq qi i
= Ö + + Ö + + Ö (4) 

where x is an individual, Z  is the combined fitness function,
 

( )f x
i  

is the ith objective function and w is a weighting-

vector with 0 w
i
² " 1,  . . . , ;i q=

 
where 

1
1

q
w

i i
=ä=

. In general, the value of each weight can be 

randomly determined as follows: 

,          

1

random
iw i = 1,2,...,q;qi random

j j

=
ä =

          (5) 

where random
i  

and random
j  

are non-negative random 

real numbers.  

After formulating the combined fitness function (Z) for 

each chromosome by equation (4), the selection probability 

for each chromosome is then defined by following linear 

scaling function: 

min

min1
( )

pop

i
i N

jj

Z Z
prob

Z Z
=

-
=

-ä
                                (6) 

where 
iprob
 
is the selection probability of a chromosome i 

whose combined fitness function is 
iZ and 

minZ is the worst 

combined fitness in the population.  

Finally, a pair of individual is chosen randomly from the 

current population and the best solution with better selection 

probability is chosen and subsequently copied in mating pool 

[30]. This step has to be repeated frequently, until the size of 

the mating pool is equivalent to the original population size. 

Step 5: K-Means clustering technique: In this paper, K-means 

clustering technique[38] was used to split the population to K 

separated subpopulations with dynamic size, as shown in 

Figure (4). By using this method, various operators of GA can 

be applied to subpopulations in stead of applying a single GA 

operator to the whole population. 

 

Figure 4: The splitting of the population into K separated 

subpopulations 

 

Step6: Crossover operator: The crossover operator generates a 

new offspring by mating (combing) two chromosomes 

(parents). The concept behind crossover is that the new 

offspring may take the best characteristics from the parents, 

and it will be better than both parents. The Crossover occurs 

during evolution process according to user-definable fixed 

probability. In this step, three different crossover operators are 

used which are horizontal band crossover, uniform crossover 

and real part crossover which are described as follows:.  

ü Horizontal band crossover :In this operator, two 

horizontal crossover sites are selected randomly. The 

information in the horizontal region, which is determined 

by horizontal crossover sites, is exchanged between the 

two parents based on a fixed probability [39].  

ü Uniform crossover: In uniform crossover [40], 

random (0,1) mask is generated. In the random mask the 

ó0ô denotes bit unchanged, while ó1ô represents bits 

swapping. 

ü Real part crossover: This operator works on the real 

part ( )itp of a chromosome to cross the real variables 

itp  of the chromosomes by exchanging the information 

in column vectors of itp matrix [41]. The new power 

matrices of off-springs ( 1)(itp offspring  and 

2)(itp offspring ) are created from The power 

matrices ( itp
 ) of parent chromosomes, as follows: 
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1 1 2 1

2 2 1 2

1 1

1

) ,

2) , ;

( ...,(1 ) ,...

( ...,(1 ) ,...

it

it

parent parent parent parent

Tj j

parent parent parent parent

Tj j

p offspring column column column column

p offspring column column column column

a a

a a

è ø
ê ú

è ø
ê ú

= - +

= - +

            (7)     

                                                                                                             

where a is chosen randomly between 0 and 1, and 

j
coulmn is the column vector in power matrix andñjò is a 

random positive integer in range of [1,T]. 

Step 7: Mutat ion operator: This operator is used to explore 

some of the points in the search space by altering few genes 

value in an individual randomly from its initial state. The 

mutation is generally occurs according to user-definable 

mutation probability which is usually low value. In this step, 

we used three different mutation methods which are one point 

mutation, intelligent mutation and swap window mutation 

which are described as follows: 

ü Single point mutation: In single point mutation, a 

single bit is chosen randomly from binary part (
itu ) of 

offspring and then its value is changed from ó0ô to ó1ô 

and vice versa [40-41]. 

ü Intelligent mutat ion: This mutation [42] searches 

for (10) or (01) combinations in commitment schedule, 

then randomly changing them to 00 or 11. 

ü Swap window mutation: Swap window mutation 

works on the binary part (itu ) of a chromosome by 

selecting: 1) two units at random 2) a time window of 

width w between 1 and T and 3) the location of the 

window, then exchanging the entries of the two units 

which are in the window [43]. 

At any time instant, if status of any unit changed due to 

mutation operator from 0 to 1, the corresponding output 

power of this unit will be changed from 0 to real value chosen 

at random from the range of 
min max[ , ]i ip p

.
 

Step 8: Combination stage: At this step [44,45], all 

subpopulations are grouped once more to form a new 

population, as shown in Figure (5). 

 

Figure 5: Commination stage 

Step 9: Update the Archive of Non-dominated Solution: The 

proposed approach has an external archive of non-dominated 

solutions which gets updated iteratively when new solutions 

are found based on the concept of non-domination. The 

Archive is updated in each iteration by copying the solutions 

of current population 
tP  to archive 

tV  and applying the 

dominance criteria to remove all dominated solutions (i.e., 

each solution of 
tP  has three probabilities as in Algorithm 1 

in Figure (6) [60].  

 

Algorithm 2:Update the Archive 

( , )

|

{ }/{ }

t t

t

t t

t

t t

Input V X P

  If  Y V Y X  then

     V =V

   Else if     Y V X Y  then

           V V X  Y

   Else if    

Í

$ Í

$ Í Ø

=

$ |

{ }

:

t

t t

t

Y V Y  X  then

               V V X

   End

Output V

Í

=

 

Figure 6: Update the Archive of non-dominated solutions 

 

Phase II: K-means Algorithm  

Step 10: Centres 1 2, ,..., Kz z z
 
of K initial cluster are 

randomly chosen from the n observations 

{ }1 2, ,..., nx x x . 

Step 11: A point 
1, 1,2,...,x i n=  is assigned to cluster 

, {1,2,..., }jC j kÍ  if and only if:  

, 1,2,...,  &i j i px z x z p K j p- < - = ¸       (8) 

Step 12: Centres of new cluster 
1 2, ,..., Kz z z  are 

computed as follows: 

* 1
,  1,2,..., ;

j i

i j

x Ci

z x i K
n Í

= =ä                                   (9) 

where 
in  is the number of elements which are belonging  

to cluster jC .  

Step 13: If 
* , 1,2,....,i iz z i K= =

 
then the algorithm 

terminate, otherwise go to step 11. 

After this phase, we get an initial center for all 

predetermined clusters.  
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Identifying the centroids of Pareto front 

In order to identify one single point belong to the Pareto front 

that represents certain cluster, the following algorithm as 

shown in Figure (7) is presented. Figure (7) presents an 

algorithm for identifying the centroid for each cluster in such 

a way that it locate in the Pareto front while, Figure (8) shows 

geometrically how the identifying mechanism occurs. 

 

{ }

{ }

1 2

*

1  
INPUT   _  ,  1,..., & 1,...,  ,

0  

INPUT , ,...,

        For  {1,..., }

              Find | ( - ) ( - ) 1,2,..., , 1

    

Íë
è ø= = = =ìê ú Îí

=

Í

= = " = =

j K

Kj Kj

j K

K

K Ki Ki k Ki K Kj

if x C
partition matrix M m K K j n u

if x C

Z z z z

all K K do

z x x z Min x z i n u

* * * *

1 2

    End for

OUTPUT Pareo front centriod: ( , ,...., )= KZ z z z

 

Figure 7: Algorithm for identifying the Pareto front centroids, taken from [17] 

 

 

Figure 8: Algorithm for identifying the Pareto front centroids, taken from [17] 

 

Results 

The proposed algorithm is applied by various Pareto front of 

MOO Test Instances for the CEC09 [46]; which are 

containing different Pareto front characteristics to demonstrate 

its ability to select the most compromise set of solution. The 

problems cover different characteristics of MOOPs, namely 

convex Pareto front, nonconvex Pareto Front and discrete 

Pareto front and non-uniformity of solution distribution. 

Twenty problems from CEC2009 contain different shapes of 

Pareto front is selected and described in Table 1. 

 

Table 1: MOO Test Instances for the CEC09 

 

 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3789-3809 

© Research India Publications.  http://www.ripublication.com 

3795 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

 
Figure 9: Pareto Front of problem UF2 
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Figure 10: Pareto Front of problem UF1 
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Figure 11: Pareto Front of problem UF4 
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Figure 12: Pareto Front of problem UF3 
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Figure 13: Pareto Front of problem UF6 
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Figure 14: Pareto Front of problem UF5 
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Figure 15: Pareto Front of problem UF8 
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Figure 16: Pareto Front of problem UF7 
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Figure 17: Pareto Front of problem UF10 
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Figure 18: Pareto Front of problem UF9 
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Figure 19: Pareto Front of problem CF2 
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Figure 20: Pareto Front of problem CF1 
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Figure 21: Pareto Front of problem CF4 
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Figure 22: Pareto Front of problem CF3 
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Figure 23: Pareto Front of problem CF6 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

 
Figure 24: Pareto Front of problem CF5 
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Figure 25: Pareto Front of problem CF8 
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Figure 26: Pareto Front of problem CF7 

  

 
Figure 27: Pareto Front of problem CF10 

 
Figure 28: Pareto Front of problem CF9. 

 

The algorithm (Phase I) was implemented for the 20 problems 

which are taken from CEC2009 with different Pareto front 

Charctertistics as in figures (9-28). 

Optimization of the above-formulated objective functions 

using multi-objective EAs yields a set of Pareto-optimal 

solutions, not give a single optimal solution. But the DM in 

practical application needs to select a set of solutions with 

limited size. From the above results the selected solutions 

should have a diversity characteristics also it must cover the 

entire Pareto front domain and allows the DM to attain a 

reasonable representation of the Pareto-optimal front. In 

addition, the results guarantee that the diversity among 

selected solutions is achieved. Finally, the proposed algorithm 

has a diversity preserving mechanism to overcome the cruise 

of huge number of Pareto front as in figures(29-48) 

 


