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Abstract 

The main aim of this paper is to find analytical and numerical 

study to investigate the vibration and stability of the Van der 

Pol equation subjected to external and parametric excitation 

forces via feedback control. An approximate solution is 

obtained applying the multiple scales perturbation technique to 

analyze the nonlinear behavior of this model. The stability of 

the system is investigated applying Lyapunov first method. The 

effects of the different parameters on the system behavior are 

studied. For positive and negative values of the nonlinear 

parameters, the curves are bent to right or left leading to the 

occurrence of the jump phenomena and multi-valued 

amplitudes produce either hard or soft spring respectively. The 

numerical simulations are performed to demonstrate and 

validate the accuracy of the approximate solutions. Analyses 

showed that all predictions from analytical solutions are in 

excellent agreement with the numerical integrations. 
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INTRODUCTION 

Vibration, occurring in most machines, vehicles, structures, 

building and dynamic systems is undesirable phenomenon, not 

only because of the resulting unpleasant motions, the dynamic 

stresses which may lead to fatigue and failure of the structure 

or machine, the energy losses and reduction in performance 

which accompany vibrations, but also because of the produced 

noise. Active and passive control is used to eliminate or reduce 

the vibration to minimum level.  

Active control is now commercially available for reducing 

vibrations offering better comfort with less weight than 

traditional passive technologies. The Van der Pol equation is of 

great interest because it can serves as a basic model for self-

excited oscillations in many disciplines [1–3]. The studies on 

chaotic motion in systems of 
4 Van der Pol oscillators have 

revealed various types of interesting behaviors [4–7]. Liu and 

Yamaura [8] studied the dynamics of a 
6  Van der Pol 

oscillator subjected to an external excitation. Numerical 

analysis are presented to observe its periodic and chaotic 

motions, and a method called Multiple-prediction Delayed 

Feedback Control is proposed to control chaos effectively via 

periodic feedback gain. Ruihong et al. [9] investigated the 

dynamical behavior of the 
6  Van der Pol system subjected to 

both external and parametric excitation. The effect of 

parametric excitation amplitude on the routes to chaos is 

studied by numerical analysis. Warminski et al. [10] discussed 

active suppression of nonlinear composite beam vibrations by 

selected control algorithms. Wang et al. [11] presented 

theoretical and experimental study of active vibration control 

of a flexible cantilever beam using piezoelectric actuators. Shan 

et al. [12] studied slewing and vibration control of a single link 

flexible manipulator by positive position feedback controller. 

El-Ganaini et al. [13] applied positive position feedback active 

controller to reduce the vibration of a nonlinear system. They 

found that the analytical and numerical solutions are in good 

agreement. Amer et al. [14] Studied the dynamical system of a 

twin-tail aircraft which described by two coupled nonlinear 

differential equations having both quadratic and cubic 

nonlinearities. They used two simple active control laws based 

on the linear negative velocity and acceleration feedback. Eissa 

and Sayed [15-17] and Sayed [18], studied the effects of 

different active controllers on simple and spring pendulum at 

the primary resonance via negative velocity feedback or its 

square or cubic. Sayed and Kamel [19, 20] investigated the 

effect of different controllers on the vibrating system and the 

saturation control of a linear absorber to reduce vibrations due 

to rotor blade flapping motion. The stability of the obtained 

numerical solution is investigated using both phase plane 

methods and frequency response equations. Eissa et al. [21] 

applied a proportional-derivative controller to the nonlinear 

magnetic levitation system subjected to external and parametric 

excitations. They studied the effects of proportional and 

derivative gains to give the best performance for the system. 

 

MATHEMATICAL ANALYSIS 

The general form of the Van der Pol Oscillator model with 

external and parametric excitation forces is given by a second-

order non-autonomous differential equation as follows: 

    

2 2 3 5

1 1 2 2

(1 )

cos cos

X X X X X X

f t Xf t T

    

    
       (1) 

where X  is the position coordinate, which is a function of the 

time t, and μ is a scalar parameter indicating the nonlinearity 

http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Scalar_(mathematics)
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and the strength of the damping, T G X  active control 

(negative acceleration feedback) and ,   are the nonlinear 

parameters,  1f  and 2f  are the external and parametric of the 

excitation forces,   is the natural frequency, 1 2,   are the 

forcing frequency of the system. The damping coefficient, non-

linear parameters and excitation forces are assumed to be 

1 2 1 2
ˆ ˆˆ ˆˆ( , , , , ) ( , , , , )f f f f                 (2) 

where   is a small perturbation parameter and 

0 1.    The parameters 1 2
ˆ ˆˆ ˆˆ , , , ,f f   are of the 

order 1. The method of multiple time scales [22-24] is used to 

obtain a uniformly valid, asymptotic expansion of the solution 

for equation (1) in the case of simultaneous primary and 

principal parametric resonance case where 1  ,  

2 2   . We seek a first order uniform expansion for the 

solutions of equations (1) in the form 

0 0 1 1 0 1( , ) ( , ) ( , ) ,X t x T T x T T                          (3) 

where T0 = t  is referred to as the fast time scale characterizing 

motions with natural and excitation frequencies, and T1 =  t as 

the slow time scale characterizing modulation and phases of the 

two modes of vibration. The first and second time derivatives 

can be written as: 

  
0 1

0 1

0 1

,
T Td

D D
dt T t T t

  
    
   

    

2
2 2 2

0 0 1 12
2

d
D D D D

d t
                                (4) 

where   n nD T , n = 0, 1. In this paper, only T0 and T1 are 

considered so that the second-order and higher-order terms, 

with respect to  , are neglected. Substituting equations (2)-(4) 

into equation (1), and equating the coefficients of similar 

powers of , one obtain the following set of ordinary 

differential equations: 

Order 
0 :    

2 2

0 0( ) 0D x                                                             (5) 

Order
1 :

2 2 2

0 1 0 1 0 0 0 0

3 5

0 0 1 1 0

ˆ( ) 2 (1 )

ˆ ˆ ˆ cos( )

D x D D x x D x

x x f T

    

   
             )6(    

                     
2

0 2 2 0 0 0
ˆ cos( )x f T G D x    

 

The general solution of equation (5), can be written in the form 

   0 1 0 1 0( )exp( ) ( )exp( )x A T i T A T i T       (7) 

where A is undetermined complex function, which can be 

determined by imposing the solvability condition at the next 

approximation by eliminating the secular and small-divisor 

terms, the over bar denotes complex conjugate. Substituting 

equation (7) into equation (6), we obtained 

2 2

0 1 1 0

3 2

0 0

ˆ( ) ( 2 )exp( )

ˆ[ exp(3 ) 3 exp( )]

D x i D A A i T

A i T A A i T

     

   
    

3 2 2

0 0 0
ˆ exp(3 ) 2 exp( ) exp( )i A i T A A i T A A i T         

5 4 3 2

0 0 0
ˆ exp(5 ) 5 exp(3 ) 10 exp( )A i T A A i T A A i T       

1 2
1 0 1 0 1 0

ˆ ˆ
exp( ) exp( ( ) ) exp( ( ) )

2 2

f f
i T A i T A i T         

                              

2

0exp( )AG i T cc                                                  (8) 

where cc stands for the complex conjugate of the preceding 

terms. To  describe  quantitatively  the  closeness  of  the  

resonances, we  introduce  the  detuning parameters 1  and 2 

according to 

                     1 1    ,  2 22                 (9) 

Substituting Eq. (9) into Eq. (8) and eliminating the secular and 

small divisor terms from x1, we get the following 

2 2

1

3 2 2 1
1 1

ˆˆ ˆ2 3

ˆ
ˆ10 exp( )

2

i D A i A i A A A A

f
A A AG i T

      

    
       

2
2 1

ˆ
exp( ) 0

2

f
A i T                                           (10) 

To analyze the solution of Eq. (10), it is convenient to express 

the 1( )A T in the polar form as 

    1 1
1( )1

2
( ) ( )

i T
A T a T e


                                      (11) 

where a and  are unknown real-valued functions.  Inserting 

Eq. (11) into Eq. (10) and separating real and imaginary parts, 

we have 

3 1 2
1 2sin sin

2 8 2 4

f f
a a a a

 
      

 
      (12) 

    

3 5

1 2
1 2

3 10

2 8 32

cos cos
2 4

G
a a a a

f f
a

  
    

 

   
 

                          (13) 

where,    1 1 1T        and    
2 2 1 2T        (14) 

Then, it follows from Eq. (14) that  
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1 1 2 2

1
( )

2
                                           (15) 

The first approximation periodic solution in this case can be 

written as 

     1cos( ) ( )X a t O     ,                       (16) 

 

STABILITY ANALYSIS 

Form the system of Eqs. (12)-(13) to have stationary solutions; 

the following conditions must be satisfied: 

1 2 0a                                                                   (17) 

It follows from Eq. (15) that 

2
1

2


                                                                (18) 

Hence, the system steady state solutions of Eqs. (12)-(13) are 

given by 

3 1 2
1 2sin sin 0

2 8 2 4

f f
a a a

 
     

 
  (19)  

   

3 5

1 2
1 2

3 10

2 8 32

cos cos 0
2 4

G
a a a a

f f
a

  
   

 

    
 

                   (20) 

Solving the resulting algebraic equations, the frequency 

response equation can be obtained in the form 

2 2 2
3 3 5 1

2

2
22 1 2

1 22 2

3 10

2 8 2 8 32 4

cos( ) 0
16 4

fG
a a a a a a

f f f
a a

       
              

    
 

      (21) 

 

Non-linear Solution 

To determine the stability of the fixed points, one lets 

          a = a0 + a1 and m = mo + m1   (m = 1, 2)              (22) 

where a0 and mo are the solutions of Eqs. (19)-(20) and a1, m1 

are perturbations which are assumed to be small compared to 

a0 and mo. Substituting Eq. (22) into Eq. (12)-(13), using Eqs. 

(19)-(20) and keeping only the linear terms in a1, m1 we obtain:  

2 2
1 0 20 1

1 2
10 0 20 11

3
sin

2 8 4

cos cos
2 2

f
a a a

f f
a

  
      

 
       

             (23) 

31 2
11 0 0 20 1

0 0 0

1 2
10 20 11

0

9 50
cos

2 8 32 4

sin sin
2 2

fG
a a a

a a a

f f

a

    
        

   

 
     

  

 (24) 

The stability of a particular fixed point with respect to 

perturbations proportional to exp( )t  depends on the real 

parts of the roots of the matrix. Thus, a fixed point given by 

equations (23)-(24) is asymptotically stable if and only if the 

real parts of all roots of the matrix are negative. Solid/dotted 

lines denote stable/unstable solution on the response curves, 

respectively. 

 

NUMERICAL SIMULATIONS 

Results are presented in graphical forms as steady state 

amplitudes against detuning parameters and as time history or 

the response of the system. A good criterion of both stability 

and dynamic chaos is the phase-plane trajectories, which are 

shown for some cases. In the following sections, the effects of 

the different parameters on response and stability will be 

investigated.  

 

Time Histories 

Fig. 1 shows the time histories of the system without controller 

at non-resonance case. The various parameters of the system in 

Fig. 1 are 1 2 12.5, 2.2, 4.4, 0.06,f       

2 0.03, 0.01, 0.04, 0.01f         . It is clear that 

the system steady state amplitude is about 0.0429, and the 

phase plane shows a limit cycle, denoting that the system is free 

from chaos. Different initial conditions were tried and it was 

found that the system steady state amplitude is insensitive to 

the initial conditions. 
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Figure 1. System behavior without controller at non resonance. 

1 2 1 22.5, 2.2, 4.4, 0.06, 0.03, 0.01, 0.04, 0.01, 0.f f G                

 

Figure 2. System behavior without controller at simultaneous primary and principal parametric resonance 

1 2, 2 ,     0G  . 

1 2 1 22.5, 2.5, 5, 0.06, 0.03, 0.01, 0.04, 0.01.f f               

 

 

Fig. 2 shows that the time response and phase plane of the 

simultaneous primary and principal parametric resonance case 

where 1 2, 2 .      It is observed that from this 

figure, we have that the system steady state amplitude is 

increased to about 1.27 and the oscillation becomes tuned. Figs. 

3 and 4 illustrate the results when the controller is effective for 

different values of feedback gain G. It can be seen from Fig. 4 

that the system steady state amplitude is reduced to about 

0.008. This means that the effectiveness of the absorber Ea 

(Ea=steady state amplitude of the main system without 

controller/steady state amplitude of the main system with 

controller) is about 150. 
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Figure 3. System behavior with controller at simultaneous primary and principal parametric resonance 1 2, 2 ,    

0.3.G   

1 2 1 22.5, 2.5, 5, 0.06, 0.03, 0.01, 0.04, 0.01.f f               

 

Figure 4. System behavior with controller at simultaneous primary and parametric resonance 1 2, 2 ,     1.5G  .

1 2 1 22.5, 2.5, 5, 0.06, 0.03, 0.01, 0.04, 0.01.f f               

 

Effects of Different Parameters on System Behavior 

In this section, the figures 5 to 10 are showing the effects of 

different parameters on the system response. The selected 

values for system parameters are the same values shown in Fig. 

2. Figs. 5 to 8 show that the system steady state amplitude is a 

monotonic decreasing function to the feedback control gain G, 

natural frequency , non-linear parameters , , 

respectively. For greater values of , , , ,G    leads to 

saturation phenomena as shown in Figs. 5 to 8. Figs. (9-10) 

shows that the steady state amplitude is a monotonic increasing 

function to the external and parametric excitation forces. For 

large values of excitation forces, the system exhibit unstable 

steady state motions. 

 

 

      

Figure 5. Effects of non-linear parameter 2 .  Fig. 6. Effects of natural frequency  . 
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Figure 7. Effects of non-linear parameter .  Fig. 8. Effects of non-linear parameter .  

           

Figure 9. Effects of external excitation 1.f   Fig. 10. Effects of parametric excitation 2.f  

 

Frequency, Force Response Curves 

In the following section, the steady state response of the system 

is investigated extensively for different parameters under 

simultaneous primary and principal parametric resonance. 

Results are presented in graphical forms as steady state 

amplitude against the detuning parameter   and the excitation 

force f1, by adopting the following values of the system 

parameters

1 2 1 22.5, 2.5, 5, 0.06, 0.03, 0.01,f f           

0.04, 0.01,     0,G  which is the same values of the 

parameters shown in Fig. 2. Solid dark lines correspond to 

stable solutions, while dotted red ones correspond to unstable 

solutions. Fig. 11 shows the effects of the detuning parameter 

  on the steady state amplitude of the system. In this figure, 

the response amplitude consists of a continuous curve which is 

bent to the right and has hardening phenomenon and there exist 

jump phenomenon. This continuous curve has stable and 

unstable solutions. At 0  (simultaneous primary and 

principal parametric resonance 1 ,   2 2   ) the 

steady state amplitude is about 1.27 which is in good agreement 

with the Fig. 2. 

 

Figure 11. Effects of detuning parameter   
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the non-linear parameters   and  , this behavior is in 

agreement with the response curves in Figs. 4 and 5 

respectively. Figs. 14 and 15 show the frequency response 

curves for various levels of the external and parametric 

excitation amplitude, f1 and f2, respectively. We notes that, 

when excitation amplitudes increased the frequency response 

curves bent away from the linear curves, producing multi-

valued regions and jump phenomenon occurs. The steady state 

amplitude and the region of instability are increased for 

increasing f1 and f2, as shown in Figs. 14 and 15, this behavior 

is in agreement with the response curves in Figs. 6 and 7 

respectively.  

 

        

  Figure 12. Effects of non-linear parameter .     Figure 13. Effects of non-linear parameter .  

 

 

For increasing value of the gain of the control G, the curve of 

the frequency response is shifted to the right as shown in Fig. 

16. If the external and parametric forces excites the system at 

a frequency 1 2, 2     , then this value as in the 

figure corresponds a maximum steady state amplitude on the 

curve (G=0) and less amplitude on the curve (G=0.07) and 

much less amplitude on the curve (G=0.14). An idea of tuning 

can be achieved by measuring the excitation frequencies, 

which gives us the value of detuning parameter  from Eq. 

(10), then adding this value to the feedback gain G to be the 

new tuned one G + . Hence, we can warranty that the 

maximum steady state amplitude of controlled system will be 

shifted by the value of G to the left of any value of  . This 

will make the controller adaptive with any change of 

excitation frequency and reduce the amplitude to a good 

minimum level. Fig. 17 shows that for decreasing value of 

natural frequency   the curve is bent to the right, leading to 

multi-valued amplitude and to appearance of the jump 

phenomenon. It is clear that from Fig. 17 that the steady state 

amplitude is a monotonic decreasing function in  , this 

behavior is in agreement with the response curves in Fig. 6. 

 

       

Figure 14. Effects of external excitation force 1.f   Figure 15. Effects of parametric excitation force 2.f  
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Figure  16. Effects of feedback gain .G      Figure 17. Effects of natural frequency .  

 

Figs. 18 to 20 represent force–response curves for the non-

linear solution of the case of simultaneous primary and 

principal parametric resonance case of the system. In these 

figures the amplitudes of the system are plotted as functions of 

the external excitation force f1. Fig. 18 shows that the response 

amplitude of the system has a continuous curve and there exist 

zone of multi-valued solutions. There exists jump phenomenon 

and the curve has stable and unstable solutions for increasing 

positive detuning parameter  . Increasing positive detuning 

parameter  , means that decreasing natural frequency   

since 1 1,  2 22 ,    1 2 2      

then the jump phenomenon appears, this is agreement with Fig. 

17. For large negative value of detuning parameter   this 

means that increasing natural frequency   then the jump 

phenomenon disappears and the curve has stable solution only. 

It is clear from Figs. 19 and 20 that for increasing non-linear 

parameters ,  the steady state amplitude is decreasing with 

increasing regions of stability, this behavior is in agreement 

with the response curves in Figs.12 and 13, respectively. 

 
 

Figure 18. Force-response curves for varying detuning 

parameter . 

Figure. 19. Force-response curves for increasing on-linear 

parameter  . 

 

Figure 20. Force-response curves for increasing non-linear parameter  . 
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Three cases of active control will be applied numerically to 

improve the behavior of the system at the simultaneous primary 

resonance case, via negative displacement feedback or negative 

velocity feedback or negative acceleration feedback. Fig. 21 

shows a comparison between these three cases. It can be seen 

from the figure that all three cases leads to saturation 

phenomena for large values of G. Comparing the effectiveness 

of the three methods we can see that: 

a) For negative displacement feedback, Ea =30   

b) For negative velocity feedback, Ea =75  

c) For negative acceleration feedback, Ea =150 

It is clear that best of them for negative acceleration feedback. 

 

 

Figure 21. Effects of different feedback control. 

 

Comparison between Analytical Solution Using Multiple 

Time Scale Method and Numerical Solution Using Runge 

Kutta Method  

Figures 22 to 24 show a comparison between the time histories 

of the system approached by numerically integrating equation 

(1) and the approximate modulated amplitude of the system 

approached by numerically integrating equations (12)-(13). 

The dark dashed line represents the approximate modulated 

amplitude while the blue line represents the time history. The 

solutions presented in the graphs were obtained at the same 

values of the parameter system as shown in Fig. 2, except the 

external excitation force  1f  and the feedback gain G . Fig. 22, 

for 0,G  and Fig. 23, for 0.3,G  and Fig. 24, for 

1 0.1f  . The plotted approximate modulated amplitude 

describes closely the transient response of each time history. 

 

 

Figure 22. Comparisons between multiple time scale method 

and runge kutta method at simultaneous primary and principal 

parametric resonance 1 2, 2 , 0.G       

 

 

Figure 23. Comparisons between multiple time scale method 

and runge kutta method at simultaneous primary and principal 

parametric resonance 1 2, 2 , 0.3.G       

 

 

Figure 24. Comparisons between multiple time scale method 

and runge kutta method at simultaneous primary and principal 

parametric resonance 1 2 1, 2 , 0.1f        

 

Another comparison, to validate the results of multiple time 

scales perturbation analysis, the analytical results were verified 

by integration numerically of the original equation (1), and the 

numerical results for steady state solutions are marked as small 

circles on Fig. 25. Fig. 25 show a comparison between the 

frequency response curve for the system a , and the numerical 

simulation done to integrate Eq. (1) for the same parameters 

shown in Fig. 2. The dark solid lines correspond to stable 

solutions and dotted lines correspond to unstable solutions 

resulted from multiple time scale method, while the circles 

refer to the numerical integration. Figs. 26 to 29, shows a 

comparison between analytical solution using multiple time 
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scale and numerical solutions using integration of the system 

for 1, , ,f G   , respectively. 

 

Figure 25. The frequency-response curves of the system at 

the same values of different parameters shown in Fig. 2. 

1 2 1 22.5, 2.5, 5, 0.06, 0.03,

0.01, 0.04, 0.01.

f f        

     
 

Figs. 25 to 29 showed that all predictions from analytical 

solutions are in very good agreement with the numerical 

simulation. 

 

 

 

 

 

 

 

 

 

 

  

Figure 26. Effects of varying excitation  

force 1f  on the response.    

Figure 27. Effects of varying feedback control  

G on the response.    

 

  

Figure 28. Effects of varying non-linear 

 parameter   on the response. 

Figure 29. Effects of varying non-linear  

parameter   on the response. 
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CONCLUSIONS 

In this paper, the feedback controller was applied to eliminate 

the vibration of the Van der Pol equation subjected to external 

and parametric excitation forces at simultaneous primary and 

principal parametric resonance. Multiple time scale is applied 

to determine approximate solution for the system. The 

frequency, force response equations and the phase plane 

technique are applied to study the stability of the system. The 

bifurcation analysis was conducted to examine the stability of 

the system and to investigate the performance of the feedback 

control law. From the above study, the following may be 

concluded:  

 The simultaneous resonance case 1 2, 2      

is one of the worst resonance cases and it should be 

avoided in design.  

 For large values of feedback gain, the controller is very 

suitable for vibration reduction. 

 For positive and negative values of the nonlinear 

parameters , ,  the curves are bent to right or left 

leading to the occurrence of the jump phenomena and 

multi-valued amplitudes produce either hard or soft 

spring respectively. 

 The steady state amplitude of the system is a monotonic 

increasing function in the excitation amplitudes f1 and f2.  

 The region of stability increase, which is desirable, for 

increasing nonlinear parameters , ,  and for 

decreasing external and parametric excitation forces. 

 The analytical solutions are in good agreement with the 

numerical integrations as in Figs. 22 to 28. 

 Negative acceleration feedback active controller is the 

best one for the simultaneous resonance case 

1 2, 2      as it reduces the vibration 

dramatically, as shown in Fig. 21. 
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