Critical and Stability of Domination in Fuzzy Graphs

R.Jahir Hussain¹ and S. Ameena Banu²

¹PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous)

Tiruchirappalli – 620020, India.

²PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous)

Tiruchirappalli – 620020, India.

Abstract

In this paper we studied the critical and stability of fuzzy dominating set. We investigate how the removal of a node affects the fuzzy domination number also we studied the stability of fuzzy path, fuzzy trees and fuzzy cycles. Also we obtain sharp bounds and characterizations.

KEYWORDS: Fuzzy dominating set, fuzzy domination number, critical node and fuzzy domination stability.

AMS Mathematics Subject Classification (2010): 03E72, 05C72.

INTRODUCTION

Brigham [1] introduced vertex domination critical graphs. Harary et al [2] explained an interesting application in voting situations using the concept of domination. Nagoor Gani and Vijayalakshmi [7] discussed domination critical nodes in fuzzy graph Rosenfeld [8] introduced the notion of fuzzy graph and several fuzzy analogous of graph theoretic concepts such as paths, cycles, connectedness and etc. Somasundaram and Somasundaram [9] discussed domination in fuzzy graphs. Sumner [10] discussed domination critical graphs. Nader Jafari Rad, Elahe Sharifi and Marcin krzywkowski [5] introduced domination stability in graphs. Bauer, Harary, Nieminen and Suffel [2] introduced domination alteration sets in graphs.

PRELIMINARIES:

A fuzzy graph $G=(\sigma,\mu)$ is a non-empty set V together with a pair of functions $\sigma: V \to [0,1]$ and $\mu: V \times V \to [0,1]$ such that $\mu(u,v) \leq \sigma(u) \wedge \sigma(v)$ for all $u,v \in V$, where $\sigma(u) \wedge \sigma(v)$ is the minimum of $\sigma(u)$ and $\sigma(v)$. The underlying crisp graph of the fuzzy graph $G=(\sigma,\mu)$ is denoted as $G^*=(\sigma^*, \mu^*)$ where $\sigma^*=\{u\in V/\sigma(u)>0\}$ and $\mu^*=\{(u,v)\in V\times V/\mu(u,v)>0\}$. Let $G=(\sigma,\mu)$ be a fuzzy graph and τ be any fuzzy subset of σ , i.e. $\tau(u) \leq \sigma(u)$ for all u,. Then the fuzzy subgraph of $G=(\sigma,\mu)$ induced by τ is the maximal fuzzy sub graph of $G=(\sigma,\mu)$ that has fuzzy node set τ . Evidently this is just the fuzzy graph (τ,ρ) , where $\rho(u,v)=\tau(u) \wedge \tau(v)$ for all $u,v\in V$.

Two nodes u and v are said to be *neighbours* if $\mu(u,v) >$ 0. The strong neighbourhood of u is $N_S(u) = \{ v \in V : (u,v) \}$ is a strong arc. $N_S[u] = N_S(u) \cup \{u\}$ is the closed strong neighbourhood of u. Let $G=(\sigma,\mu)$ be a fuzzy graph. Two nodes u and v of G are strong adjacent if (u,v) is strong arc. The strong degree of a node v is the minimum number of nodes that are strong adjacent to v. It is denoted by d_S(v). The minimum cardinality of strong neighbourhood $\delta_S(G) =$ $\min\{|N_s(u)| : u \in V(G)\}$ and the maximum cardinality of strong neighbourhood $\Delta_S(G) = \max\{|N_S(u)|: u \in V(G)\}$. Let G be a fuzzy graph. Let S be a set of vertices in G. Let $u \in S$ then the *private neighbourhood* of u is $pn(u,S) = \{ v :$ $N_S(v) \cap S = \{u\}\}$. The external private neighbourhood $epn(v,S) = pn(u,S) \setminus S$. A node u is called a *fuzzy end node* of $G = (\sigma, \mu)$ if it has atmost one strong neighbour in G = (σ, μ) .

A path ρ in a fuzzy graph is a sequence of distinct nodes $u_0, u_1, u_2, ... u_n$ such that $\mu(u_{i-1}, u_i) > 0$; $1 \le i \le n$ here $n \ge 0$ is called the *length* of the path ρ .The consecutive pairs (u_i $_{1}$, u_{i}) are called the *arcs* of the path. A path ρ is called a *cycle* if $u_0=u_n$ and $n\geq 3$. An arc (u,v) is said to be a strong arc if $\mu(u,v) \ge \mu^{\infty}$ (u,v) and the node v is said to be a *strong* neighbour of u. If $\mu(u,v) = 0$ for every $v \in V$ then u is called isolated node. Two nodes that are joined by a path are said to be *connected*. Let $G = (\sigma, \mu)$ be a fuzzy graph and u be a node in G then there exist a node v such that (u,v) is a strong arc then we say that *u* dominates *v*. Let $G=(\sigma, \mu)$ be a fuzzy graph. A set D of V is said to be fuzzy dominating set of G if every $v \in V-D$ there exist $u \in D$ such that u dominates v. A fuzzy dominating set D of G is called a minimal fuzzy dominating set of G if no proper subset of D is a fuzzy dominating set. The fuzzy domination number $\gamma_f(G)$ of the fuzzy graph G is the smallest number of nodes in any fuzzy dominating set of G. A fuzzy dominating set D of a fuzzy graph G such that $|D| = \gamma_f(G)$ is called minimum fuzzy dominating set.

FUZZY DOMINATING CRITICAL NODES

Definition 3.1:

Let $G=(\sigma,\mu)$ be a fuzzy graph. A node v of G is said to be *fuzzy dominating critical node* if its removal either increases (or) decreases the fuzzy domination number.

We partition the nodes of G into three disjoint sets according to how their removal affects γ_f (G). Let $V = V_f^0 \cup V_f^+ \cup V_f^-$ for

$$V_f^0 = \{ v \in V : \gamma_f (G-v) = \gamma_f (G) \}$$

$$V_f^+ = \{ v \in V : \gamma_f (G-v) > \gamma_f (G) \}$$

$$V_f^- = \{ \text{ v}{\in}\text{V}: \, \gamma_f \text{ (G-v)} < \, \gamma_f(\text{G}) \}$$

STABILITY OF FUZZY DOMINATING SET

Definition 4.1:

The domination stability (or) γ_f – stability of a fuzzy graph is the minimum number of nodes whose removal changes the fuzzy domination number.

 γ_f^+ - Stability of a fuzzy graph G denoted by γ_f^+ (G) is defined as the minimum number of nodes whose removal increases γ_f (G).

 γ_f^- - *Stability* of a fuzzy graph G denoted by γ_f^- (G) is defined as the minimum number of nodes whose removal decreases γ_f (G).

We denote the γ_f – stability of G by $\operatorname{st}\gamma_f(G)$. Thus the domination stability of a fuzzy graph G is $\operatorname{st}\gamma_f(G) = \min\{\gamma_f^-(G), \gamma_f^+(G)\}$. If G is a disconnected fuzzy graph with components $G_1, G_2, ... G_k$ then $\operatorname{st}\gamma_f(G) = \min\{\operatorname{st}\gamma_f(G_1), \operatorname{st}\gamma_f(G_2), \operatorname{st}\gamma_f(G_k)\}$.

Theorem 4.2:

The removal of a node v from G increases γ_f (G) if and only if (i) v is not isolated and v is in every minimum dominating set for G, and (ii) there is no dominating set for G-N_S[v] with fuzzy domination number γ_f (G) which also dominates N_S(v).

STABILITY OF FUZZY TREES

Theorem 5.1:

For any fuzzy tree T with at least three points γ_f (T-v) > γ_f (T) if and only if v is in every minimum fuzzy dominating set for T.

Proof:

By theorem 1 the necessity of v being in every minimum fuzzy dominating set for T is immediate.

Suppose v is in every minimum fuzzy dominating set of T. Note that γ_f (T-v) $\geq \gamma_f$ (T), for otherwise a minimum fuzzy dominating set of T-v could be extended to a fuzzy dominating set of T which avoids v and has cardinality at most γ_f (T). Let $N_S(v) = \{v_1, v_2, ..., v_m\}$ and T_i be the

component of T-v containing vi.

If γ_f (T-v) = γ_f (T), then for each i, v_i is in no minimum fuzzy dominating set of T_i , for otherwise such a fuzzy dominating set could be extended to a fuzzy dominating set of T which avoids v and has cardinality at most γ_f (T). Thus, for each i, γ_f (T- $\bigcup_{j\neq i} T_j$) = γ_f (T_i)+1, and so for any fuzzy dominating set D of T, $|D\cap V(T_i)| \geq \gamma_f$ (T_i). It follows that γ_f (T) $\geq \sum_{i=1}^n \gamma_f$ (Ti)+1 = γ_f (T) +1, a contradiction.

Proposition 5.2:

If a cut node v of G is in every minimum fuzzy dominating set for G then γ_f (G-v) > γ_f (G)

Theorem 5.3:

Let T be a tree. Then $\gamma_f^+(T) = 2$ if and only if there are points v and u such that (i) every minimum fuzzy dominating set contains either v or u, (ii) v is in every minimum fuzzy dominating set for T-u and u is in every minimum fuzzy dominating set for T-v and (iii) no node is in every minimum fuzzy dominating set for T.

Proof:

The necessity of the conditions is clear. Furthermore sufficiency is easily established if we can prove that γ_f (T-v) = γ_f (T), for then condition (ii) will serve as the hypothesis for theorem 2 applied to T-v. The fact that γ_f (T-v) $\leq \gamma_f$ (T) follows from condition (ii) and theorem 2.

Suppose γ_f (T-v) $< \gamma_f$ (T), and let S be a minimum fuzzy dominating set for T which contains v but not u. Let $v_1, v_2,, v_m$ be the points strong adjacent to v. Then $S = \{v\} \cup \bigcup_{i=1}^m S_i$ where S_i is a minimum collection of points from $T_i - v_i$. Note that if there are two or more values of i for which γ_f (T_i) = $|S_i|+1$ then γ_f^+ (T) = 1, which contradicts condition (iii). Suppose there exists one value of i such that γ_f (T_i) = $|S_i|+1$.

Then γ_f (T-v) = $\sum_{i=1}^m \gamma(\text{Ti}) = 1 + \sum_{i=1}^m |\text{Si}| = \gamma_f$ (T), a contradiction. If γ_f (T_i) = |Si| for all i, then $\bigcup_{i=1}^m \text{Si}$ is a minimum fuzzy dominating set for T-v which does not contain u, and we are done.

Proposition 5.4:

For all fuzzy graphs G, min $\{ \gamma_f^+(G), \gamma_f^-(G) \} \le \delta_S(G) + 1$.

Theorem 5.5:

If G is a fuzzy graph with a fuzzy end node, then $\gamma_f^+(G) \ge 2$ implies $\gamma_f^-(G) \le 2$. In particular this is true for fuzzy trees.

Proof:

Let v be a node of T which is adjacent to a fuzzy end node u of T. If γ_f (T-v) < γ_f (T) we are done. If not, since we know γ_f (T-v) $\leq \gamma_f$ (T), it follows that γ_f (T-v) = γ_f (T).

However T-v = {u}U T', where T' is a sub tree of T, and hence γ_f (T-v) = 1+ γ_f (T').But then γ_f (T-u-v) = γ_f (T') < γ_f (T-v) = γ_f (T) and so γ_f (T) ≤ 2 .

Theorem 5.6:

For every fuzzy tree T there exists a node $v \in T$ such that γ_f $(T-v) = \gamma_f(T)$.

Proof:

We first note that if there is a node $v \in T$ which is strong adjacent to two (or more) fuzzy end nodes u_1 and u_2 of T then v is in every minimum fuzzy dominating set for T and γ_f (T- u_1) = γ_f (T). If not, then T contains a node w of strong degree two which is strong adjacent to an end node u.

Let T' = T-w-u. Now for any fuzzy graph G, if $d_s(v) = 1$, then γ_f (G-v) $\leq \gamma_f$ (G). Hence γ_f (T') $\leq \gamma_f$ (T-v) $\leq \gamma_f$ (T). However clearly γ_f (T') $\geq \gamma_f$ (T) -1. Now if γ_f (T') = γ_f (T) -1, then γ_f (T) = γ_f (T-w). Otherwise γ_f (T') = γ_f (T) = γ_f (T-u).

STABILITY OF FUZZY PATHS AND CYCLES:

Theorem 6.1:

For $n \ge 7$, $\gamma_f^+(P_n) + \gamma_f^-(P_n) = 4$.

Proof:

Let path $P_n = v_1, v_2, ... v_n$. We show that $\gamma_f^+(P_n) + \gamma_f^-(P_n) = 4$ by proving this separately for $n \equiv 0, 1$ and $2 \pmod{3}$.

Case (i) $n \equiv 0 \pmod{3}$. Clearly v_2 is in every minimum fuzzy dominating set, hence by theorem $2 \gamma_f^+(P_n) = 1$. To see that $\gamma_f^-(P_n) = 3$ first note that $\gamma_f^-(P_n-3) = \gamma_f$ (P_n)-1; hence $\gamma_f^-(P_n) \leq 3$. Since $\gamma_f(P_n-1) = \gamma_f(P_n-2) = \gamma_f$ (P_n) the only way to lower the fuzzy domination number of P_n by removing either one or two nodes is to disconnect P_n .

Suppose we create two components, A and B, containing a and b nodes respectively, by removing either one or two nodes from P_n . Let k=1/3n. Then $\gamma_f(A) + \gamma_f(B) = \left[\frac{1}{3}\alpha\right] + \left[\frac{1}{3}b\right] \ge \frac{1}{3}a + \frac{1}{3}b \ge k - \frac{2}{3}$ and so $\gamma_f(A) + \gamma_f(B) \ge k$. The last possibility, namely two nodes from P_n and creating three components, is immediate and we omit the details.

Case (ii) $n \equiv 1 \pmod{3}$. Now $\gamma_f(P_n-1) = \gamma_f (P_n) - 1$ and hence $\gamma_f^-(P_n) = 1$. If we remove $\{v_2, v_4, v_6\}$ from P_n we obtain three isolated nodes and P_{n-6} . Since $\gamma_f(P_n-6) = \gamma_f (P_n)-2$ we conclude that $\gamma_f^+(P_n) \leq 3$. Now note that no node of P_n is in every minimum fuzzy dominating set of P_n .

In fact the only pairs of nodes satisfying condition (i) of theorem 3 are $\{v_1,v_2\}$ and $\{v_{n-1},v_n\}$. However in either case condition (ii) is not satisfied. Hence by theorem 2 and 3,

$$\gamma_f^+(P_n) = 3.$$

Case (iii) $n \equiv 2 \pmod{3}$. Here v_2 and v_{n-1} satisfy the hypothesis of theorem 3 and thus $\gamma_f^+(P_n) = 2$. Now by theorem 4 $\gamma_f^-(P_n) \le 2$. To see that $\gamma_f^-(P_n) \ne 1$ we appeal to an argument similar to that used in case (i).

Theorem 6.2:

For $n \ge 8$, $\gamma_f^+(C_n) + \gamma_f^-(C_n) = 6$.

Proof:

It suffices to show that for $n \equiv 0,1$ and $2 \pmod{3}$, we have respectively $\gamma_f^+(C_n) = \gamma_f^-(C_n) = 3$, $\gamma_f^+(C_n) = 5$ and $\gamma_f^-(C_n) = 1$, and $\gamma_f^+(C_n) = 4$, $\gamma_f^-(C_n) = 2$. We indicate how to prove that $\gamma_f^+(C_n) = 5$ when $n \equiv 1 \pmod{3}$. The remaining cases follow easily from the proof of theorem 6.

Suppose $n \equiv 1 \pmod{3}$ and let $k = \left[\frac{1}{3}n\right]$. If we denote C_n by $v_0, v_1, ..., v_n = v_0$, then removal of the set of nodes $\{v_0, v_2, v_4, v_6, v_8\}$ leaves four isolated nodes and P_{n-9} . However $\gamma_f(P_n-9) = \gamma_f(P_n) - 3 = \gamma_f(C_n)$ -3 and thus $\gamma_f^+(C_n) \le 5$. If we remove only a single node from C_n , we obtain P_{n-1} and since $\gamma_f(P_n-1) = k-1$, we know $\gamma_f^+(C_n) \ge 2$. It remains to show that removal of fewer than four nodes from P_{n-1} will not cause the fuzzy domination number to exceed k.

Suppose three nodes are removed from P_{n-1} leaving four components A_i , $1 \le i \le 4$, containing a_i points respectively, and that $\sum_{i=1}^4 \gamma_f(A_i) \ge k+1$. Since $a_i \ge 3 \gamma_f(A_i)$ -2 we have $\sum_{i=1}^4 a_i \ge [3\sum_{i=1}^4 \gamma_f(A_i)]$ -8 $\ge 3(k+1)$ -8 = 3k-5.

However, $\sum_{i=1}^{4} a_i = 3(k-1) - 3 = 3k-6$, a contradiction. Analogous arguments will show that if less than four components are formed as a result of removing fewer than four nodes from P_{n-1} the fuzzy domination number will never exceed k.

REFERENCES

- [1] Brigham, R., Chinn, P., Dutton, R., 1988, "Vertex domination critical graphs", Networks 18, 173-179.
- [2] Harary, F., Bauer, D., Nieminen, J., and Suffel, C.L., (1983), "Domination alteration sets in graphs", Discrete Math.47,153-161.
- [3] Haynes, T., Hedetniemi, T., and Slater, P., 1998, "Fundamentals of Domination in Graphs", Marcel Dekker, Newyork.
- [4] Kumar, N.V., and Ramani, G.G., 2011, "Different Types of Dominating Critical in Fuzzy graphs", Fuzzy systems, 3(9), 277-279.
- [5] Nader Jafari Rad., Elahe Sharifi., and Marcin Krzywkowski,2016, "Domination stability in

- graphs", Discrete Math 339, 1909-1914.
- [6] Nagoor Gani, A., and Chandrasekaran, V.T., 2010, "A First look at Fuzzy Graph Theory", Allied publishers (p) Ltd.
- [7] Nagoor Gani, A., and Vijayalakshmi, P., 2011, "Domination critical nodes in fuzzy graph", International. Journal of Math. Sci & Engg. App, vol 5 No.1, pp -295-301.
- [8] Rosenfeld, A., (1975) "Fuzzy graphs": In: Zadeh LA, FU KS,Shimura M (eds) Fuzzy sets and their applications Academic press, New York.
- [9] Somasundaram, A., and Somasundaram, S., 1998, "Domination in fuzzy graphs", Pattern Recognition Letters, 19(9), 787-791.
- [10] Sumner, D., 1990, "Critical concepts in domination", Discrete Math. 86, 33-46.