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Abstract

In this paper we studied the critical and stability of fuzzy
dominating set. We investigate how the removal of a node
affects the fuzzy domination number also we studied the
stability of fuzzy path, fuzzy trees and fuzzy cycles. Also we
obtain sharp bounds and characterizations.
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INTRODUCTION

Brigham [1] introduced vertex domination critical graphs.
Harary et al [2] explained an interesting application in
voting situations using the concept of domination. Nagoor
Gani and Vijayalakshmi [7] discussed domination critical
nodes in fuzzy graph Rosenfeld [8] introduced the notion of
fuzzy graph and several fuzzy analogous of graph theoretic
concepts such as paths, cycles, connectedness and etc.
Somasundaram and  Somasundaram [9]  discussed
domination in fuzzy graphs. Sumner [10] discussed
domination critical graphs. Nader Jafari Rad, Elahe Sharifi
and Marcin krzywkowski [5] introduced domination
stability in graphs. Bauer, Harary, Nieminen and Suffel [2]
introduced domination alteration sets in graphs.

PRELIMINARIES:

A fuzzy graph G=(o, 1) is a non-empty set V together with a
pair of functions a:V = [0,1] and u:VxV—-[0,1] such
that p(u,v) < a(u) Aa(v) for all uv €V, where o(u) A
o(v)is the minimum of o(u) and o(v).The underlying
crisp graph of the fuzzy graph G=(o,u) is denoted as
G=(¢", u") where o={ ueV/ o(u)>0} and
w={(u,v)EVXV [ u(u,v)>0}.Let G =(o, 1) be a fuzzy graph
and t be any fuzzy subset of g,i.e t(u) < o(u)for all u,.
Then the fuzzy subgraph of G = (o, u) induced by 7 is the
maximal fuzzy sub graph of G = (o, ) that has fuzzy node
set 7. Evidently this is just the fuzzy graph (z,p), where
p(uVv) =t(u) At(v)forallu,ver
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Two nodes u and v are said to be neighbours if p(u,v) >
0.The strong neighbourhood of u is Ns(u) ={v € V : (u,v)
is a strong arc}. Ns[u] = Ns(u) U {u} is the closed strong
neighbourhood of u. Let G=(ag,u) be a fuzzy graph. Two
nodes u and v of G are strong adjacent if (u,v) is strong arc.
The strong degree of a node v is the minimum number of
nodes that are strong adjacent to v. It is denoted by ds(v).
The minimum cardinality of strong neighbourhood §5(G) =
min{|Ng(w)| :ue V(G)} and the maximum cardinality of
strong neighbourhood As (G) = max {|Ns(uw)|: ue V(G)} .
Let G be a fuzzy graph. Let S be a set of vertices in G. Let
U€eS then the private neighbourhood of u is pn(u,S) = { v:
Ns(V)NS = {u}}. The external private neighbourhood
epn(v,S) = pn(u,S) \ S. A node u is called a fuzzy end node
of G = (o, ) if it has atmost one strong neighbour in G =

(o,1).

A path p in a fuzzy graph is a sequence of distinct nodes
Uo,Ug,Uy,...Un Such that p(uig,u;)>0; 1< i <n here n>0 is
called the length of the path p .The consecutive pairs (Ui
1,U;) are called the arcs of the path. A path p is called a cycle
if uo=un and n=3. An arc (u,v) is said to be a strong arc if
u(u,v) = u” (u,v) and the node v is said to be a strong
neighbour of u. If u(u,v) =0 for every veV then u is
called isolated node. Two nodes that are joined by a path are
said to be connected. Let G= (o, u) be a fuzzy graph and u
be a node in G then there exist a node v such that (u,v) is a
strong arc then we say that u dominates v. Let G=(a, 1) be a
fuzzy graph. A set D of V is said to be fuzzy dominating set
of G if every veV-D there exist ue D such that u
dominates v. A fuzzy dominating set D of G is called a
minimal fuzzy dominating set of G if no proper subset of D
is a fuzzy dominating set. The fuzzy domination number
¥(G) of the fuzzy graph G is the smallest number of nodes
in any fuzzy dominating set of G. A fuzzy dominating set D
of a fuzzy graph G such that |D| = y,(G) is called minimum
fuzzy dominating set.

FUZZY DOMINATING CRITICAL NODES
Definition 3.1:

Let G=(o, u) be a fuzzy graph. A node v of G is said to be
fuzzy dominating critical node if its removal either increases
(or) decreases the fuzzy domination number.
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We partition the nodes of G into three disjoint sets
according to how their removal affects y, (G). Let V= Vf0 U
Vi u Vg for

VP= {VeV: ¥, (GV)= 1 (G}
Vi ={veV: y; (G-v) > y; (G)}
Vi ={VveV: y (G-v) < y(G)}

STABILITY OF FUZZY DOMINATING SET
Definition 4.1:

The domination stability (or) vy — stability of a fuzzy graph
is the minimum number of nodes whose removal changes
the fuzzy domination number.

y;’ - Stability of a fuzzy graph G denoted by y;* (G) is
defined as the minimum number of nodes whose removal
increases yy (G).

Yf - Stability of a fuzzy graph G denoted by y; (G) is
defined as the minimum number of nodes whose removal
decreases yy (G).

We denote the y, — stability of G by sty;(G). Thus the
domination stability of a fuzzy graph G is sty;(G) = min
{r/ (G) .,y (G)}. If G is a disconnected fuzzy graph with
components Gy,Gz,...Gk then sty:(G) = min { sty;(Ga),
styF(Ga),..... sty (Gi)}.

Theorem 4.2:

The removal of a node v from G increases y; (G) if and
only if (i) v is not isolated and v is in every minimum
dominating set for G, and (ii) there is no dominating set for
G-Ns[v] with fuzzy domination number y, (G) which also
dominates Ns (V).

STABILITY OF FUZZY TREES
Theorem 5.1:

For any fuzzy tree T with at least three points y; (T-v) > yf
(T) if and only if v is in every minimum fuzzy dominating
set for T.

Proof:

By theorem 1 the necessity of v being in every minimum
fuzzy dominating set for T is immediate.

Suppose V is in every minimum fuzzy dominating set of T.
Note that y, (T-v) = y (T), for otherwise a minimum
fuzzy dominating set of T-v could be extended to a fuzzy
dominating set of T which avoids v and has cardinality at
most y; (T). Let Ns(v) = { vi,V2,...vm} and Ti be the
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component of T-v containing vi.

If yr (T-v) = y; (T), then for each i, vi is in no minimum
fuzzy dominating set of T;, for otherwise such a fuzzy
dominating set could be extended to a fuzzy dominating set
of T which avoids v and has cardinality at most y, (T).
Thus, for each i, vy (T-Uj«; Tj) = ¢ (Ti)+1, and so for any
fuzzy dominating set D of T, [DNV(T)| = y; (Ti).It
follows that y, (T) = XL, v (TD)+1 = y, (T) +1, a
contradiction.

Proposition 5.2:

If a cut node v of G is in every minimum fuzzy dominating
set for G then y; (G-v) > yf (G)

Theorem 5.3:

Let T be a tree. Then y{(T) = 2 if and only if there are
points v and u such that (i) every minimum fuzzy
dominating set contains either v or u, (ii) v is in every
minimum fuzzy dominating set for T-u and u is in every
minimum fuzzy dominating set for T-v and (iii) no node is
in every minimum fuzzy dominating set for T.

Proof:

The necessity of the conditions is clear. Furthermore
sufficiency is easily established if we can prove that y, (T-
V) = vy (T), for then condition (ii) will serve as the
hypothesis for theorem 2 applied to T-v. The fact that y, (T-
V) < y¢ (T) follows from condition (ii) and theorem 2.

Suppose y5 (T-v) < v (T), and let S be a minimum fuzzy
dominating set for T which contains v but not u. Let
V1,V2......Vm be the points strong adjacent to v. Then S= {v} U
U™, S; where S is a minimum collection of points from T; —
vi. Note that if there are two or more values of i for which y,
(Ti) = |Si|+1then y{(T) = 1, which contradicts condition
(iii). Suppose there exists one value of i such thaty, (Ti) =
|Si|+1.

Then yp (T-v) = X2, y(T) = 1+ XiZ4ISil = v, (T), a
contradiction. If y, (Ti) = [Si| for all i, then U{Z;Si is a
minimum fuzzy dominating set for T-v which does not
contain u, and we are done.

Proposition 5.4:
For all fuzzy graphs G, min { ¥/ (G), y7 (G)} < &5(G) +1.
Theorem 5.5:

If G is a fuzzy graph with a fuzzy end node, then y/ (G) = 2
implies y; (G) < 2. In particular this is true for fuzzy trees.

Proof:

Let v be a node of T which is adjacent to a fuzzy end node u
of T.If y (T-v) < y; (T) we are done. If not, since we
know y; (T-v) < vy (T), it follows that y (T-v) = y; (T).
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However T-v = {u}u T’, where T’ is a sub tree of T, and
hence ]/f (T'V) =1+ }/f(T’)But then )/f (T'U'V) = ]/f(T’) <
¥Yr (T-v) = y¢ (T) and so y; (T) < 2.

Theorem 5.6:

For every fuzzy tree T there exists a node VET such that y,
(T-v) = ¢ (T).
Proof:

We first note that if there is a node veT which is strong
adjacent to two (or more) fuzzy end nodes u; and u; of T
then v is in every minimum fuzzy dominating set for T and
¥r (T- u1) = vy, (T). If not, then T contains a node w of
strong degree two which is strong adjacent to an end node u.
Let T = T-w-u. Now for any fuzzy graph G, if ds(v) = 1,
then y; (G-v) < yr (G). Hence y; (T°) < y; (T-V) < ¥y
(T). However clearly y; (T*) = y; (T) -1.Now if y, (T*) =
Yr (T) -1, then yf (T) = yf (T-w). Otherwise yf (T) = y¢
(M) = ¥y (T-u).

STABILITY OF FUZZY PATHS AND CYCLES:
Theorem 6.1:
Forn>7, v/ (Pn) + y7 (Pn) = 4.

Proof:

Let path Py = v1,V2,...vo. We show that 7 (Pn) + y7 (Pn) = 4
by proving this separately for n= 0,1 and 2(mod3).

Case (i) n= 0 (mod3). Clearly v; is in every minimum fuzzy
dominating set, hence by theorem 2 yf"(Pn) =1. To see that
Y5 (Pn) = 3 first note that y;(Pn-3) = y; (Pn)-1; hence
Y5 (Pn) < 3. Since y£(Pn-1) = y¢(Pn-2) = y; (Pn) the only
way to lower the fuzzy domination number of P, by
removing either one or two nodes is to disconnect P,,.
Suppose we create two components, A and B, containing a
and b nodes respectively, by removing either one or two
nodes from Py. Let k=1/3n. Then y; (A) + y; (B) = E a] +

E b] > ia + ib Zké and so yr (A) + y¢ (B) = k. The last

possibility, namely two nodes from P, and creating three
components, is immediate and we omit the details.

Case (ii) n= 1 (mod3). Now y¢(Pn-1) = y¢ (Pn) — 1 and
hence y; (Pn) = 1. If we remove {vz,vsve} from P, we
obtain three isolated nodes and Pns. Since y;(Pn-6) = yf
(Pn)-2 we conclude that y/(Pn) < 3. Now note that no node
of Py is in every minimum fuzzy dominating set of Py.

In fact the only pairs of nodes satisfying condition (i) of

theorem 3 are {vi,vo} and {vn.1,vn}. However in either case
condition (ii) is not satisfied. Hence by theorem 2 and 3,
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¥ (Pn) =3.

Case (iii) n= 2(mod3).Here v.and vn.1 satisfy the hypothesis
of theorem 3 and thus yf+ (Pn) =2. Now by theorem 4 y; (Pn)
< 2. To see that y;(Pn) #1 we appeal to an argument
similar to that used in case (i).

Theorem 6.2:
For n=8, y/(Cy) + v; (Cy) = 6.
Proof:

It suffices to show that for n= 0,1 and 2(mod3), we have
respectively y/(Cn) = y7(Cn) =3, ¥/ (C) =5 and y;(Cn)
=1, and y;r(Cn) =4, y; (Cpn) = 2. We indicate how to prove
that y;f (Cy) = 5 when n= 1 (mod3). The remaining cases
follow easily from the proof of theorem 6.

Suppose n= 1 (mod3) and let k:En].lf we denote C, by

Vo,V1,..Vn = Vo, then removal of the set of nodes
{Vo,v2,Vs,Ve,Vs} leaves four isolated nodes and Pn.. However
Yr(Pn-9) = ¥¢ (Pn) — 3 = ¥ (Cn)-3 and thus y; (Cn)<5.If we
remove only a single node from C,, we obtain P,.; and since
¥r(Pr-1) = k-1, we know y/(Cn) = 2. It remains to show
that removal of fewer than four nodes from Pn.1 will not
cause the fuzzy domination number to exceed k.

Suppose three nodes are removed from P, leaving four

components Aj, 1<i<4, containing a; points respectively,

and that Y.7_; yr(4;) =k+1. Since ai = 3 y;(Ai) -2 we have
f1a; 2 [3Y5, vr(A)]-8 = 3(k+1) -8 = 3k-5.

However, * ,a; = 3(k-1) — 3 = 3k-6, a contradiction.
Analogous arguments will show that if less than four
components are formed as a result of removing fewer than
four nodes from Pn.i the fuzzy domination number will
never exceed k.
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