
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3683-3687

© Research India Publications. http://www.ripublication.com

3683

A Novel Approach to Improve the Performance of Grid Systems by

Analyzing Attentive Dynamic Load Balancing Algorithm

Nilesh Korde and Abhijeet Thakare

1,2Assistant Professor, Department of Computer Application, Shri Ramdeobaba College of Engineering and Management,
Gittikhadan, Katol Road, Nagpur-440013, India.

1,2Orcid Id: 0000-0001-8820-6983, 0000-0003-1096-6418

Abstract

Grid computing is considered as future of the distributed

systems. Mostly discussed issues in distributed systems are

proper resource utilization and reduction in process execution

time. These issues can be handled by implementation proper

load balancing algorithm. A proper load balancing algorithm

will improve the overall performance of the distributed

systems. To solve the above mentioned issues, an efficient

load balancing algorithm is proposed which allocates the load

hierarchically across virtual organization in the set up on the

basis of their least threshold value. The same algorithm is also

compared with the already existing interest attentive dynamic

load balancing algorithm. The tag line is to reduce the

complexity of the algorithm to reduce the process execution

time.

Keywords - Load balancing, Resource Utilization, Process

execution time, Grid systems, Threshold, Cluster

organization.

 INTRODUCTION

The current era of distributed systems has been dominated by

Hi-speed distributed system environment. Such environment

is called as grid computing environment. There are mostly

two issues that are frequently discussed in distributed systems

that are proper resource allocation and reduction in process

execution time. If proper load balancing mechanism is

implemented at grid level then it becomes very simple to get

rid of the above mentioned things. Though there is lot many

load balancing mechanisms are proposed but very few of them

are standard. Research is constantly going on to settle down

the things. To contribute the same, this paper proposes and

analyzes interest attentive dynamic load balancing algorithm.

Load balancing mechanism is implemented at the top node in

the hierarchical structure of grid computing environment.

Role of the load balancing mechanism is to divide the tasks

evenly based on the number of nodes in an environment and

distribute to the cluster organization based on their current

threshold value [1]. This mechanism is responsible to reduce

the process execution time and resource utilization. To

implement this, load balancing mechanism should be very

strong to distribute the load in the most sufficient way without

too much processing [1, 2].

Load balancing algorithm is basically implemented by using

two different types of techniques. The techniques are Static

Load balancing and Dynamic Load balancing. In Static Load

balancing, load is assigned to every commuting node before

the actual execution process [3]. Load allocation is done by

ignoring the current situation of the system. However in

dynamic load balancing, load is allocated by considering the

present state of the system. Thus, we can say that the

threshold value varies time to time according to the current

load that is the reason why such algorithms are dynamic in

nature. The algorithms are divided into two categories

centralized and distributed [2, 4]. In centralized approach

topmost node controls all the other nodes and also the

execution process. While in distributed approach individual

node played its part in the execution process. In this paper we

are proposing centralized approach with distributed process

execution by the cluster organization.

Figure 1.1: Hierarchical Structure of Grid Environment

The execution process goes like this: The request arrives at

the control node; it computes the Average Threshold Value

(ATV) for the whole system, at next hierarchical level cluster

organization exists, which has its own Threshold Value

(ATVC); before allocating the request or load it is always

checked that the Threshold Value of the Cluster Organization

(ATVC) should be less than Average Threshold Value (ATV)

mailto:nileshkorde11@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3683-3687

© Research India Publications. http://www.ripublication.com

3684

for system if it is so, then the load is allocated, otherwise not.

The whole paper is summarized as follows:

1. Introduction.

2. Related Work.

3. Components of Dynamic Load Balancing Algorithm

4. Analysis of Attentive Load balancing Algorithm.

5. Conclusion.

RELATED WORK

Many of the Load balancing algorithms has been proposed

and implemented but even after that there is need to discuss

the important issues of the distributed systems that are

reduction in process execution time and proper load

balancing. Almost all the papers discuss the implantation of

load balancing algorithms on simulators. But on the

simulators we can the judge the results what can be produced

on real time set up. Hence our paper analyzes the attentive

dynamic load balancing algorithm and also suggests some the

modification’s in the same algorithm.

The Load Balancing algorithm is either designed for

homogeneous or heterogeneous system. Homogeneous system

offers same hardware same processing capabilities and failure

and recovery times. That is the reason that load balancing in

such system is easy to achieve. But, the scenario is quite

different today; nodes in networks of distributed system differ

in their configuration. When large scientific applications runs

in such environments, performance is affected by a number of

factors such as variation in workload, variation in network

latency and other factors mentioned in [1]. Thus, it is

important to consider the heterogeneity and to decide while

designing a DLB algorithm. Parameters for load balancing is

as follows-

1. CPU Utilization - CPU utilization means an extent upto

which CPU is utilized. The CPU utilization varies

depending on the amount of tasks is evaluted and managed

computing tasks [1, 5].

2. Load Balancing – Divides the number of tasks according

to number of cluster organization and allocate to it. This

allocation is based on the Threshold value, if Threshold of

cluster is higher side the request is not allocated[4].

3. Job Queue – All the Jobs or Requests are initally received

at control node which has a queue. All these jobs are

scheduled form the queue by using any of the scheduling

algorithm[5].

4. Cluster Organization – Set of computing machine is called

as cluster. And collection of some cluster organization

constituites a Grid[4].

5. Compute Nodes – An independent machine which belongs

to a cluster is called as compute node. Role of these nodes are

to execute the tasks allotted to them by the cluster nodes [4].

COMPONENTS OF DYNAMIC LOAD BALANCING

ALGORITHM

A. Information Policy -

The information policy is responsible for collecting the

system state information. First local state information is

collected from the neighboring nodes by cluster organizational

nodes; information collected at local level is responsible for

calculating the global state information. Based on this,

decision for the scheduling of the job has been taken.

More accurate is the system state information more effective

is the load balancing decision taken by control node [6]: the

accuracy of processor load estimates, the aging of information

due to communication latency, and the frequency of load

exchange. Following are the various information policies as in

[7]: periodic or batch policy, demand-driven policy, state
change driven policy, request-reply policy, event-driven
policy, and index variability based information policy.

B. Transfer Policy –

The transfer policy is responsible to identify the state of the

node whether it is lightly loaded or heavily loaded. Widely

used transfer policy is threshold policy. Threshold values are

classified as single and double Threshold policy [3]. In single-

threshold policy, when the load at the node exceeds the

threshold T, the transfer policy identifies that the node is an

overloaded node. If the load at the node

Falls below T, the node is identified as under loaded node. In

double-threshold policy, two threshold values T1 and T2 are

used to describe node status as follows.

• If load = 0 load=idle

• Load < T1 _load= under loaded

• T1 < load < T2 load = Normal/Medium

• Load > T2 load = overloaded

C. Selection Policy -

The selection policy decides the best job to be transferred.

There are several factors to consider in the selection of a job:

(1) the overhead occurred by the transfer of job should be

minimal; (2) the selected job should be long lived so that it

should be worth to incur the transfer overhead as in [8]; (3) a

job should be selected for transfer only if its response time

will be improved upon transfer.

D. Location Policy –

The location policy is responsible for selecting the best node

to allocate the task amongst set of all the available nodes. It

finds suitable node to transfer the load. The factors to be

considered while selecting the node may include resource

availability as in [9]. The selected node should have the

correct environment to run the process. Various location

policies have been presented in the literature as in [2] [7] [8]

that are random policy, polling policy: threshold, greedy and

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3683-3687

© Research India Publications. http://www.ripublication.com

3685

shortest, negotiation policy: low load policy, broadcast a
query, main and secondary locations policy.

ATTENTIVE DYNAMIC LOAD BALANCING

ALGORITHM

A. Calculation of Threshold-

Threshold value exists for an individual node. First the

threshold is calculated for an individual node then average

threshold value of complete system is evaluated. Threshold is

calculated from the job queue that exists for each node. A

manual value is set for the job queue if number of tasks/jobs

in the queue exceeds that value then node is called as

overloaded node, else, it is under loaded node. This value is

calculated on 10-point scale like, if 4 is the current value and

manually set threshold value is 7 that mean still 3 more tasks

can be allocated to the same node. Average threshold (ATV)

is calculated as-

 n

ATV = (∑ Individual Node) / n

 i=1

B. Calculation of Average Computing Power(ACP)-

Logic to calculate the ACP remains the same as that of

previous method. First computing power of individual node is

calculated and then an average is calculated. Computing

power of every single machine is dependent on CPU

utilization. This metric is always present for standalone node

in terms of percentage. Again a manual percentage is assumed

as a limit, if CPU utilization exceeds that limit again node is

said to be overloaded. For example, if current CPU utilization

is 40% and limit is 75% that means still some more tasks can

be allocated to the node nearby that 75% mark.

 n

ACP = (∑CPU Utilization of Individual node) / n

 i=1

Vital Conditions for execution of algorithm

At Control node

If (ACP<limit of CPU Utilization && ATV< limit of

Job/Task Queue) then

 Allocate the job to the cluster organization

else

 Keep it in job queue of control node

At Cluster Organization Level

If (ACPC<Limit of CPU Utilization for Cluster Organization

&& ATVC for Cluster Organization)

 Allocate the job to the its compute node

else

 Keep it in job queue of selected Control organization.

 Algorithm-

PROPOSED ALGORITHM

The algorithm discussed in the previous section executes the

BFS algorithm for the arrival every so that the request to be

allocated to the best cluster organization amongst the given set

up. But execution of the BFS algorithm for every arrival of

request is not a good idea as it produces additional processing

overhead. Existence of this processing overhead increases the

process execution time, which decreases the overall system

performance. So, to overcome this drawback we are proposing

few modifications in the same algorithm. Basically, we have

to reduce this processing overhead this can be done by

implementing any sorting algorithm instead of BFS algorithm.

As it is clearly known that the time complexity of sorting

algorithm is less as compared to that of BFS algorithm.

In our proposed algorithm we are sorting the cluster

organizations in the ascending order of their current threshold

value. This sorting is implemented by bubble sort which as

best case time complexity as O(n) and worst case is O(n^2).

Rest of the algorithms remains the same. The algorithm is as

follows –

Algorithm-

Step 1: Identify all the cluster organizations first and receive

the request at the control node.

Step 2: For every received request calculate the ATV and

ACP mentioned as above-

Step 1: Identify all the cluster organizations first and

receive the request at the control node.

Step 2: For every received request calculate the ATV

and ACP mentioned as above-

Step 3: For every received request apply the BFS

algorithm to find out the best suited cluster organization

so that the request can be allocated to it.

Step 4: Once the best cluster organization is found

allocate a load to it.

Step 5: When cluster organization receives the load

calculates it own ATVC and ACPC for itself.

Step 6: According to previous calculated values it

allocate the job/task to its compute nodes.

Step 7: Compute node will execute the task and return

the results back to the nodes hierarchically.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3683-3687

© Research India Publications. http://www.ripublication.com

3686

A vital condition that exists in the attentive load balancing

algorithm remains the same. Their role is to support more

accurate load balancing. Thus we can logically say that time

complexity of any algorithm is directly proportional to

process execution time. So, it is always better to select

As proposed algorithm mentions that by implementing bubble

sort algorithm we can get efficient results. The only difference

between the two algorithms is the time complexity of BFS and

Bubble sort algorithm which are executed after arrival of

every request. However it is not mandatory to use Average

computing Power and Average threshold value both at the

time of implementation. We can also use any one of them for

implementation and execution. But using them together would

generate more accurate results.

CONCLUSION

In this paper, we discussed a novel approach for several

components of load balancing mechanism based on which

proper allocation should be done. Although from the related

work we can say that more and more work is done on load

balancing mechanism that too by using the simulators. More

and more work is required to be done on the real time

environment to obtain the real time results. Secondly, load

balancing algorithm needs to be more accurate, if we choose

two parameters for load balancing then mechanism will be

much accurate. And last, but the most important is time

complexity of the algorithm makes an impact on the process

execution time of the job. Logically, if we reduce the

complexity then the process execution time decreases. And

the basic issues in the load balancing that we discussed in the

beginning are reducing process execution time and proper

resource allocation to achieve the load balancing.

REFERENCES

[1] http://www.igiglobal.com

[2] Emmanuel Jeannot, "A Practical Approach of

Diffusion Load Balancing Algorithms", Lecture

Notes in Computer Science, 2006.

[3] www.infosys.usyd.edu.au

[4] Niranjan Shivratri and Mukesh Singhal: Advanced

Concepts in operating Systems:Distributed Database

and multiprocessor opearting Systems.

[5] Avi Silberschatz, Peter Baer Galvin, Greg Gagne:

Operating System Concepts, Eight Edition

[6] Z. Khan, R. Singh, J. Alam, and R. Kumar,

“Performance Analysis of Dynamic Load Balancing

Techniques for Parallel And Distributed Systems,”

Int. J. of Computer and Network Security, vol. 2,

Feb. 2010, pp. 123-127.

[7] P. K. Chandra and B. Sahoo, “Prediction Based

Dynamic Load Balancing Techniques in

Heterogeneous Clusters,” Prod. Int. Conf. Computer

Science and Technology, Apr. 2008, pp. 189-192.

[8] R. Mukhopadhyay, D. Ghosh, and N. Mukherjee, “A

Study on the Application of Existing Load Balancing

Algorithms for Large, Dynamic, Heterogeneous

Distributed Systems,” Proc. 9th WSEAS Int. Conf.

Software Engineering, Parallel and Distributed

Systems (SEPADS), 2010, pp. 238-243.

[9] A. Hac and T. J. Johnson, “A Study of Dynamic Load

Balancing in a Distributed System,” Proc. ACM

Conf. Communications, Architectures and Protocols,

vol. 16, Aug. 1986, pp.348-356.

[10] Mohd. Haroon and Mohd. Hussain,” Interest Attentive

Dynamic Load Balancing in Distributed Systems”,

2nd International Conference on Computing for

Sustainable Global Development (INDIACom),

2015.

[11] Mayuri A. Mehta,” Designing an Effective Dynamic

Load Balancing Algorithm Considering Imperative

Design Issues in Distributed Systems”,

International Conference on Communication

Systems and Network Technologies, 2012.

Step 4: Entry of node at the first position in the queue

indicates that the Cluster organization has minimum

threshold value. So, cluster organization in front of the

queue will be selected to allocate the load.

Step 5: Once the best cluster organization is found

allocate a load to it.

Step 6: When cluster organization receives the load

calculates it own ATVC and ACPC for itself.

Step 7: Again the cluster organization executes the

bubble sort algorithm and sort the compute nodes in

the ascending order of their threshold value. This can

be done by maintaining a queue at cluster

organizational level.

Step 8: In the same way as previous, first node in the

queue indicates that it is least loaded node. And load is

allocated accordingly.

Step 3: For every received request, sort the cluster

organization according to their current load in the ascending

order. This can be maintained by using queue data structure

at control node.

http://www.igiglobal.com/
http://www.infosys.usyd.edu.au/
http://www.cs.yale.edu/homes/avi
http://www.petergalvin.info/
http://people.westminstercollege.edu/faculty/ggagne

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3683-3687

© Research India Publications. http://www.ripublication.com

3687

[12] https://www.linux.com/community/blogs/133-general-

linux/9401

[13] Ajay Tiwari and Priyesh Kanungo, “A Model for

Dynamic Load Balancing in Open Source Software

for Distributed Computing Environment”, IEEE,

2012.

[14] K. Hemant Kumar Reddy and Shina Diptendu Roy, A

Hierarchical Load Balancing Algorithm for Efficient

Job Scheduling in a Computational Grid Test bed, 1st

Int’l Conf. on Recent Advances in Information

Technology, RAIT-2012.

[15] R. Manimala and P.Suresh, Load Balanced Job

Scheduling Approach for Grid Environment, IEEE,

2012.

