On Some Properties of β-open sets

Belal Nairat

Applied Sciences Private University, Amman-Jordan.

Abstract

In this paper we introduce and study the concepts of β-open set, β-continuous functions, then we also study the concepts of β-compact subsets and study some new characterizations of β-separation axioms such as β-T_2. Then we discuss the relations between the β-continuous functions and these concepts.

Keywords: β-open set, β-compact, β-open cover, β-closed sets, β-continuous

INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Levine [7] introduced the notion of semi-open sets and semi-continuity in topological spaces. Andrijevic [2] introduced a class of generalized open sets in topological spaces. Mashhour [9] introduced pre open sets in topological spaces. Monsief et al. [1] initiated the study of β-open sets and β-continuity in a topological space. The class of β-open sets is contained in the class of semi-open and pre-open sets. In this paper we discuss the covering properties of β-sets and β-continuous functions. All through this paper (X, τ) and (Y, σ) stand for topological spaces with no separation assumed.

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Levine [7] introduced the notion of semi-open sets and semi-continuity in topological spaces. Andrijevic [2] introduced a class of generalized open sets in topological spaces. Mashhour [9] introduced pre open sets in topological spaces. Monsief et al. [1] initiated the study of β-open sets and β-continuity in a topological space. The class of β-open sets is contained in the class of semi-open and pre-open sets. In this paper we discuss the covering properties of β-sets and β-continuous functions. All through this paper (X, τ) and (Y, σ) stand for topological spaces with no separation assumed, unless otherwise stated. The closure of A and the interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively.

PRELIMINARIES

Definition 3.1 A subset A of a space X is said to be [2],[10]:
1. Semi-open if $A \subseteq \text{Cl} (\text{Int}(A))$
2. Pre-open if $A \subseteq \text{Int} (\text{Cl}(A))$
3. α-open if $A \subseteq \text{Int} (\text{Cl} (\text{Int}(A)))$
4. b-open if $A \subseteq \text{Cl} (\text{Int}(A)) \cup \text{Int} (\text{Cl}(A))$
5. β-open if $A \subseteq \text{Cl} (\text{Int} (\text{Cl}(A)))$

Definition 3.2 A function $f : X \to Y$ is called [1], [9]:
1. Semi-continuous if $f^{-1}(V)$ is semi open in X for each open set V of Y.
2. Pre-continuous iff $f^{-1}(V)$ is pre open in X for each open set V of Y.
3. α-continuous if $f^{-1}(V)$ is α-open in X for each open set V of Y.
4. b-continuous if $f^{-1}(V)$ is b-open in X for each open set V of Y.
5. β-continuous if $f^{-1}(V)$ is β-open in X for each open set V of Y.

Definition 3.3 [10] A space X is a β-T_2 space iff for each $x, y \in X$ such that $x \neq y$ there are β-open sets $U, V \subseteq X$ so that $x \in U, y \in V$ and $U \cap V = \emptyset$.

COVERING PROPERTIES

Definition 4.1 Let $\{G_\alpha : \alpha \in \Delta \}$ be a family of β-open sets of the space X. The family $\{G_\alpha : \alpha \in \Delta \}$ covers X if $X \subseteq \bigcup_{\alpha \in \Delta} G_\alpha$.

Definition 4.2 A space X is called a β-compact space if each β-open cover of X has a finite subcover for X.

Theorem 4.3 Let A be a β-compact subset of the β-T_2 space X and $\not\in A$, then there exist two disjoint β-open sets U and V containing x and A, respectively.

Proof: Let $y \in A$, since X is β-T_2 space there exist two β-open sets $U_x, V_y \in X$ such that $x \in U_x, y \in V_y, U_x \cap V_y = \emptyset$, the family $\{A \cap V_y : y \in A\}$ is β-open cover of A has a finite β-subcover $\{A \cap V_{y_1}, A \cap V_{y_2}, \ldots, A \cap V_{y_n}\}$, thus $U = U_{y_1} \cup U_{y_2} \cup \ldots \cup U_{y_n}$.

Theorem 4.4 If X is β-T_2 space and A is a β-open subset, if A is β-compact then A is β-closed.

Proof: Let $x \in X - A$ by the theorem 4.3 there exist two β-open sets U and V such that $x \in U, A \subseteq V, U \cap V = \emptyset$, thus $x \in U \subseteq X - V \subseteq X - A$, which implies $X - A$ is β-open so that A is β-closed.
Theorem 4.5

Let A and B be a two β - compact subsets of the β - T2 space X, then there exist disjoint β - open sets U and V containing A and C, respectively.

Proof:

Let $b \in B$, since A is a β - compact subset and β - open in X, there exist two β - open sets U_b, V_b such that $U_b \cap V_b = \phi$; $b \in V_b$, $A \subseteq U_b$, $F = \{b \cap V_b ; b \in B\}$ is a β - open cover of B, since B is β - compact subset there exist finite subcover $\{B \cap V_b ; 1 \leq i \leq n\}$ from F.

Let $U = \bigcup_{i=1}^{n} U_b$, $V = \bigcup_{i=1}^{n} V_b$, thus $A \subseteq U$, $B \subseteq V$, $U \cap V = \phi$.

Theorem 4.5

Let $f : (X, \tau) \rightarrow (Y, \rho)$ be a continuous surjection open function, if X is a β - compact then Y is a β -compact.

Proof:

Let $\beta = \{V_{\alpha} : \alpha \in \Delta\}$ be a β - open cover of Y, then $L = \{f^{-1}(V) : \alpha \in \Delta\}$ is a β - open cover of X since X is a β - compact space, there exist a finite β - subcover from L to the space X, such that

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i})$$

Thus

$$Y = f(X) \subseteq f\left(\bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i}) \right) = f\left(f^{-1}\left(\bigcup_{i=1}^{n} V_{\alpha_i} \right) \right) = \bigcup_{i=1}^{n} V_{\alpha_i}$$

Hence $Y \subseteq \bigcup_{i=1}^{n} (V_{\alpha_i})$, this shows Y is a β-compact.

Corollary 4.6

β - compactness is a topological property

Proof:

The proof from theorem Theorem 4.5.

Definition 4.7:

A family of sets J has “finite intersection property” if every finite subfamily of J has a nonempty intersection.

Theorem 4.5

A topological space is β-compact if and only if any collection of its β-closed sets having the finite intersection property has non-empty intersection.
REFERENCES

