On Some Properties of β-open sets

Belal Nairat

Applied Sciences Private University, Amman-Jordan.

Abstract

In this paper we introduce and study the concepts of β -open set, β -continuous functions, then we also study the concepts of β -compact subsets $\,$ and study some new characterizations of β -separation axioms such as β -T $_2$. Then we discuss the relations between the β -continuous functions and these concepts .

Keywords: β -open set, β -compact, β -open cover, β -closed sets, β -continuous

INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Levine [7] introduced the notion of semi-open sets and semi-continuity in topological spaces. Andrijevic [2] introduced a class of generalized open sets in topological spaces. Mashhour [9] introduced pre open sets in topological spaces. Monsef et al. [1] initiated the study of β -open sets and β -continuity in a topological spaceThe class of β -open sets is contained in the class of semi-open and pre-open sets. In this paper we discuss the covering properties of β -sets and β -continuous functions. All through this paper(X , τ) and (Y, σ) stand for topological spaces with no separation assumed, unless otherwise stated. the closure of A and the interior of A will be denoted by Cl(A) and Int(A) , respectively.

PRELIMINARIES

Definition 3.1 A subset A of a space X is said to be [2],[10]:

- 1. Semi-open if $A \subseteq Cl(Int(A))$
- 2. Pre open if $A \subseteq Int(Cl(A))$
- $3.\alpha$ -open if $A \subseteq Int(Cl(Int(A)))$
- 4. b-open if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$
- 5. β-open if $A \subseteq Cl(Int(Cl(A)))$

Definition 3.2. A function $f: X \to Y$ is called . [1], [9]:

- 1. semi continuous if $f^{-1}(V)$ is semi open in X for each open set V of Y.
- 2. pre continuous if $f^{-1}(V)$ is pre open in X for each open set V of Y
- 3. α -continuous if $f^{-1}(V)$ is α open in X for each open set V of Y
- 4. b-continuous if $f^{-1}(V)$ is b-open in X for each open set V of Y.

5. β -continuous if $f^{-1}(V)$ is β -open in X for each open set V of Y .

Definition 3.3 [10] A space X is a β -T₂ space iff for each x, y \in X such that $x \neq y$ there are

β-open sets U, V ⊂ X so that x ∈ U, y ∈ V and U ∩ V = ∅.

COVERING PROPERTIES

Definition 4.1

Let $\{G_{\alpha}: \alpha \in \Delta\}$ be a family of β -open sets of the space X. the family $\{G_{\alpha}: \alpha \in \Delta\}$ covers X if $X \subseteq \bigcup_{\alpha \in \Delta} G_{\alpha}$.

Definition 4.2

A space X is called a β -compact space if each β -open cover of X has a finite subcover for X.

Theorem 4.3

Let A be a b-compact subset of the β -T₂ space X and $\notin A$. then there exist two disjoint

β-open sets U and V containing x and A, respectively.

Proof:

Let $y \in A$, since X is β -T₂ space there exist two β -open sets $U_x, V_y \in X$ such that

$$x \in U_x, y \in V_y, U_x \cap V_y = \phi$$
, the family $\bigcup \{A \cap V_y : y \in A\}$ is β -open cover of A

has a finite β -subcover $\left\{A \cap V_{y_1}, A \cap V_{y_2}, \ldots, A \cap V_{y_n}\right\}$, thus $U = U_{y_1} \bigcup U_{y_2} \bigcup \ldots \bigcup U_{y_n}$.

Theorem 4.4

If X is $\beta\text{-}T_2$ space and A is a β -open subset , if A is b-compact then A is a $\beta\text{-}closed.$

Proof:

Let $x \in X - A$, by the theorem 4.3 there exist two β -open sets U and V such that $x \in U$, $A \subseteq V$, $U \cap V = \phi$, thus $x \in U \subseteq X - V \subseteq X - A$, which implies X - A is β -open so that A is β -closed.

Theorem 4.5

Let A and B be a two β - compact subsets of the β -T₂ space X , then there exist disjoint

 β -open sets U and V containing A and , receptively .

Proof:

Let $b \in B$, since A is a β -compact subset and β -open in X, there exist two β -open sets

$$U_b$$
 , V_b such that $U_b \cap V_b = \phi$; $b \in V_b$, $A \subseteq U_b$, so $\beta = \{B \cap V_b; b \in B\}$ is a β -open cover of

B, since B is β -compact subset there exist finite subcover $\{B \cap V_i, 1 \le i \le n\}$ from β .

Let
$$U=\bigcap_{i=1}^n U_{b_i}$$
 , $V=\bigcup_i^n V_{b_i}$, thus $A\subseteq U, B\subseteq V, U\cap V=\phi$.

Theorem 4.5

Let $f:(X,\tau) \rightarrow (Y,\rho)$ be a continuous surjection open function, if X is a β -compact then Y is a b-compact.

Proof:

Let $\beta = \{V_\alpha : \alpha \in \Delta\}$ be a β -open cover of Y, then $L = \{f^{-1}(V_\alpha) : \alpha \in \Delta\}$ is a β -open cover of X .since X is a β -compact space, there exist a finite β -subcover from L to the space X. such that

$$X \subseteq \bigcup_{i=1}^n f^{-1}(V_{\alpha i})$$
, thus
$$Y = f(X) \subseteq f\left(\bigcup_{i=1}^n f^{-1}(V_{\alpha i})\right) = f\left(f^{-1}\left(\bigcup_{i=1}^n (V_{\alpha i})\right)\right) = \bigcup_{i=1}^n (V_{\alpha i})$$

Hence $Y \subseteq \bigcup_{i=1}^n (V_{\alpha i})$, this shows Y is a β -compact .

Corollary 4.6

 β -compactness is a topological property

Proof

The proof from theorem Theorem 4.5.

Definition 4.7:

A family of sets \mathcal{I} has "finite intersection property" if every finite subfamily of \mathcal{I} has a nonempty intersection.

Theorem 4.5

A topological space is β - compact if and only if any collection of its β - closed sets having the finite intersection property has non-empty intersection.

Proof:

Suppose X is β -compact, i.e., any collection of β -open subsets that cover X has a finite collection that also cover X. Further, suppose $\{G_\alpha:\alpha\in\Delta\}$ is an arbitrary collection of β -closed subsets with the finite intersection property. We claim that $\bigcap_{\alpha\in\Delta}G_\alpha\neq\phi$ is non-empty. Suppose otherwise, i.e., suppose $\bigcap_{\alpha\in\Delta}G_\alpha=\phi$.

Then
$$\bigcup_{\alpha\in\Lambda} (X-G_\alpha)=X-\left(\bigcap_{\alpha\in\Lambda}G_\alpha\right)=X-\phi=X$$
 . Since

each G_{α} is β -closed, the collection $\{X - G_{\alpha} : \alpha \in \Delta\}$ is an β -open cover for X. By β - compactness, there is a finite β - subcover L such that

$$X = \bigcup_{i=1}^{n} (X - G_{\alpha i}).$$
 But

$$\bigcap_{i=1}^n G_{\alpha_i} = \bigcap_{i=1}^n \left(X - \left(X - G_{\alpha_i} \right) \right) = X - \left(\bigcup_{i=1}^n \left(X - G_{\alpha_i} \right) \right) = X - X = \emptyset,$$

which contradicts the finite intersection property of $\{G_{\alpha}: \alpha \in \Delta\}$.

Conversely , take the hypothesis that every family of a β -closed sets in X having the finite intersection property has a nonempty intersection .we are to show X is β - compact. let $\left\{G_{\alpha}:\alpha\in\Delta\right\}$ be any β -open cover of X. then $\left\{X-G_{\alpha}:\alpha\in\Delta\right\}$ is a family of β -closed sets such that $\bigcap X-G_{\alpha}=X-\left(\bigcup_{\alpha\in\Delta}G_{\alpha}\right)=X-X=\phi$.

Consequently, our hypothesis implies the family

 $\left\{X-G_{\alpha}:\alpha\in\Delta\right\}$ does not have the finite intersection property . Therefore , there is some finite β -subcollection

$$\left\{X-G_{\alpha_i}: i=1,2,3,\ldots,n\right\}$$
 such that $\bigcap_{i=1}^n X-G_{\alpha_i}=\phi$ and

hence

$$X = \bigcup_{i=1}^n G_{\alpha_i} = \bigcup_{i=1}^n \left(X - \left(X - G_{\alpha_i}\right)\right) = X - \left(\bigcap_{i=1}^n \left(X - G_{\alpha_i}\right)\right) = X - \phi = X$$

Thus $X = \bigcup_{i=1}^n G_{\alpha_i}$, implying X is β -compact.

ACKNOWLEDGEMENTS

The author acknowledges Applied Science Private University, Amman, Jordan, for the fully financial support granted of this research article.

REFERENCES

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assint Univ. **12**(1983), 77–90
- [2] Andrijevic, D., On b-Open Sets, Mat Vesn., Vol.48, 1996, PP.59-64.
- [3] Calads, Georgiou D.N and Jafari S., Characterizarions of Low Separation Axioms Via α -open Sets and α -Closure Operation, Bol. Soc. Paran. Mat., Vol.21, 2003, PP.1-14.
- [4] Crossley, S. G., and Hildebrand S. K., Semi Closure, Texas J.Sci., Vol.22, 1971, PP.99-112
- [5] Dugundji, J., Topology. Boston, Masachusetts, Allyn and Bacon, Inc., 1966.
- [6] Jafari, S., On a Weak Separation Axioms, Far East J. Math. Sci., to appear.
- [7] 7.Levine, N., Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math Monthly, Vol.70, 1963, PP.36-41.
- [8] Maheshwari, S. N., and Prasad, R., Some New Separation Axioms, Ann. Soc. Sci Bruxelles, Vol.89, 1975, PP.395-402.
- [9] Mashhuor, A. S., and Abd El-Monsef M.F., and El-Deeb, S. N., On Precontinuous and Weak Precontinuous Mapping. Proc. Math. Phys. Soc. Egypt, Vol.53, 1982, PP.47-53.
- [10] Mustafa, J.M, Some Separation Axioms by b-open Sets, Mutah Lil-Buhuth Wad-Dirasat, Vol.20, No.3, 2005, PP.57-64.
- [11] Njastad, O., On Some Classes of Nearly Open sets, pacific J. Math., Vol.15, 1965, PP.961-970.
- [12] Noiri, T., El-Deeb, S. N., Hasanein, I. A., and Mashhour A. S., On p-regular Spaces, Bukk. Math. Soc. Math. R. S. Roumantie, Vol.27, No.25, 1983, PP. 311-315.
- [13] Willard, S., General Topology, Addison-Wesley, 1970.