
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3648 

EESRM: An Effective Approach to Improve the Performance of Software 

Re-Engineering 

 

A. Cathreen Graciamary 1, Dr. M.Chidambaram 2 

1 Research Scholar, Bharathiyar University, Coimbatore, India. 
2 Assistant Professor, Rejah Serfoji Govt College, Thanjavur, India. 

 

Abstract  

Nowadays, development of software is described as the 

continuous advancement of software products. These software 

products are updated frequently for the duration of their 

usage. In several cases, software systems are developed by 

altering the architecture or by including new attributes 

because of new business plans or technologies. Re-

engineering of Computer software is an economical and ideal 

way to provide much needed boost to user’s current software 

system. In existing software Re-engineering techniques, there 

is no efficient technique to improve and reduce the existing 

software. In this research work, our proposed system presents 

Efficient and Enhanced Software Re-engineering Mechanism 

to resolve the existing software re-engineering issues. In our 

proposed system, the data is converted into byte and stored 

into separate file. Then, perform classification with that 

particular data set. Comparing with existing system, our 

proposed system performance is high because the access time 

of byte size of data is very lower than other data types. 

Moreover, our proposed mechanism reduces the complexities 

in software re-engineering. Finally, we conduct set of 

experiments to prove our proposed mechanism is better than 

other approaches. 

Keywords: Software Engineering, Software Re-engineering, 

Software Quality, Restructuring. 

 

INTRODUCTION  

The process of modifying the present computer software to 

get used to change new software development is known as 

Software Re-Engineering. But basically, re-examine and 

analyzing its contents, transform the necessary contents (or 

the entire computer software as required), break it apart, also 

its getting the completed product that is: software, and then 

finally put it exact back together another time [1]. As this type 

of activity is the real process of Application, then it can also 

be known as Reverse Engineering. When the process of re-

engineering for computer software occurs then the technique 

of organization is also being improved for being in the line 

within enhanced software technology. The software for the re-

engineered computer might be simple for the comparison with 

the older methods like knowledge and ideal methods are 

sufficient in market. There are huge risks generated with the 

development of project for computer software. One of the 

major risks is known as the problem identification.  

 

Figure 1: Software development V/s Software re-engineering  

 

Fig 1 illustrates the general structure of software development 

and Software Re-engineering [2]. 

Solitary issues are producing some phases throughout the life 

cycle of software that could enlarge it into a huge problem 

because of the flawed software for generation. Re-engineering 

of Computer software might assist not simply support to stick 

any issues, which was produced during its generation but it 

steadily reduce the leaning in re-creation for a similar issue 

related when construction of a new software system [3]. 

Re-engineering of Software has developed into significant sub 

discipline inside CS (Computer Science) from past ten years. 

Huge firms gradually automate the critical and important jobs 

this makes their company extremely reliant on Information 

Systems. But in several cases, these software systems were 

sustained for a couple of years, these are legacy software 

systems that are significant for the firm, but they are often 

complex to maintain and understand. In terms of budget and 

time, the re-development of these software systems from 

scrape is not a better plan. Therefore, other alternative is 

software re-engineering.  

In software re-engineering of a software system, one can 

study about software re-engineering history, techniques and 

tools of reengineering, re-engineering phases. Re-engineering 

system’s cost and its experiences have to be observed to 

design an absolute re-engineering scheme. Various research 

works have different significance for software re-engineering. 

Analyze & 

gather 

requirements 

Design and 

develop the 

system 

New 

software 

System 

Software Development 

Break apart 

the existing 

software 

Analyze & 

understand 

the existing 

software 

Re-

engineered 

System 

Software Re-engineering 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3649 

Software Re-engineering is the process of analysis 

examination and modification of existing software application 

to re-constitute it in a new structure, and the succeeding 

completion of the new structure [4]. The re-engineering 

concept is the modification and examination of an existing 

system to rebuild it in a new structure and the succeeding 

execution of the target form [5].  

Software Re-engineering is defined as “Re-engineering 

concerns the design examination and existing legacy system 

implementation and relating several methods and mechanisms 

to reshape and redesign that software application into 

optimistically more suitable and better software application 

[6]. Re-engineering has three main parts such as: (I) Forward 

Engineering (FE) [5], (II) Reverse Engineering (RE) [4] and 

(III) architecture transformation. RE is a major part of the 

software re-engineering life cycle.  

 

Figure 2: Forward Engineering and Software Reengineering 

 

Fig 2 show the general structure of forward engineering and 

software re-engineering. 

At present, software re-engineering of object oriented system 

(OOS) is the future research field since software experts are 

now managing huge volume of industrial program, 

implemented with the help of object oriented methods of the 

late eight’s and early ninety’s. While managing these software 

systems, several problems may takes place and the software 

experts have to efficiently prevent and fulfill the changing 

requirements of the customers [7]. Though the concept of 

object oriented is moderately new, there are a lot of OOSs. 

The concept of object oriented paradigm was established by 

several software ventures but currently with the survival of 

millions LOC (line of code) in OOSs, software re-engineering 

of these software applications is a speeding research domain. 

Currently, object oriented paradigm adopter handling the 

problems related to transformation of these OOSs into the 

more re-usable framework and mechanism. So, methodologies 

or tools maintenance is needed to handle the huge and badly 

documented OOP (Object Oriented Programs). The software 

re-engineering of OOS was gaining special treatment to 

reduce the growth costs and to assist the software protection 

[8]. 

Taxonomy of Software Re-Engineering  

This sub section provides the taxonomy and scope of the 

software re-engineering domain with several key terms as 

follows: 

1. FE (Forward engineering) 

2. RE (Reverse engineering) 

3. Re-documentation 

4. Reverse design or Design recovery 

5. Program comprehension or Program understanding  

6. Restructuring 

7. Recode 

8. Redesign 

9. Re-specify 

Forward engineering is the conventional procedure of 

moving from sophisticated logical and abstractions, execution 

not-dependent designs to the system’s physical completion.  

Reverse engineering is the analyzing process of 

software system to (i) make out the software’s 

interrelationships and their mechanism and (ii) generate 

system representations of the current system in a different 

structure or in a higher abstraction level.  

Re-documentation is the revision or creation of a 

semantically correspondent illustration inside the similar 

comparative level of abstraction. It is also the oldest and 

simplest reverse engineering form and should be measured to 

be an un-invasive, weak restructuring form [9].  

Reverse design or Design recovery re-creates 

abstractions of the design from a mixture of existing design 

documentation, code, personal experience, application 

domains and general information about  the problem.  

A term Program comprehension or Program 

understanding is related to reverse engineering process. 

Program comprehension implies that comprehension starts 

with the program while RE may start at an executable and 

binary structure of the system or at sophisticated descriptions 

of the system design [11].  

Restructuring is the process of transforming the data 

from one representation structure to a different at very similar 

comparative level of abstraction, while protecting the existing 

software system’s semantics and functionality [10].  

Recode process consists of altering the implementation 

characteristics of the program. Control flow restructuring and 

language translation are the program-level changes [12].  

Re-design is the process of modifying the characteristics 

of design. Feasible changes contains improving an algorithm, 

restructuring design architecture, changing a data of a system 

model as incorporated in a DB (database) or in data structures 

[14].  

System Specification 

New software System 

Forward Engineering 

Legacy Software System 

New Re-engineered 

System 

Software Re-engineering 

Transformation Design and 

Implementation 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3650 

Re-specify process consists of modifying the 

characteristics of the requirements. This kind of change may 

refer to altering the existing requirements structure only [13]. 

As a result, the existing researches discusses about the re-

engineering of software using different kinds of techniques. In 

order to overcome the existing drawbacks in software re-

engineering, our proposed system presents a novel approach 

namely Efficient and Enhanced Software Re-engineering 

mechanism. In this mechanism, without changing the 

implemented technology it increases the performance of 

existing software application. The details of our proposed 

methodology are described in section III.   

The rest of the paper is organized as follows. Section II which 

overviews the related work. Then we provide the detailed 

description of our proposed scheme in Section III. Section IV 

gives the results and discussions of our proposed scheme. 

Finally, Section V concludes the whole research work. 

 

RELATED WORK 

Research work [15] comprise software re-engineering in 

business procedure change the alternations within the time 

period in a firm; however, this condition provides several 

similar issues in which a software system implemented in one 

firm and it should be utilized in another firm. Research work 

[13] states that expert in software re-engineering are very 

fewer than the experts in development and design and the 

majority of the software engineers don’t have large amount of 

research knowledge in Re-engineering area [13]. The issues 

with existing software system are present all over the globe. 

The author in [17] describes an existing software system as 

individual, which considerably resists modification and 

development to meet continuously changing & new business 

needs without considering the well-known technology to 

design the software system. Here, the existing software 

system is replaced with a new software system with similar or 

enhanced functionality. 

Nowadays, significant consideration was devoted to the 

software reengineering phenomenon [18] [19]. In the earlier 

periods, research studies in the reengineering area mainly 

focuses on the various reengineering frameworks 

development, but only a few research studies discovered the 

risk factors in software re-engineering process. Risks of re-

engineering and their power on quality of software cause the 

efforts of re-engineering to be unsuccessful. For successful re-

engineering development, the required re-engineering risks 

were organized. Research work [22] discusses a plan, for 

software re-engineering to develop the cost-effective large 

software re-engineering features. On the other hand, 

management, economic, and quality features of software plays 

a vital part in the successful completion of software re-

engineering efforts. Research work [21] reviews the outcome 

of thirteen software re-engineering projects accomplished 

over the last decade. Analysis illustrates that the re-

engineering projects have considerably lesser risk factor than 

development projects - twenty five percents as opposed to 

fifty seven percents. This variation could be measured by the 

following terms such as cost overruns and project completion 

rates.  

Moreover, re-engineering selection is also essential in 

considering the other aspects such as resource utilization, user 

satisfaction performance improvement and quality goals, etc. 

Research work [20] recommends 2 major reasons for software 

re-engineering failure as political risk and functionality risk, 

correspondingly. Although, there are other serious risks like 

process risk, technical risk, architecture risk, risk related to 

stakeholders and development environment risk are also the 

reasons for the efforts of software re-engineering to be 

unsuccessful.  

Research work [23] developed a metrics structure to assess the 

difficulty of existing software to support product outsourcing. 

The structure consists of 2 legacy system dimensions such as 

source code and documentation. Moreover, several other 

dimensions of an existing software system like managerial 

system, and technical dimensions take part in a vital role in 

development process of software system. Research work [24] 

explains a gradual reengineering process of the technical 

mechanism of existing software system. This mechanism 

allows the existing system to be steadily emptied into the re-

engineered software system without needing to duplicate the 

legacy system. Research work [25] proposed a novel model 

for legacy software systems namely A Dual-Spiral Re-

engineering Model, this executes cyclic approach. The major 

work flow in this model needs 2 software systems (target 

system and legacy system) to work jointly; then shift the 

functionality of the system from the existing software to the 

new software gradually, based on the spiral model. For the 

period of whole re-engineering procedure, the active 

functionality of the traditional software is in decremented 

model and the functionality of the novel target software is in 

an incremental model. 

 

PROPOSED WORK 

Overview 

Efficient and Enhanced Software Re-engineering Mechanism 

is a software re-engineering process which is used to 

transform a traditional software system to a new software 

system. The figure 1 shows the overall structure of our 

proposed re-engineering mechanism. Initially, our system 

analyze the drawbacks of existing terms in terms of accessing 

time of the software application and storage size of the 

software application. After that, analyze the solution to 

overcome the drawback of existing system within the 

implemented technology. Then check the feasibility for 

improving the performance of the existing system. Then check 

the feasibility to solve the existing problem. Finally, compare 

the result of modified product with existing product in terms 

of access time and memory usage. Fig 3 shows the overall 

Proposed System. 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3651 

 

Figure 3: Architecture of Proposed System 

 

Working Methodology 

Our proposed Framework consists of three major stages. Such 

as  

1. Analyze the Concept of Existing System 

2. Analyze the Solution with the Existing Technology 

3. Feasibility Study and Solve the Problem 

4. Compare the Result of Modified Application with 

Existing Application 

Analyze the Concept of Existing System 

The preliminary process of our Efficient and Enhanced 

Software Re-engineering Mechanism is analyzing the concept 

of existing system. In this stage, the developer analyzes the 

concept of existing system and its system requirements like 

front end, back end, and hardware specifications. In brief, it 

initially re-specify the current requirements or needs of the 

customer. The causes for selected software system failure 

were identified within the 1st stage, several software systems 

do not have any kind of security or some other drawbacks; 

there is feeble fault management process that doesn’t cover 

the entire probable fault cases. After analyzing the 

abovementioned things, the developer must know the 

performance of the existing software application like 

processing time and memory usage, etc. 

Analyze the Solution with the Existing Technology 

This stage describes the details about the analysis of finding 

the solution to overcome the drawback within the 

implemented technology and re-testing process. Before 

finding the solution, identifying the existing problem or 

current condition of the existing technology is very crucial 

process of software re-engineering. The current condition of 

the traditional software re-engineering consists of operability 

and maintainability. A software metrics set must be chosen to 

help in detecting the quality issues with the existing software 

system and the application prioritization that are applicants for 

software re-engineering based on their business value and 

technical quality. In addition, converting the current 

technology of source code into new technology is also a 

complicated process; alternatively, the expert finds the 

optimal solution with current technology which reduces the 

cost and memory consumption.   

Feasibility Study and Solve the Problem 

This stage describes the details about the feasibility study of 

the proposed solution. After finding the optimal solution for 

re-engineering the existing software application without 

changing the current technology, check the feasibility of the 

proposed solution which is also a huge problem. For checking 

the feasibility, consider the following things such as to 

increase quality of software, to improve the efficiency of 

maintenance process, and enhance the business value. While 

establishing the prospects, the user should be expressed in an 

assessable way – such as cost reduction in performance 

improvement, sustaining engineering and operations 

reduction, etc. After that, the reengineering costs should be 

compared to the predictable cost savings and to increase the 

value of current software application.  

Compare the Result of Modified Application with Existing 

Application 

This stage is the final stage of our Efficient and Enhanced 

Software Re-engineering mechanism. Based on the result of 

previous software re-engineering stages, the implementation 

of a software application or system should be performed. In 

implementation, a particular part might be replaced with the 

best one which completely relies on the prior three stages of 

our Efficient and Enhanced Software Re-engineering 

mechanism. Finally, it compares the performance of modified 

software application with existing software application with 

the attributes like processing time and memory usage.  

 

RESULTS AND DISCUSSION 

Experimental setup 

To evaluate the performance of our Efficient and Enhanced 

Software Re-engineering mechanism, we conducted a series 

of experiments on three different types of dataset such as 

Breast cancer dataset, Diabetes and Heart Disease dataset, the 

detailed description of the datasets are given in table 1. In 

these experiments, we implemented and evaluated the 

proposed techniques in following configuration: 2 GB RAM, 

Processer speed 2.90 GHz, Intel i3(R), CPU G2020, and 

Operating system -Windows 7, and Front End -JAVA.    

 

 

 

 

Software  

Re-

engineering 

Analyze the Solution to 

Overcome the Drawback 

within the Implemented 

Technology 

Solve the 

Existing 

Problem 

 

 

Compare the Modified 

Application with old 

Application in terms of 

Access Time and Memory 

Usage 

Feasibility 

Study and 

Requirements 

Analyze the 

Drawbacks of 

Existing System 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3652 

Detail of Dataset 

For Diabetes, 

Attribute 1: Number of times pregnant 

Attribute 2: Plasma glucose concentration a 2 hours in an oral 

glucose tolerance test 

Attribute 3: Diastolic blood pressure (mm Hg) 

Attribute 4: Triceps skin fold thickness (mm) 

Attribute 5:  2-Hour serum insulin (mu U/ml) 

Attribute 6: Body mass index (weight in kg/(height in m)^2) 

Attribute 7: Diabetes pedigree function 

Attribute 8: Age (years) 

Attribute 9: Class variable (0 or 1) 

For Heart disease, 

Attribute 1: age        

Attribute 2: sex        

Attribute 3: chest pain type (4 values)        

Attribute 4: resting blood pressure   

Attribute 5: serum cholesterol in mg/dl       

Attribute 6: fasting blood sugar > 120 mg/dl        

Attribute 7: resting electrocardiographic results (values 0, 1, 

2)  

Attribute 8: maximum heart rate achieved   

Attribute 9: exercise induced angina     

Attribute 10: old peak = ST depression induced by exercise 

relative to rest    

Attribute 11: the slope of the peak exercise ST segment      

Attribute 12: number of major vessels (0-3) colored by 

fluoroscopy         

Attribute 13:  thal: 3 = normal; 6 = fixed defect; 7 = reversible 

defect  

Attribute 14: Absence (1) or presence (2) of heart disease  

For Brest Cancer, 

Attribute 1: Clump_Thickness integer [1, 10] 

Attribute 2: Cell_Size_Uniformity integer [1, 10] 

Attribute 3: Cell_Shape_Uniformity integer [1, 10] 

Attribute 4: Marginal_Adhesion integer [1, 10] 

Attribute 5: Single_Epi_Cell_Size integer [1, 10] 

Attribute 6: Bare_Nuclei integer [1, 10] 

Attribute 7: Bland_Chromatin integer [1, 10] 

Attribute 8: Normal_Nucleoli integer [1, 10] 

Attribute 9: Mitoses integer [1, 10] 

Attribute Class {benign, malignant} 

 

Performance Evaluation 

To evalaute the performance of our Efficient and Enhanced 

Software Re-engineering Mechanism, we have formed one 

medical diagnosis & prediction system for three different 

diseases like breast cancer, diabeties and heart disease 

patients. Here, we consider two medical diagnosis and 

predication applications such as  

 SVM Classification System 

 Modified SVM Classification System 

For estimating the performance of our Re-engineering system, 

first obtain the input dataset. For SVM Classification System, 

no datatype conversion should performed, the expert use 

MySQL as back end for storing the datasets. For Modified 

SVM Classification System, dataset is converted into bytes 

and store it in the file instead of database. In data processing, 

the expert can convert the byte data into string and then 

precede the classification process. 

 

Figure 4. SVM Classification System 

 

Fig 4 illustrates a medical diagnosis and prediction system by 

using Support Vector Machine Classification Algorithm for 

predicting several diseases like heart disease, diabetes and 

breast cancer. The classification operation is performed 

without changing the data type of the datasets. 

 

Figure 5. Modified-SVM Classification System 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3653 

Fig 5 illustrates the proposed medical diagnosis and 

prediction system named Modified-Support Vector Machine 

Classification system for predicting the different types of 

diseases like heart disease, diabetes and breast cancer.  

 

Figure 6. Accessing Time Comparison of Proposed System 

and Existing System 

 

Fig 6 The performance graph illustrates the processing time 

comparison between the proposed system (Modified-SVM 

Classification System) and existing system (SVM 

Classification System). Here, the graph shows our proposed 

mechanism takes very less time for prediction process of three 

types of dataset like cancer, diabetes and heart disease. 

 

Figure 7. Memory Usage Comparison of Proposed 

System and Existing System 

 

Fig 7, performance graph illustrates the memory usage 

comparison between the existing system (SVM Classification 

System) and proposed system (Modified-SVM Classification 

System).  Here, the graph shows our Modified- SVM 

Classification System which utilize minimum memory space 

for prediction process for three types of dataset like cancer, 

diabetes and heart disease. 

 

Table 1. Datasets Details 

S.NO DATASET NAME ATTRIBUTES CLASS 

1. Diabetes 08 02 

2. Heart Disease 13 02 

3. Breast-Cancer 09 02 

 

CONCLUSION 

Currently, a huge amount of changes are rapidly involved in 

software and hardware due to the fast development of 

computer industry. Re-engineering of software provides 

minimized risk level in software development. Actually, new 

software application development is more risky process. So, a 

novel Software Re-engineering mechanism is required to 

convert the existing system into a new system without 

changing the implemented technology of existing system.  

This Efficient and Enhanced Software Re-engineering 

mechanism is proposed to reduce the memory usage and 

processing time. Finally, our proposed mechanism improves 

the QOS with minimum development efforts and increases the 

efficiency, reliability of software application. 

 

REFERENCES 

[1] Anquetil, Nicolas, and Jannik Laval. "Legacy software 

restructuring: Analyzing a concrete case." In 

SoftwareMaintenance and Reengineering (CSMR), 

2011 15th European Conference on, pp. 279-286. 

IEEE, 2011. 

[2] M. A. Serrano, D. L. Carver and C. Montes de Oca, 

“Reengineering legacy systems for distributed 

environments”, Journal of System Software, Elsevier, 

vol. 64, (2002), pp. 37–55, (2002). 

[3] A.-P. Li, Z.-h. Wang, L.-G. Duan and X.–P. Li, “Study 

and application of legacy system reengineering based 

on component reuse”, Journal of Applied Sciences, vol. 

13, no. 8, (2013), pp. 1233-1238. 

[4] L. H. Rosenberg, “Software Re-engineering”, 

Lawrence E. Hyatt Manager, Software Assurance 

Technology Center System Reliability and Safety 

Office Goddard Space Flight Center, 1997, NASA 301-

286-7475. 

[5] D. Staffan and D. Sandell, “Reengineering and 

Reengineering Patterns”, The Department for 

Computer Science and Engineering, Mälardalens 

Högskola 2002-02-24 Västerås. 

[6] E. J. Chikofsky and J. H. Cross II, “Reverse 

engineering and design recovery: A taxonomy”, Index 

Technology Corp. and Northeastern University and 

Auburn university, (1990). 

[7] C. Szyperski, “Component Software; Beyond Object-

Oriented Programming”, Addison-Wesley, (1998). 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654 

© Research India Publications.  http://www.ripublication.com 

3654 

[8] B. Caprile, A. Potrich and P. Tonella, “Reverse 

Engineering of Object Oriented Code”, Geneva (CH), 

(1999). 

[9] Tahvildari, L., Kontogiannis, K. On the role of design 

patterns in quality-driven re-engineering. in 

Proceedings of the IEEE 6th European Conference on 

Software Maintenance and Re-engineering (CSMR). 

2002. Hungary. 

[10] Harry.M.Sneed, “Economics of Software re-

engineering”, Journal of Software Maintenance, Vol.3, 

1991, p.163 

[11] M.Solvin, and S. Malik. “Re-engineering to reduce 

system maintenance: A case study”,Software 

Engineering, pp.14-24,2011. 

[12] S. Ducasse, T.G.ı., and J.-M. Favre, Modeling software 

evolution by treating history as a first class entity, in on 

Software Evolution Through Transformation 2004. p. 

71–82. 

[13] J. Ransom, I.S., I. Warren. A Method for Assessing 

Legacy Systems for Evolution. in Proceedings of the 

2nd Euromicro Conference on Software Maintenance 

and Re-engineering ( CSMR'98). 1998. 

[14] Moghaddas, Y., & Rashidi, H. (2009). A novel 

approach for replacing legacy systems, Journal of 

Applied Sciences, 9(22), 4086–4090. 

[15] Shekhar Singh, Significant role of COTS to design 

Software Reengineering Patterns, International 

Conference on Software Engineering and 

Applications(ICSEA),2009. 

[16] Brodie, Michael L., and Stonebraker, Michael, 

“Migrating Legacy Systems: Gateways, Interfaces 

andthe Incremental Approach”, Morgan-Kaufman 

Publishers, 1995. 

[17] Pooley R., Stevens P., Systems Reengineering Patterns, 

CSG internal report, 1998. 

[18] Ransom, J., Somerville, I., Warren, I., “A method for 

assessing legacy systems for evolution”, in Proceedings 

of the Second Euromicro Conference on Software 

Maintenance and Reengineering, 1998, ISBN: 0-8186- 

8421-6, INSPEC Accession Number: 5884288,PP 128 

– 134. 

[19] Paul Briden, “Software Re-engineering process,” 

Tessella Support Services PLC Technical report, Issue 

V2.R1.M1, 2000. 

[20] Eric K. Clemons Michael C. Row Matt E. Thatcher, 

“An Integrative Framework for Identifying and 

Managing Risks Associated With Large Scale 

Reengineering Efforts,” in 1995, Proceedings of the 

28th Annual Hawaii International Conference on 

System Sciences - 1995 pp. 960-969. 

[21] Harry M. Sneed, “Risks Involved in Reengineering 

Projects,” in WCRE: Proceedings of the Sixth Working 

Conference on Reverse Engineering-1999, IEEE 

Computer Society pp.204. 

[22] Peter H. Feiler, “Reengineering: An Engineering 

Problem,” Technical Report Software Engineering 

Institute Carnegie Mellon university Pittsburgh 

Pennsylvania 15213, CMU/SEI-93-SR-5, 1993. 

[23] Cristiane S. Ramos, Káthia M. Oliveira, Nicolas 

Anquetil,” Legacy Software Evaluation Model for 

Outsourced Maintainer”, published in CSMR '04 

Proceedings of the Eighth Euromicro Working 

Conference on Software Maintenance and 

Reengineering (CSMR'04), IEEE Computer Society 

Washington, DC, USA ©2004 table of contents 

ISBN:0-7695-2107-X 

[24] Alessandro Bianchi, Danilo Caivano,Vittorio Marengo, 

Giuseppe Visaggio,” Iterative Reengineering of Legacy 

Functions”, 17th IEEE International Conference on 

Software Maintenance (ICSM'01), Florence, Italy, 

ISBN: 0-7695-1189-9,November 07-November 09. 

[25] Xiaohu Yang et al, "A Dual-Spiral Reengineering 

Model for Legacy System", TENCON 2005 - 2005 

IEEE Region 10 Conference ISBN: 0780393112 Year: 

2005 Pages: 1-5 Provider: IEEE Publisher: IEEE. 


